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Abstract

We give an overview of the basic physical concepts and analytical methods for investigating the symmetry-
breaking instabilities of solitary waves. We discuss self-focusing of spatial optical solitons in di!ractive
nonlinear media due to either transverse (one more unbounded spatial dimension) or modulational (induced
by temporal wave dispersion) instabilities, in the framework of the cubic nonlinear SchroK dinger (NLS)
equation and its generalizations. Both linear and nonlinear regimes of the instability-induced soliton
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dynamics are analyzed for bright (self-focusing media) and dark (self-defocusing media) solitary waves. For
a defocusing Kerr medium, the results of the small-amplitude limit are compared with the theory of the
transverse instabilities of the Korteweg}de Vries solitons developed in the framework of the exactly
integrable Kadomtsev}Petviashvili equation. We give also a comprehensive summary of di!erent physical
problems involving the analysis of the transverse and modulational instabilities of solitary waves including
the soliton self-focusing in the discrete NLS equation, the models of parametric wave mixing, the Davey}
Stewartson equation, the Zakharov}Kuznetsov and Shrira equations, instabilities of higher-order and
ring-like spatially localized modes, the kink stability in the dissipative Cahn}Hilliard equation, etc. Experi-
mental observations of the soliton self-focusing and transverse instabilities for bright and dark solitons in
nonlinear optics are brie#y summarized as well. ( 2000 Elsevier Science B.V. All rights reserved.

PACS: 42.65.!k
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1. Introduction

Wave instabilities are probably the most remarkable physical phenomena that may occur in
nonlinear systems (see, e.g., Infeld and Rowlands (1990) and references therein). Modulational
instability and breakup of a continuous-wave (c.w.) "eld of large intensity was "rst predicted and
analyzed in the context of waves in #uids (Benjamin and Feir, 1967; Zakharov, 1968). The similar
e!ect is self-focusing of light in optical media with a nonlinear response (Askar'yan, 1962; Chiao
et al., 1964; Talanov, 1964; Kelley, 1965; Ostrovsky, 1966; Bespalov and Talanov, 1966) which is
responsible for the appearance of hot spots and associated optical damage in media irradiated by
high power laser pulses.

One of the important physical processes associated with the development of modulational
instability is the generation of a train of spatially (beams) or temporary (pulses) localized waves
(Yuen and Ferguson, 1978), the e!ect observed experimentally in di!erent physical systems, e.g. in
the #uid dynamics (Benjamin and Feir, 1967; Yuen and Lake, 1975; Melville, 1982; Su, 1982),
nonlinear beam propagation (Campillo et al., 1973, 1974; Iturbe-Castillo et al., 1995), electrical
transmission lines (Mizumura and Noguchi, 1975; MarquieH et al., 1994, 1995), optical "bers
(Tai et al., 1986), etc.

One of the fundamental models describing the nonlinearity-induced modulational instability is
the generalized nonlinear SchroK dinger (NLS) equation, written in one spatial dimension as follows:

iu
t
#u

xx
#(r#1)DuD2ru"0 , (1.1)

where r is the power of nonlinearity. In the case r"1, this model describes the propagation of an
electric "eld envelope in an optical waveguide, the famous model known to be integrable by means
of the inverse scattering transform (see, e.g., Ablowitz and Segur, 1981, and references therein).

Modulational instability can be viewed as the simplest case of the so-called symmetry-breaking
instability, when a solution of a nonlinear system of a certain dimension (e.g., an uniform c.w.
background) is subjected to a broader class of perturbations. Another example is the instability of
low-dimensional solitary waves to perturbations involving higher dimensions. This is a typical case
of the so-called transverse instability of plane solitary waves, "rst discussed for long-wave solitons of
the Korteveg}de Vries (KdV) equation (Kadomtsev and Petviashvili, 1970) and envelope solitons
of the NLS equation (Zakharov, 1967; Zakharov and Rubenchik, 1973), and then investigated by
di!erent methods for a variety of nonlinear soliton-bearing models (see, e.g., Yajima, 1974;
Washimi, 1974; Schmidt, 1975; Spatschek et al., 1975; Katyshev and Makhankov, 1976; Laedke
and Spatschek, 1978; Andersen et al., 1979a,b; Ablowitz and Segur, 1979, 1980; Akhmediev et al.,
1992; Soto-Crespo et al., 1991, 1992; Kuznetsov and Rasmussen, 1995) with demonstrations
in numerical simulations (e.g., Degtyarev et al., 1975; Pereira et al., 1977; Infeld and Rowlands,
1980).

Why this type of soliton instabilities becomes important and deserves a special attention and
discussion these days? First of all, the recent progress in developing and employing nonlinear
optical materials, led to several important discoveries of self-focusing of light, self-trapped beam
propagation, and spatial optical solitary waves in di!erent nonlinear materials, including photo-
refractive (Shih et al., 1995, 1996), quadratic (Torruellas et al., 1995), and saturable non-Kerr
(Tikhonenko et al., 1995, 1996b) media. It is expected that the development of novel band-gap
materials based on quadratic or cubic nonlinearities will eventually lead to the experimental
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observation and manipulation of the so-called light bullets, self-focused states of light localized in
both space and time, the building blocks of the future all-optical photonics devices.

Secondly, di!erent types of symmetry-breaking instabilities have been recently described theoret-
ically and observed experimentally in nonlinear optics. This includes the observation of a breakup
of bright soliton stripes in a bulk photorefractive medium due to the transverse modulational
instability and the formation of a sequence of two-dimensional self-trapped beams (Mamaev et al.,
1996a,b), the "rst observation of the generation of pairs of optical vortex solitons due to the
transverse instability of dark-soliton stripes (Tikhonenko et al., 1996a; Mamaev et al., 1996c); the
theory and the "rst experimental demonstration of spatial modulational instability in quadratically
nonlinear (or s(2)) optical media (Fuerst et al., 1997a,b; DeRossi et al., 1997a,b); a decay of
ring-shape optical beams with nonzero angular momentum into higher-dimensional solitary
waves, observed experimentally in a rubidium vapour (a saturable defocusing medium)
(Tikhonenko et al., 1995), a quadratic nonlinear crystal (Petrov et al., 1998), and investigated
theoretically as a general solitonic e!ect (Firth and Skryabin, 1997). It is also worth mentioning the
pulse compression and all-optical switching in waveguide arrays induced by modulational instabil-
ity of nonlinear localized modes in discrete systems (e.g., Aceves et al., 1994a,b, 1995). These results,
applied to nonlinear systems of a di!erent nature, call for a systematic overview of the basic ideas
and analytical methods of the soliton stability theory previously discussed only for particular
examples or techniques (Makhankov, 1978; Kuznetsov et al., 1986; Trubnikov and Zhdanov, 1987;
Rypdal and Rasmussen, 1989; Infeld and Rowlands, 1990; Kamchatnov, 1997).

The main purpose of this survey is twofold. First of all, we give an overview of the basic physical
concepts and analytical methods in the theory of the symmetry-breaking instabilities of solitary
waves. We analyze in detail linear and nonlinear regimes of self-focusing of planar bright and dark
solitons described by two conventional models, (i) the elliptic and hyperbolic versions of the cubic
NLS equation, and (ii) the Kadomtsev}Petviashvili (KP) equation, the well-known two-dimen-
sional generalization of the KdV equation. Second, we discuss all possible scenarios of the
instability-induced soliton dynamics and give a summary of the results on the transverse soliton
instabilities for di!erent types of physical models and more general types of nonlinearity. In
particular, we show that the self-focusing instability leads to either the formation of localized waves
stable in higher dimensions with a singular, nonsingular or decaying amplitude evolution, or
long-lived periodic oscillations between planar and modulated quasi-plane soliton states. For
illustration of the basic asymptotic methods, we compare our results with those for modulational
instability of a c.w. background within the generalized NLS equation.

The paper is organized as follows. In Section 2 we introduce our basic models and discuss their
physical applications and generalizations, including a brief overview of physical mechanisms for
suppressing wave collapse in the NLS model. Then, in Section 3 we discuss the general criteria for
the transverse self-focusing of solitary waves in dispersive and di!ractive nonlinear media. The
asymptotic analysis of this phenomenon is presented in Section 4, where we derive the modulation
equations for the parameters of slowly modulated self-focusing solitons. Modi"cations of the
asymptotic approach for small-amplitude (long-scale and short-scale) expansions are discussed in
Sections 5 and 6, respectively. Section 7 gives a brief summary of some generalizations of the NLS-
and KdV-type models, and it presents also some other types of nonlinear models, including dis-
crete lattices, the Zakharov}Kuznetsov and Shrira equations, the Davey}Stewartson equation, the
models of parametric wave mixing in di!ractive media with a quadratic optical response, the
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Cahn}Hilliard equation, etc. In Section 8 we discuss the experimental observations of self-focusing
and soliton instabilities in nonlinear optics, and Section 9 gives a list of some closely related or
unsolved problems which might be useful for the future studies.

2. Physical models

Throughout this paper, we distinguish two di!erent phenomena: self-focusing collapse of a spa-
tially localized wave and self-focusing (or transverse) symmetry-breaking instability of a planar
solitary wave. Collapse (or blowup) occurs when the amplitude of an unstable solitary wave
localized in all dimensions grows to in"nity in a "nite time. As a matter of fact, the wave collapse is
a particular scenario of the instability-induced evolution of a solitary wave under the action of
perturbations of the same dimension. Transverse instability is an instability of a solitary wave that is
localized in one (longitudinal) dimension and nonlocalized but perturbed in other (transverse)
dimensions. The latter phenomenon is more generic, it may occur in the systems where the blowup
instability is suppressed or it does not happen at all. There are known several di!erent scenarios of
the long-term dynamics of the soliton transverse instability. Only in the systems where both
blowup and transverse instability coexist, we expect that a perturbation along the soliton front may
break a plane soliton into a chain of localized modes, each undergoing a further transformation
into a collapsing mode. Here we discuss the basic soliton-bearing models which we consider below
for analyzing the soliton transverse instability (Section 2.1), and also some physically important
generalizations which are required for the suppression of the blowup instability whenever it may
occur (Section 2.2).

2.1. Basic soliton equations

The fundamental model to analyze the soliton transverse self-focusing is the (2#1)-dimensional
(i.e. two spatial and one temporal variables) NLS equation which can be written as follows:

it
t
#t

xx
#p

$
t

yy
#2p

/
DtD2t"0 , (2.1)

where p
/
"$1 de"nes the type of the cubic nonlinearity, i.e. focusing (at p

/
"#1) or defocusing

(at p
/
"!1), and p

$
"$1 de"nes the type of the wave dispersion/di!raction.

The most well-known applications of Eq. (2.1) are in nonlinear optics (see, e.g., a number of
books, Shen, 1984; Boyd, 1992; Newell and Moloney, 1992; Agrawal, 1995). In particular, in the
theory of spatial optical solitons (e.g., Boardman and Xie, 1993; Kivshar, 1998a), this model always
appears with p

$
"#1 (di!raction), and it can be derived for the beam propagation in a bulk

medium from Maxwell's equations in the so-called paraxial approximation, taking into account
two transverse and one longitudinal spatial dimensions. The same equation appears for the case of
temporal modulations of the (1#1)-dimensional solitons in a waveguide with the so-called anomal-
ous dispersion, i.e., uA(k)'0, where u"u(k) is the frequency of a wave which is a function of its
wave number. For this latter case, the variable t stands for the propagation coordinate, and the
variable y plays a role of the retarded time in the reference frame moving with the group velocity.
For p

$
"#1, the model (2.1) is usually referred to as the elliptic cubic NLS equation.
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For the so-called normal dispersion, i.e., for uA(k)(0, the NLS equation appears with p
$
"!1,

and it is usually called the hyperbolic cubic NLS equation. In this latter case, the NLS equation (2.1)
is less studied in the literature. However, it also provides a fundamental model for describing the
nonlinear dynamics of a broad class of waves, e.g., deep-water gravitational waves (Zakharov, 1968;
Martin et al., 1980; Yuen and Lake, 1986), lower-hybrid (Litvak et al., 1979) and cyclotron (Myra
and Lin, 1980) waves in magnetized plasmas, etc. In nonlinear optics, Eq. (2.1) with p

$
"!1

describes the spatio-temporal dynamics of an optical beam in a nonlinear medium with positive
Kerr e!ect which undergoes self-focusing in space and self-modulation in time (see, e.g., Chernev
and Petrov, 1992a).

In the self-focusing medium (p
/
"#1), the c.w. solution of Eq. (2.1) of the form

t(t)"o exp(2io2t), is modulationally unstable to spatial periodic perturbations &e*ix with the
modulation wave numbers i selected in a "nite band, 0(i(i

.!9
. As a result of the development

of such an instability, we expect the generation of a train of localized waves (beams or pulses),
usually called bright NLS solitons. An individual planar bright soliton is described by the y-
independent localized solution of the NLS equation (2.1), that we write here in a general form,

t(x, t)"U
b
(x!2vt!s; u)e*(vx~v

2
t`ut`h) , (2.2)

where, for the case of the cubic nonlinearity,

U
b
(x; u)"Ju sech(Jux) .

In Eq. (2.2), the parameters 2v and u stand for the soliton velocity and frequency (or its
propagation constant), which represent the translational and oscillatory degrees of freedom of
a bright NLS soliton, respectively. The constant parameters s and h are the soliton initial position
and phase, respectively. In many problems of the soliton dynamics, the envelope bright soliton (2.2)
is analyzed at rest; its translational degree of freedom is not excited and it can be eliminated by the
standard Galilei transformation.

As was "rst shown by Zakharov and Rubenchik (1973), a plane bright soliton (2.2) is unstable to
higher-dimensional perturbations both in the elliptic and hyperbolic cases. This phenomenon is
called the soliton transverse instability, for the spatial case, or modulational instability, for the
temporal case.

In the elliptic case (p
$
"#1), the unstable transverse perturbations &e*py have wave numbers

within the "nite interval 0(p(p
#
, where p

#
"J3u. It was shown numerically (Degtyarev et al.,

1975) that the self-focused beams undergo collapse in a "nite time (or at "nite propagation
distance). To avoid a catastrophic collapse in realistic physical models, an e!ective nonlinearity
saturation should be taking into account, and it leads to a "nite wave amplitude (Litvak et al., 1991)
(see also Section 2.2 below).

In the hyperbolic case (p
$
"!1), the unstable transverse perturbations also have a "nite-interval

wave numbers, i.e., 0(p(p
#
, but the derivation of the cuto! value p

#
is a complicated problem

which led to contradictory conclusions (Kuznetsov et al., 1986; Rypdal and Rasmussen, 1989).
Recently, a simple result was obtained by an asymptotic analysis, p

#
"Ju (Pelinovsky and Sulem,

1999). Numerical simulations (Pereira et al., 1978) revealed a breakup of a planar soliton into
localized modes which move apart and spread out due to the action of the wave dispersion. In
addition, travelling instabilities of a bright soliton was also discovered numerically for transverse
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wave numbers p
#1
(p(p

#2
(Martin et al., 1980) but this issue remained an open problem until

recently (Pelinovsky and Sulem, 1999).
In a defocusing medium (p

/
"!1), the c.w. solution is modulationally stable in the elliptic

problem (p
$
"#1) and localized waves can exist on a nonvanishing background as dips of lower

intensity, usually called dark solitons,

t(x, t)"U
$
(x!2vt!s; v)e~*(2o2

t~h) , (2.3)

where

U
$
(x; v)"k tanh(kx)#iv, k"Jo2!v2 .

Here the boundary conditions for the function t(x, t) are speci"ed by the amplitude o of the c.w.
background, i.e., DtDPo as xPR, and the parameter v de"nes the soliton velocity, DvD4o. As was
"rst shown by Kuznetsov and Turitsyn (1988), a dark soliton (2.3) is unstable to transverse
perturbations with the wave numbers, 0(DpD(p

#
(v), where

p
#
(v)"[!(o2#v2)#2Jv4!v2o2#o4 ]1@2 . (2.4)

Recent numerical (McDonald et al., 1993; Law and Swartzlander, 1993), analytical (Pelinovsky
et al., 1995), and experimental (Tikhonenko et al., 1996a) results revealed that the instability leads
to the generation of a train of vortex solitons with alternative polarities, as a possible scenario of
the self-focusing process in a defocusing medium. In addition, the self-focusing of dark solitons may
also display long-lived intermediate oscillations between a quasi-planar soliton and a train of
vortex solitons (Pelinovsky et al., 1995).

Although the transverse instability of dark solitons has been considered also for the hyperbolic
NLS equation (Rypdal and Rasmussen, 1989), we notice that p

$
"!1 the c.w. background is

modulationally unstable for both signs of p
/
. This implies that the wave background is likely to be

destroyed by growing perturbations and experimental observations of dark solitons and their
self-focusing dynamics becomes overshadowed by the background instability. Therefore, we omit
the case of dark solitons in the hyperbolic NLS equation.

In the small-amplitude asymptotic limit, the transverse self-focusing of a plane dark soliton is
described by a rather universal model known as the KP equation (Kadomtsev and Petviashvili,
1970). The analytical approximation resulting in the KP equation corresponds to small-amplitude
long-wave modulations of the c.w. background within the asymptotic expansion:

t"[o!1
2
e2u(X#2o¹,>, q)#O(e4)] expM!2io2t#ieR(X#2o¹,>, q)N , (2.5)

where X"ex, ¹"et, >"e2y, q"e3t, and e;1. As follows from Eq. (2.1) for p
/
"!1 and

p
$
"#1, the function u"R

X
satis"es the KP equation with the positive dispersion,

(4u
t
#12uu

x
#u

xxx
)
x
"4u

yy
, (2.6)

where we have used the conventional notations (x, y, t) for the stretched variables (X,>, q) and also
put o"1. A plane KdV soliton is described by a steady-state solution of Eq. (2.6):

u";(x!vt!s; v) , (2.7)
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where v is the soliton velocity, s is the soliton initial coordinate, and the soliton shape is described
by a sech function,

;(x; v)"v sech2(Jvx) .

The KP equation (2.6) has been studied in many papers devoted to the soliton self-focusing,
because it commonly appears in di!erent physical applications, and it is integrable by means
of the inverse scattering transform (see, e.g., Ablowitz and Segur, 1981). In particular, we would
like to mention a number of analytical (Murakami and Tajiri, 1992; Pelinovsky and Stepanyants,
1993) and numerical (Infeld et al., 1994, 1995) results which showed that, under a periodic
transverse perturbation, a plane KdV soliton transforms into a chain of two-dimensional KP
solitons.

The NLS equation (2.1) and the KP equation (2.6) are two basic models we have selected in this
paper to demonstrate di!erent asymptotic approaches in the theory of the symmetry-breaking
soliton instabilities. These models are generic, and many of the techniques we discuss here can be
further employed for the analysis of more complicated nonlinear systems.

2.2. Suppression of wave collapse: physical mechanisms

Physical models discussed above are drastically simpli"ed. Therefore, they do not take into
account all possible processes which may occur in realistic physical systems. This is a general
feature of any theoretical model, that holds as a good approximation provided it does not display
some exotic properties or singular dynamics. However, there exist several physical models where
smooth and localized initial conditions develop singularities in "nite time (or at "nite distances).
For example, the power-law KdV equation u

t
#upu

x
#u

xxx
"0 describes the development of

a singularity from localized initial conditions for p'4; the NLS equation it
t
#+2

D
t#DtD2rt"0

has collapsing solutions for Dr52, where D stands for the space dimension. There exist some other
examples, including the modi"ed KP equation, the Boussinesq equation, the model for disper-
sionless three-wave interaction, the continuum limit of the Toda lattice with a transverse degree
of freedom, the subcritical Ginzburg}Landau equation, etc. (see, e.g., Zakharov, 1991; Turitsyn,
1993b; BergeH , 1998a; Sulem and Sulem, 1999).

In the framework of the elliptic NLS equation, a spatially localized wave can develop a singular-
ity in a "nite time provided its total power exceeds a certain critical (threshold) value (e.g., Rypdal
and Rasmussen, 1989). However, from the physical point of view, it is clear that such a catastrophic
self-focusing wave collapse cannot proceed inde"nitely. Moreover, the critical collapse that
corresponds to the marginal condition Dr"2, should be sensitive to small structural perturbations
of the NLS equation. There are known many di!erent physical mechanisms that can suppress or
even completely eliminate collapse. Therefore, the models possessing the collapse dynamics are
valid for describing only the initial and intermediate regimes of the beam/pulse self-focusing, and
they should be modi"ed for a later stage of the instability-induced dynamics. Below, we give
a summary of some physical mechanisms which appear mostly in applications to nonlinear optics
problems (see also Goldman, 1984; BergeH , 1998a). It is worth mentioning that the modulation
theory developed by Fibich and Papanicolaou (1998, 1999) may allow to analyze the e!ects of
a rather general class of perturbations on critical self-focusing.
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2.2.1. Nonlinearity saturation
One of the well-known ways of stabilizing the blowup instability of optical beams above the

self-focusing power threshold comes from the fact that in practice the refractive index of an optical
medium saturates at high powers of optical beams. Several di!erent models of the saturable
nonlinearity were used to demonstrate the existence of stable self-trapped beams in two and three
dimensions, including exponential saturation (e.g., Wilcox and Wilcox, 1975; Kaw et al., 1975; Vidal
and Johnston, 1996), two-level type model (e.g., Marburger and Dawes, 1968; Gustafson et al., 1968),
cubic}quintic nolinearity with a defocusing contribution of the next-order quintic nonlinear re-
sponse (e.g., Zakharov et al., 1971; Wright et al., 1995; Josserand and Rica, 1997), the so-called
threshold nonlinearity (e.g., Snyder et al., 1991), logarithmic nonlinearity (Bialynicki-Birula and
Mycielski, 1979; Snyder and Mitchell, 1997a). A similar mechanism is produced by the so-called
cavitation e!ect due to repulsion of the ions from the region of the energy concentration in an
ultra-intense laser beam (Komashko et al., 1995).

The physical mechanism behind the stabilizing action of the nonlinearity saturation is very
simple: When a beam increases its amplitude the e!ective action of nonlinearity decreases therefore
preventing the further self-focusing and collapse. In most of the cases, this stabilizing mechanism is
associated with the existence of stable multi-dimensional solitary waves.

2.2.2. Nonparaxial and vector focusing
In applications to nonlinear optics, the NLS equation appears as a result of several approxima-

tions. The most important one is the so-called paraxial approximation which allows to derive the
NLS equation for the beam dynamics from the scalar wave (or Helmholtz) equation. Presenting the
"eld in the form E(r

M
, z)"t(r

M
, z) e*kz, this approximation means that the resulting scalar equation

for t in an isotropic medium,

it
z
#+2t#DtD2t#et

zz
"0 , (2.8)

can be considered in neglection of the last term with the small parameter e which is de"ned by
a ratio of the initial beam radius to the di!raction length. Eq. (2.8) is ill-posed as a Cauchy problem
and, therefore, its direct numerical integration can meet some problems (see, e.g., Sheppard and
Haelterman, 1998).

Beginning with Feit and Fleck (1988), it was argued that no singularity forms if beam non-
paraxiality is included. This result was further supported by asymptotic analysis of Fibich (1996)
who demonstrated for the equation above that the critical self-focusing is indeed arrested for any
small e (see also Fibich and Papanicolaou, 1998, 1999).

More accurate models of nonparaxial optical self-focusing should include vectorial ewects of the
coupling between TE and TM components and backscattering, both the e!ects lead to additional
power losses. Vectorial coupling becomes signi"cant when a beam focuses to a peak which has the
width comparable with the wavelength. As a result, the weak-guidance approximation, based on
the assumption that the term +(+E) can be dropped from the Maxwell wave equations, becomes
invalid. Vectorial e!ects (see, e.g., Milsted and Contrell, 1996, and references therein) support the
existence of stable self-trapped beams with the coupled transverse and longitudinal "elds of the
same order (e.g., Eleonskii et al., 1973), and, therefore, the e!ective coupling of TE and TM
components can also arrest collapse (Chi and Guo, 1995).
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2.2.3. Dissipation and diwusion
Dissipation of the beam energy during its self-focusing is one of the important physical

mechanisms that should prevent its collapse. The e!ect of a linear damping &!ilt in the NLS
equation has been analyzed numerically (Goldman et al., 1980), by means of the collective
coordinates (Rasmussen et al., 1994), and by the moment method (PeH rez-GarciDa et al., 1995). In
general, the linear damping increases the length of self-focusing collapse but it does not remove it
completely. For a given input power P, there exists a critical damping l

#
(P) such that for l(l

#
(P)

the beam collapses completely even in the presence of the energy dissipation.
Another important mechanism of the energy absorption is the thermal self-action of light due to

heat diwusion which can be described by the coupling between the NLS equation and the heat
di!usion equation (e.g., Litvak et al., 1975; Bertolotti et al., 1997, and references therein). The e!ect
of the heat di!usion is more dramatic, and the beam amplitude remains "nite even for the powers
larger then the critical power of self-focusing. Similar e!ects are produced by a nonlocal response of
the medium (see, e.g., Suter and Blasberg, 1993) and by a dissipative interaction of the focused beam
with stimulated Brillouin scattering which results in the self-focusing suppression and modi"cation
of the beam structure (Rubenchik et al., 1995).

2.2.4. Nonlocal interaction
The e!ective saturation e!ect in the soliton self-focusing is also produced by nonlocality of the

nonlinear interaction, which can be described by the nonlocal NLS equation,

it
t
#+2

D
t#tP<(Dr!r@D)Dt(r@)D2dr@"0 , (2.9)

where <(DxD) is the potential of the interaction between the particles. The standard NLS
model follows from Eq. (2.9) under the assumption of the delta-like point interaction. As
was demonstrated by Turitsyn (1985) for a few important physical types of the potential <(DxD),
Eq. (2.9) does not possess collapsing solutions, so that collapse can be indeed arrested by
higher-order derivative terms produced by the nonlocal interaction. The physical mechanism of the
stabilizing action of nonlocality is even more clear in the critical limit of highly nonlocal media
when Eq. (2.9) becomes a linear equation for an e!ective quantum oscillator (Snyder and Mitchell,
1997b).

2.2.5. Higher-order dispersion and discreteness
The similar stabilizing action of nonlocal nonlinearity is produced solely by a nonlocal linear

dispersion (Gaididei et al., 1996). In the simplest case, the problem can be reduced, by keeping only
the lowest-order term, to the NLS equation with the fourth-order dispersion,

it
t
#+2

D
t#DtD2rt#

c
2
+4t"0 , (2.10)

with small cO0. The e!ect produced by this higher-order dispersion depends on the sign of c, so
that for c'0 it leads to resonant radiation of linear waves and defocusing of a localized wave. For
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c(0, Eq. (2.10) can possess stable localized solutions of the form t(r, t)"/(r) e*ut, provided

(Dr!2)P(2ruA
dP
duB ,

where P":DtD2dDr is the total beam power (Karpman, 1996), the result not yet veri"ed numer-
ically.

Now, it becomes clear that the discreteness of physical models may also lead to the arrest of
collapse and/or stable localized states (e.g., Bang et al., 1994; Aceves et al., 1995; Christiansen et al.,
1996a,b) because it generates a higher-order dispersion term of a proper sign. Indeed, if we use the
perturbation theory to approximate the lattice discreteness by a continuum model taking some
higher-order terms in the corresponding Taylor expansion (a small parameter is a ratio of
the lattice spacing to the characteristic length of the wave), the resulting forth-order dispersion
produces a stabilizing e!ect on the localized waves. In the opposite case of a strong discreteness, the
size of the self-focused beam is limited by the lattice spacing, so that no singularity can develop in
principle (see, e.g., Laedke et al., 1994).

2.2.6. Normal dispersion
As was suggested by Strickland and Corkum (1994), the normal group-velocity dispersion

increases the peak power of two-dimensional self-focusing of short light pulses, therefore it should
also provide a limiting (saturating) mechanism of the wave collapse. Numerical simulations (e.g.,
Chernev and Petrov, 1992a,b; Rothenberg, 1992a,b; Luther et al., 1994a,b,c; Ryan and Agrawal,
1995) demonstrated that the normal dispersion tends to ease self-focusing by spreading the pulse
along the propagation direction, and therefore increases the threshold for the two-dimensional
collapse through a temporal pulse-splitting process (see discussions and references in BergeH and
Rasmussen, 1996a,b; BergeH , 1998a). Normal dispersion removes the critical self-similarity of the
wave self-focusing as is seen through the analysis of modulation equations (Luther et al., 1994c;
Fibich et al., 1995) leading to a non-self-similar one peak splitting and, as is observed in numerical
simulations, a fragmentation process "rst de"ned as fractal collapse by Zharova et al. (1986). In
general, the virial-type arguments and self-similar analysis (BergeH et al., 1996, 1998) suggest that
a pulse does not develop a spatial singularity being splitted into small-size beams (&cells') which are
sequentially formed and "nally spread out with a power lower than the critical power of
self-focusing. The similar behaviour is basically preserved for a general power-law nonlinearity
&DtD2rt, so that it can be shown (BergeH et al., 1996c) that in the critical case D"2/r no collapse
can occur and the longitudinal extension of the solution never reaches zero for any D.

Recently, an extensive numerical simulations of the di!erent regimes of the pulse propagation
and self-focusing in Argon have been carried out by Mlejnek et al. (1998) on the basis of the model
of the hyperbolic NLS equation coupled to a rate equation describing plasma generation. By
varying the pressure p as a control parameter, they observed numerically a number of di!erent
scenarios, from a low pressure regime (p(1 atm) to full blowup arrested by normal dispersion at
high pressures (p'100 atm).

In all the examples discussed above, we have seen that even small additional terms in the NLS
equation may have a large e!ect on the global dynamics of self-focusing. However, in many
numerical studies it was shown that there is very little di!erence between self-focusing described by
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the cubic NLS equation and the extended models during the xrst focusing cycle until the collapse is
arrested. For that reason, the cubic NLS equation still serves as the fundamental model equation
for self-focusing in the prefocal region even though it neglects higher-order e!ects.

3. Criteria for soliton self-focusing

Fundamental physical mechanisms leading to the transverse self-focusing of solitary waves
in di!erent types of dispersive and di!ractive nonlinear systems are similar to the mechanisms
governing self-focusing and modulational instabilities of small-amplitude quasi-harmonic wave
packets (see, e.g., Kadomtsev, 1976; Rabinovich and Trubetskov, 1984). The instability occurs
when transverse modulations along the front of a planar solitary wave decrease a local value of
the soliton energy. There exist two basic analytical methods to study the soliton self-focusing, the
geometric optics approach and linear stability analysis. Here we brie#y overview both these
approaches (Sections 3.1 and 3.2) and show a link between the methods for the analysis of
transverse instabilities of planar solitons and modulational instability of c.w. modes in dispersive
nonlinear systems (Section 3.3).

3.1. Geometric optics approach

The geometric optics approach in the theory of linear and nonlinear waves is based on the
assumption that a transversely modulated plane wave remains locally close to its steady-state
pro"le, so that each individual segment of the wave evolves along an individual ray [see, e.g., the
book by Anile et al. (1993) for many di!erent applications of this method]. In the dynamics of
quasi-plane solitons, this assumption is valid provided the soliton remains stable against longitudi-
nal perturbations preserving its symmetry.

The geometric optics method for the soliton transverse self-focusing was "rst developed by
Ostrovsky and Shrira (1976) who considered one-parametric solitons propagating in an isotropic
medium (see also Shrira, 1980). To present the basic results of this method, we introduce an
orthogonal system of coordinates (a,b) and consider the evolution of the local soliton velocity v, the
width of a way tube D, and the phase angle h that the ray makes with the x-axis, see Fig. 1(a).
Geometrically, these three parameters are connected through the following kinematic relations,

Rs
Ra#

1
D
Rv
Rb"0,

Rs
Rb!

1
v
RD
Ra"0 . (3.1)

This system is closed with the help of the energy conservation law for a ray tube,

*=(v)"const , (3.2)

where="=(v) is the energy density. System (3.1),(3.2) is elliptic provided dv/dD'0, and then it
predicts a transverse instability of a plane soliton. Since the ray width D is typically inversely
proportional to the soliton amplitude, the ray equations de"ne a universal criterion for the
self-focusing instability of one-parametric solitons in an isotropic medium: transverse self-focusing
of a plane soliton occurs when the soliton velocity decreases with an increase of its amplitude. In this case,
the corresponding rays form a converging cylindrical wave, as shown schematically in Fig. 1(b).
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Fig. 1. (a) Coordinate system for the application of the geometric optics approach. (b) Schematic of the soliton
self-focusing and the instability mechanism described by the geometric optics.

This simple physical mechanism explains the transverse instability of the dark NLS solitons
(Kuznetsov and Turitsyn, 1988), for which the dependence of the velocity v on the amplitude a is
de"ned by the relation, v"Jo2!a2 [see Eq. (2.3)]. Similarly, this criterion is valid for the KdV
solitons if one considers the solitons within the original isotropic problem in a medium with
a positive dispersion (Kadomtsev and Petviashvili, 1970).

It is straightforward to generalize Eqs. (3.1) and (3.2) of the geometric optics approach to the case
of the solitons modulated with respect to their frequency rather than velocity. As a result, the same
criterion of the soliton self-focusing is valid in the case when the soliton frequency u decreases with
the soliton amplitude a. This is valid for the bright NLS solitons that have the frequency u in an
e!ective gap of the linear spectrum band, u"u

#
!ca2, where u

#
is the cuto! frequency of the

linear band, and c is positive. Indeed, the bright solitons are known to be unstable with respect to
transverse perturbations (Zakharov and Rubenchik, 1973).

The geometric optics method is not applicable directly to certain nonlinear models, e.g. those
described by Eqs. (2.1) and (2.6), where the dependences u"u(a) and v"v(a) have already been
renormalized. In addition, Eqs. (3.1) and (3.2) are limited by the wave propagation in an isotropic
medium and by the case of one-parametric solitons. For instance, the hyperbolic NLS equation is
beyond the applicability of the ray method because (i) this model is inherently anisotropic, and (ii)
the symmetry-breaking instability of bright solitons leads to a self-consistent coupled dynamics of
both translational and oscillatory degrees of freedom of the bright NLS soliton.

An alternative and mathematically more accurate method is based on the derivation of the
Whitham modulation equations for the soliton parameters (Whitham, 1974). The Whitham
equations describe both longitudinal and transverse modulations of a quasi-plane nonlinear wave,
and they can be derived for both periodic and localized waves (see, e.g., examples of the application
of this method in the book by Infeld and Rowlands (1990)). If a resulting system of the Whitham
equations is elliptic, the solitary waves are unstable and their evolution leads to the self-focusing
dynamics. In a particular case of transverse modulations, the Whitham modulation theory reduces
to an averaged Lagrangian method which we discuss below in Section 4.2.
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3.2. Linear eigenvalue problems

Another basic approach for analyzing the self-focusing soliton instabilities is based on the
analysis of a linear eigenvalue problem that is obtained by linearizing the equations of motion near
the exact solitary wave solution. Because a steady-state solution for a solitary wave depends only
on a few parameters (soliton coordinates and phases), one can separate variables and reduce the
analysis of the corresponding linear problem to the analysis of an eigenvalue spectrum of a certain
linear operator.

For the bright NLS solitons, linear perturbations are considered in the form,

dt"t(x, y, t)!U
b
(x;u) e*ut"[u(x)#iw(x)] e*ut`Ct`*py ,

where p is the transverse wave number, C is an eigenvalue that determines the instability growth
rate, U

b
(x; u) is given by Eq. (2.2), and the real functions u(x) and w(x) satisfy the linear eigenvalue

problem following from Eq. (2.1) at p
/
"#1,

(LK
1
#p

$
p2)u"!Cw, (LK

0
#p

$
p2)w"Cu , (3.3)

where

LK
0
"!R2

x
#u!2U2

"
, LK

1
"LK

0
!4U2

b
.

For the dark NLS solitons, the linear eigenvalue problem follows from Eq. (2.1) at p
/
"!1 and

p
$
"#1 after substituting,

dt"t(x, y, t)!U
$
(m; v) e~2*o2

t"/(m) e~2*o2
t`Ct`*py ,

where m"x!2vt, U
$
(m; v) is given by Eq. (2.3), and /(m) satis"es the linear eigenvalue equation,

LK /#p2/"iC/ , (3.4)

where

LK "!R2m#2ivRm!2(o2!2DU
$
D2)#2U2

$
(H) .

For the KdV solitons, the linear eigenvalue problem follows from the KP equation (2.6) after the
substitution,

du"u(x, y, t)!;(m, v)"=(m) eCt`*py ,

where m"x!vt, ;(m; v) is given by Eq. (2.7), and="=(m) satis"es the problem

(LK =)mm!4p2="4C=m , (3.5)

with

LK "!R2m#4v!12; .

Self-focusing instability of solitary waves occurs if the corresponding linear eigenvalue problem
possesses at least one localized eigenmode with an eigenvalue C"C(p) having a positive real part
for p'0. Additionally, if a soliton is stable against longitudinal perturbations preserving its
symmetry, there exist no unstable eigenvalues at p"0, i.e. C(0)"0.
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In most of the cases, no exact solutions can be found for linear eigenvalue problems of this type.
However, there exist several analytical methods to approximate the unstable eigenvalue C"C(p)
and to derive the instability threshold condition. These methods are based on the asymptotic
expansions for either small wave numbers (pP0) or "nite wave numbers near a critical (cut-o!)
value (pPp

#
). We de"ne these asymptotic approximations as long-scale and short-scale expan-

sions, respectively.
The long-scale asymptotic method is based on the Taylor expansions of the instability eigenmode

for small values of the wave number p. Such a technique is sometimes called the p-expansion method,
and it may often detect the existence of self-focusing soliton instability since the instability typically
occurs for large spatial wavelengths (i.e. small p) of transverse modulations. The method is
originated from the "rst papers (Kadomtsev and Petviashvili, 1970; Zakharov and Rubenchik,
1973), and it is commonly used nowadays (see, e.g., Infeld and Rowlands, 1990). Using the
discrete-spectrum modes of linear eigenvalue problem at p"0 and C"0 usually known in an
explicit analytical form (the so-called neutral modes), one can construct the Taylor expansion of the
eigenfunctions and eigenvalues of the corresponding linear problem and derive the "rst terms of the
asymptotic expansions. These "rst terms de"ne the spatial symmetry of perturbations leading to
the transverse instability, and also provide an approximate expression for the instability growth
rate C(p) for small p. Below, we present the neutral modes which generate the corresponding
long-scale expansions, and the asymptotic approximation for C(p) derived for the basic soliton
equations.

(i) Bright NLS solitons in the elliptic problem (Zakharov and Rubenchik, 1973; Kuznetsov et al.,
1986)

u"0, w"U
b
(x; u), C2(p)"4up2!

4
3A1#

p2

3 Bp4#O(p6) ; (3.6)

(ii) Bright NLS solitons in the hyperbolic problem (Zakharov and Rubenchik, 1973; Kuznetsov et al.,
1986)

u"[U
b
(x; u)]

x
, w"0, C2(p)"

4
3
up2!

4
9A

p2

3
!1Bp4#O(p6) ; (3.7)

(iii) KdV solitons (Shrira and Pesenson, 1983; Pesenson, 1991)

=";m(m; v), C2(p)"
4
3
vp2!

4

3Jv
p2C#O(p4) ; (3.8)

(iv) Dark NLS solitons (Kuznetsov and Turitsyn, 1988)

/"[U
d
(m; v)]m , C2(p)"

4
3
(o2!v2)p2!

2(o2#v2)

3oJo2!v2
p2C#O(p4) . (3.9)

We would like to point out that numerical coe$cients in Eqs. (3.6) and (3.7) are slightly di!erent
from those which can be found in the original papers (Zakharov and Rubenchik, 1973; Kuznetsov
et al., 1986) because of misprints.

The short-scale asymptotic method is based on the Taylor expansion with respect to another small
parameter (p

#
!p), where p

#
is a critical (or cuto!) value of p where C vanishes, i.e. C(p

#
)"0. This
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method uses the expressions for the eigenmodes of the linear eigenvalue problems at p"p
#

and
C"0. The eigenmodes can be often found by a direct analysis of the linearized equations. Below,
we present the critical eigenmodes, eigenvalues, as well as the asymptotic approximations for the
growth rate C(p) in the limit pPp

#
.

(i) Bright NLS solitons in the elliptic problem (Janssen and Rasmussen, 1983; Kuznetsov et al., 1983)

u"sech2(Jux), w"0, p
#
"J3u ,

C2(p)"
24up

#
(n2!6)

(p
#
!p)#O((p

#
!p)2) ; (3.10)

(ii) Bright NLS solitons in the hyperbolic problem (Pelinovsky, 2000)

u"0, w"tanh(Jux), p
#
"Ju ,

C2(p)"
16up

#
3n2

Jp2
#
!p2#O(p

#
!p) . (3.11)

We notice that in this case the critical eigenfunction is delocalized.
(iii) KdV solitons (Gorshkov and Pelinovsky, 1995a, 1995b)

="sech(Jvm)!2 sech3(Jvm), p
#
"

J3
2

v ,

C2(p)"
4
3
p
#
(p

#
!p)#O((p

#
!p)2) ; (3.12)

(iv) Dark NLS solitons (Pelinovsky et al., 1995)

/"!

3v sinh(km)
2k cosh2(km)

#i
(p2

#
#3k2)

4k2 cosh(km)
,

p
#
"[!(o2#v2)#2Jv4!v2o2#o4]1@2 ,

C2(p)"
p
#

b(k)
(p

#
!p)#O((p

#
!p)2) . (3.13)

In the latter case, the dependence b"b(k) was found numerically [see Fig. 2(b) in Pelinovsky et al.,
1995] within the domain 1.884b/k243.00, the lower limit is for k"1 (v"0) and the upper limit
is for kP0 (vPo).

A complete spectrum of unstable eigenvalues can be found only in special cases, e.g. if the linear
eigenvalue problem is integrable. For example, this is the case of the transverse instabilities of the
KdV solitons because the KP equation (2.6) is known to be integrable by means of the inverse
scattering transform (see, e.g., Ablowitz and Segur, 1981). Using the inverse scattering technique,
Zakharov (1975) constructed the spectrum of the transverse instability of the KdV solitons (see also
Alexander et al., 1997). Indeed, one can verify that the eigenfunction,

="

R2
Rm2

[eim sech(Jvm)], i"Av!
2

J3
pB

1@2
. (3.14)
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solves Eq. (3.5) for

C(p)"
2

J3
pAv!

2

J3
pB

1@2
. (3.15)

The expansion of Eq. (3.15) in the limits pP0 (iPJv) and pPJ3v/2 (iP0) coincide with the
results of the asymptotic analysis given by Eqs. (3.8) and (3.12).

3.3. Analogy with modulational instability

Modulational instability of a monochromatic nonlinear wave occurs via the four-wave interac-
tion between the wave of the main frequency and generated wave satellites which form a certain
resonant con"guration (see Infeld and Rowlands, 1990, and references therein). A possibility of
such a resonant four-wave mixing follows from the structure of the dispersion relation of linear
waves, the dependence of the wave frequency u(k) on the wave number k. The linear dispersion
relation for the NLS equation (1.1) is u(k)"k2, and such a frequency dependence allows resonant
four-wave interactions according to the following frequency mixing rule:

2u(2k)"u(k#dk)#u(k!dk) , (3.16)

where dk"J3k. Such a resonant wave-mixing mechanism explains the appearence of modula-
tional instability of a fundamental wave with respect to the parametric excitations of two wave
satellites. The instability follows from the analysis of the linearized version of the NLS equation
(1.1). To show this, we present the linearized solution in the form,

u"[o#(e
u
#ie

v
)e*px`Ct#(eH

u
#ieH

v
)e~*px`CHt]e*kx~*k

2
t`*(r`1)o2r

t , (3.17)

where e
u

and e
v

are coupled through the relation, by the expression

e
v
/e

u
"(C#2ikp)/p2 . (3.18)

Then, the instability growth rate C"C(p) is de"ned by a solution of a quadratic equation,

(C#2ikp)2"2r(r#1)o2rp2!p4 . (3.19)

A simple analysis of Eq. (3.19) indicates that the c.w. solution, u"oe*(r`1)o2r
t, is unstable against

modulations with the wave numbers p selected within the band 0(p(p
#
, where

p
#
"[2r(r#1)o2r]1@2 .

Nonlinear dynamics of modulational instability of a c.w. solution can be also analyzed in the limit
of long-wave modulations, i.e. when both p and C are small. To do so, we use the well-known
presentation of the complex "eld in the #uid-dynamics form (see, e.g., Spiegel, 1980),

u"[q(X,¹)]1@2e*h(X,T)@e , (3.20)

where X"ex, ¹"et, and e;1. Then, the NLS equation reduces to a system of two coupled
equations for real h and q,

q
T
#2(qh

X
)
X
"0 ,

h
T
#h2

X
!(r#1)qr!e2A

q
XX
2q

!

q2
X

4q2B"0 ,
(3.21)
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Coupled equations (3.21) possess a c.w. solution, q"q
0

and h"(r#1)qr
0
t#h

0
, where q

0
and

h
0

are constants. Linear expansion around the c.w. solution produces the characteristic equation
(3.19) with q

0
"o2. In the limit eP0, system (3.21) transforms into the gas-dynamics equations

(Trubnikov and Zhdanov, 1987) which describes a dispersionless limit of the NLS equation
(Kamchatnov, 1997). Equivalently, the gas dynamics equations coincide with the geometric optics
approximation for the wave propagation in nonlinear di!ractive media, where the "rst equation
gives the energy balance, while the second equation is a kinematic relation for the wave phase. The
modulational instability of a c.w. background can be then studied within the coupled equations
(3.21) in the limit of small but "nite values of e, by applying the Whitham modulation theory (see,
for a review, Kamchatnov, 1997). However, the applicability of the Whitham theory is limited by
integrable systems because it is based on exact periodic solutions.

It is a purpose of our survey to show that the modulation equations which describe the
development of the soliton self-focusing instability are similar to those of the #uid dynamics form
(3.21) of the NLS equation. Moreover, these modulation equations can be investigated systemati-
cally by means of the regular asymptotic expansion methods. The latter methods use only a balance
between the amplitude and the spatial scale of the soliton modulations and do not rely upon the
integrability properties of the modulation equations. Thus, we expect that the methods described
here are more general than the Whitham theory, and they can be applied to much broader class of
problems related to the symmetry-breaking instabilities of nonlinear waves.

4. Equations for soliton parameters

The analytical approaches described above are based on two di!erent approximations imposed
on the soliton transverse modulations. The geometric optics approach describes the evolution
of strongly nonlinear long-wavelength modulations in the dispersion less limit, whereas the
linear eigenvalue problem allows to describe the evolution of perturbations of all scales but within
a small amplitude (linear) approximation. Depending on a type of balance between linear and
nonlinear e!ects in the soliton dynamics, di!erent analytical methods have been employed in the
literature for deriving the modulation equations describing nonlinear regimes of the soliton
self-focusing. In this section, we review some of those methods and also discuss their applicability
limits.

The basic assumptions we use here are the following: (i) a planar soliton is stable against
the symmetry-preserving perturbations, and (ii) the instability occurs when the wavelength of the
soliton transverse modulations is much larger than the soliton width whereas the amplitude of the
soliton modulations may be not small. The modulation equations are derived below by means of
direct asymptotic expansions (Section 4.1) or, equivalently, by an averaged Lagrangian method
(Section 4.2). These equations generate, in the leading order, ill-posed (elliptic) equations for the
dynamics of an equivalent (unstable) gas which displays the development of singularities in "nite
time (Section 4.3). The gas-dynamics equations represent the dispersionless limit of the NLS
equation written in the hydrodynamical form (3.21) (see Section 4.4). We can improve the
applicability of the asymptotic equations by extending the perturbation theory into higher orders
to include dispersive and/or dissipative e!ects (see Section 4.5). The bounded scenario of the
transverse self-focusing can be then described within the extended models (Section 4.6). For
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integrable evolution equations, the soliton self-focusing can be studied in the framework of exact
analytical solutions (Section 4.7).

4.1. Direct asymptotic expansions

We consider the NLS equation (2.1) and the KP equation (2.6) in the asymptotic limit of long
transverse modulations, i.e. we write the "elds as t"t(x,>, t) and u"u(x,>, t), where >"ey in
the stretched coordinate and e;1. Then, those equations transform to the perturbed NLS and
KdV equations, respectively,

it
t
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#2p
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DtD2t"e2p

$
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YY
, (4.1)

(4u
t
#12uu
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#u

xxx
)
x
"4e2u

YY
. (4.2)

The soliton dynamics induced by such e!ective perturbations can be analyzed in the framework of
a regular soliton perturbation theory (Kivshar and Malomed, 1989; Pelinovsky and Grimshaw,
1997). This theory implies that a planar soliton evolves adiabatically under the action of long-scale
transverse perturbations, i.e. it is locally close to the pro"le of a planar solitary wave solution but
with the parameters varying slowly with > and also depending on slow time ¹"et. Then, the
soliton perturbation theory allows us to derive, in a systematic way, a system of modulation
equations for the soliton parameters. We show below how to derive those equations for several
important physical cases.

4.1.1. Bright NLS solitons in the elliptic problem
The transverse self-focusing of a bright soliton in the elliptic problem is generated by the phase

and frequency modulations [see Eq. (3.6)]. Therefore, we neglect the parameters v and s in Eq. (2.2)
and assume the following asymptotic series:
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where U
b
(x;u) is the soliton pro"le (2.2), the parameters are some functions of slow variables, i.e.

u"u(>,¹) and h"h(>,¹), and /
1
(x, t;>,¹) is a "rst-order correction to the soliton shape.

Substituting Eq. (4.3) into Eq. (4.1) for p
/
"#1 and p

$
"#1 and neglecting the terms /

n
for

n52, we "nd the linear equation for the function /
1
"u

1
#iw

1
,

w
1t
#LK

1
u
1
"H

1
,!e~1(h

T
#h2

Y
!u)U

b
#eA
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Ru u
YY
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R2U
b

Ru2
u2

YB ,

!u
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#LK

0
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2
,

RU
b

Ru (u
T
#2u

Y
h
Y
)#h

YY
U

b
,

(4.4)

where LK
0

and LK
1

are de"ned after Eq. (3.3). It is clearly seen from Eq. (4.4) that the asymptotic
balance occurs when the phase factor (h

T
#h2

Y
!u) becomes of order of O(e2) and the terms of

order of O(e) should be moved from Eq. (4.4) into the next-order equation for /
2
. One of the typical

approximation is however to keep all terms into the same equation (4.4) and proceed with
a solution. A solution can be found by expanding u

1
and w

1
through a complete set of the

continuous spectrum eigenfunctions (Kaup, 1990). The discrete and associated eigenfunctions are
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to be removed from the expansion by means of the orthogonality conditions,

P
=

~=

U
b

H
2

dx"0, P
=

~=

RU
b

Ru H
1

dx"0 . (4.5)

It can be shown that the "rst condition gives a power balance for a transversely modulated bright
soliton, where the power is de"ned as N":=

~=
DtD2dx, and the second equation is a condition

that the correction term /
1

does not change the value of the soliton energy N
b
(u), i.e.

N"N
b
(u)#O(e2). The latter condition can be omitted in the soliton perturbation theory in one

dimension (Pelinovsky and Grimshaw, 1997) because it just renormalizes the energy conservation
equation into the next asymptotic order. However, the second equation (4.5) has its own meaning
for the soliton dynamics in two dimensions as the kinematic relations (3.1) within the geometric
optics approach. Evaluating integrals in Eqs. (4.5), we derive a system of modulation equations for
the parameters of a bright NLS soliton,

u
T
#2u

Y
h
Y
#4uh

YY
"0 ,

h
T
#h2

Y
!u#e2kA3

u2
Y

u2
!4

u
YY
u B"0 ,

(4.6)

where

k"
1
12A1#

p2

12B .

Eqs. (4.6), without the terms of order of O(e2) represent the energy conservation law and the eikonal
equation of the geometric optics method. The additional terms of the order of O(e2) describe the
e!ect of dispersion on the soliton self-focusing.

4.1.2. Bright NLS solitons in the hyperbolic problem
In the hyperbolic problem, the self-focusing instability of a bright NLS soliton is induced via the

coordinate and velocity modulations [see Eq. (3.7)] coupled to the phase and frequency modula-
tions. As a result, a variation of all four parameters of a bright NLS soliton (2.2) should be taken into
account in the asymptotic expansion,

t(x, y, t)"A/0
(m;u)#e/

1
(m, t;>,¹)#

=
+
n/2

en/
n
(m, t;>,¹)Be*vm`*h@e , (4.7)

where /
0
"J1!4s2

Y
U

b
(m; u), m"x!2s/e, and all parameters (v, s, u, h) are assumed to be some

functions of slow variables> and ¹. The amplitude factor J1!4s2
Y

appears due to a curvature of
the soliton front induced by the coordinate modulations. We investigate here only the leading
order of the modulation equations. To "nd these equations, we derive from Eq. (4.1) at p

/
"#1

and p
$
"!1 the system of equations for the function /

1
"u
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,
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. (4.8)
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Solvability of this system is determined by four orthogonality conditions for the neutral and
associated modes of the discrete spectrum. As a result of applying those conditions, we obtain the
following system of modulation equations:

v
T
!2v

Y
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)
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Y
)
u(2vs

YY
!h

YY
)"0 ,

h
T
!h2

Y
!(u#v2)(1!4s2

Y
)"0 .

(4.9)

At v"s"0, this system reduces to the modulation equations (4.6) after changing R
Y
PiR

Y
and

neglecting the terms of order of O(e2). On the other hand, we are not able to decouple the evolution
of the parameters (v, s) from that of the parameters (u, h), and therefore the self-focusing dynamics
of a bright NLS soliton in the hyperbolic problem involves a coupling between all soliton degrees
of freedom.

4.1.3. KdV solitons
Transverse self-focusing of a KdV soliton is an e!ect of the coordinate and velocity modulations

[see Eq. (3.8)]. Therefore, we are looking for the asymptotic expansion of Eq. (4.2) in the form,

u";(m; v)#eu
1
(m, t;>,¹)#

=
+
n/2

enu
n
(m, t;>,¹) , (4.10)

where m"x!s/e, ;(m; v) is the soliton pro"le (2.7), and the soliton parameters depend on slow
variables, i.e. v"v(>,¹) and s"s(>,¹). The "rst-order correction u

1
to the soliton shape

; satis"es the linear equation,

4u
1t
!(LK u

1
)m"H

1
,4e~1(s

T
#s2

Y
!v);m!4(v

T
#2s

Y
v
Y
)
R;
Rv !4s

YY
; ,

where LK is given by Eq. (3.5), and the terms of order of O(e) are neglected. Solutions to this
equation can be presented through the continuous-spectrum eigenfunctions subject to the ortho-
gonality conditions for discrete and associate eigenmodes,

P
=

~=

;H
1

dm"0, P
=

~=

R;
Rv A P

m

0

H
1

dm!4vaBdm"0 . (4.11)

Here a"a(>,¹) is an integration constant with respect to the variable m. The "rst condition
reproduces a balance equation for the momentum of a transversely modulated KdV soliton, i.e.
P":=

~=
u2dx, while the second one is equivalent to the condition that the "rst-order correction

term u
1

does not change the value of the soliton momentum P
0
(v), i.e. P"P

0
(v)#O(e2). Using

these conditions, we derive a system of modulation equations for the parameters of a KdV soliton,

v
T
#2v

Y
s
Y
#4

3
vs

YY
"0 ,

s
T
#s2

Y
!v!ea"0 .

(4.12)

System (4.12) is not closed because the parameter a is not speci"ed so far. The parameter a is
associated with a radiation "eld generated by a soliton. As a consequence, the term of order of O(e)
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included into Eqs. (4.12) describes dissipative e!ects in the soliton dynamics induced by radiation.
The dispersive e!ects, similar to those of Eqs. (4.6), have the order of O(e2), and therefore they are
negligible in comparison with dissipative e!ects. In the limit eP0, system (4.12) reproduces the
momentum conservation equation and the eikonal equation of the geometric optics approach.

4.1.4. Dark NLS solitons
The scenario of the self-focusing dynamics of dark solitons is similar to that of the KdV solitons.

The corresponding analysis can be developed for Eq. (4.1) for p
/
"!1 and p

$
"#1. We

reproduce here only main steps of the corresponding asymptotic analysis. First, we look for
a solution for a perturbed soliton in the form

t(x, y, t)"AUd
(g; v)#e/

1
(g, t;>,¹)#

=
+
n/2

en/
n
(g, t;>,¹)Be~2*o2

t`*h , (4.13)

where U
d
(g; v) is given by Eq. (2.3), g is a streched coordinate that describes a curved soliton front,

g"
x!2s/e

J1#4s2
Y

,

and the parameter h is associated with the radiation emitted by the dark soliton. The "rst-order
correction /

1
satis"es the linear inhomogeneous equation,
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where the operator LK is de"ned above, see Eq. (3.4). As the result, the slowly varying parameters
of a dark soliton, v"v(>,¹) and s"s(>,¹), satisfy the modulation equations following from
Eq. (4.14),

v
T
#

4
3
(o2!v2)s

YY
(1#4s2

Y
)3@2

!

4vv
Y
s
Y

J1#4s2
Y
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Y

"0 .
(4.15)

In the limit vP!o#1
2
v8 , sP!o¹#1

2
s8 , where Dv8 D, Ds8 D;1 and o"1, these equations coincide

with Eqs. (4.12) for a KdV soliton, provided the terms of order of O(e) are neglected.

4.2. Averaged Lagrangian method

An alternative and rather simple method for deriving the modulation equations in the theory
of the soliton transverse self-focusing is to apply the average Lagrangian method also known as
a variational approach. Such a method is a particular case of the general Whitham modulation
theory (Whitham, 1974) when the soliton modulations are assumed to be transverse with respect to
a planar soliton. The average Lagrangian method is based on a variational problem equivalent to
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the nonlinear evolution equation, dS"0, where S is the action expressed through the Lagrangian
¸, S":t

0
dt::=

~=
¸dx dy. A trial function is usually chosen in the form of a steady-state soliton but

with the parameters slowly varying with respect to the transverse coordinates and time. Then,
a variation of the soliton parameters within the averaged variational problem reproduces the
leading order of the modulation equations for the soliton self-focusing (see Makhankov, 1978;
Trubnikov and Zhdanov, 1987). However, we show below that the straightforward application of
the averaged Lagrangian method may meet some di$culties associated with the appearance of
diverging integrals responsible for the radiation emitted by solitary waves. To describe those
e!ects, a proper trial function should include a nonlocalized radiation component.

4.2.1. Bright NLS solitons in the elliptic problem
Lagrangian for the NLS equation (2.1) is de"ned as (for p

/
"p

$
"#1),

¸"

i
2
(tHt

t
!ttH

t
)!Dt

x
D2!Dt

y
D2#DtD4 . (4.16)

As a trial function, we take a bright NLS soliton, t"U
b
(x; u)e*h@e, with the slowly varying

parameters u"u(>,¹) and h"h(>,¹). Integrating ¸ with respect to x, we "nd the averaged
Lagrangian in terms of the soliton parameters u and h,

S¸T"
1
2P

=

~=

¸dx"!Ju(h
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#h2

Y
)#

1
3
u3@2!e2k

u2
Y

u3@2
, (4.17)

where k is the same as in Eqs. (4.6). The variation of S¸T with respect to h yields the energy
conservation law for the system (4.6), whereas the variation with respect to u generates an eikonal
equation. The soliton modulation equations were "rst obtained with the help of the averaged
Lagrangian method by Makhankov (1978).

4.2.2. KdV solitons
Lagrangian for the KP equation (2.6) is de"ned as

¸"w
t
w

x
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4
w2
xx
!w2

y
#w3

x
, (4.18)

where u"w
x
. As a trial function, we consider a KdV soliton, u";(x!s/e; v), where s"s(>,¹)

and v"v(>,¹) are slowly varying parameters, so that w"Jv tanh[Jv(x!s/e)]. Integrating
¸ with respect to x, we "nd the averaged Lagrangian in the form,
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where

l"
1
6A1!

n2

6 B .

The last term in Eq. (4.19) is diverging, and it is of order of O(e2). The appearance of such a secular
term indicates the necessity to include a nonlocalized correction into a trial function for ap-
plying the averaged Lagrangian method. Thus, the self-focusing dynamics of a KdV soliton is
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accompanied by a strong interaction between the soliton and the radiation it induces. This fact was
overlooked by Katyshev and Makhankov (1976; see also Makhankov, 1978) where the modulation
equations for a KdV soliton were analyzed neglecting the diverging term of the averaged Lagran-
gian (4.19). As a result, the modulation equations led to wrong predictions, see discussions in
Laedke and Spatschek (1979). As a matter of fact, the averaged Lagrangian (4.19) for a KdV soliton
is only applicable in neglecting the terms of order of O(e2) when this method reproduces the
equations of the geometric optics approach. In some other (rather exotic) problems when the
self-focusing dynamics of a long-wave soliton is not associated with the generation of a radiation
"eld up to the order of O(e2), the averaged Lagrangian method is as much e!ective as in the case of
a bright soliton of the NLS equation. For example, this is the case of the soliton self-focusing
described by the Benjamin}Ono equation (see Pelinovsky and Shrira, 1995).

4.3. Gas dynamics equations

A consistent asymptotic analysis requires neglecting the terms of order of O(e) or O(e2) in the
soliton modulation equations. Such an approximation corresponds to the dispersion-less limit of
nonlinear evolution equations (Kamchatnov, 1997) when the results in the leading order of the
asymptotic expansions coincides with the gas-dynamics equations. However, the self-focusing
phenomenon is equivalent to the dynamics of an unstable gaseous medium (Trubnikov and
Zhdanov, 1987) rather than to a standard evolution of a quasi-linear system described by
characteristics (Whitham, 1974). In particular, the initial-value problem is elliptic (i.e., ill-posed) so
that the characteristic velocities are complex. As a result, the Riemann method cannot be applied in
such an unstable case. Instead, an analytical technique based on the so-called hodograph trans-
formation allows us to construct exact analytical solutions to the gas-dynamics equations (Trub-
nikov and Zhdanov, 1987). These exact solutions describe the formation of singularities in the
dispersion-less elliptic initial-value problem. Within the original problem, a singularity of the gas
dynamics equations resembles an initial stage of a growth of a self-focusing spike along the front of
a planar soliton.

Following Trubnikov and Zhdanov (1987), we reproduce here the analytical solutions for the
gas-dynamics equations (4.6) and (4.12) in the limit eP0 that describes the self-focusing dynamics
of a planar soliton under the action of a periodic transverse modulation.

4.3.1. Bright NLS solitons in the elliptic problem
The exact analytical solution to Eqs. (4.6) in the limit eP0 is obtained after the transformation

u"r2 and h
Y
"z, where

r"r(m, g)"
sinh m

(cosh m!cos g)
, z"z(m, g)"!

sin g
(cosh m!cos g)

, (4.20)

and the variables m and g are implicitly related to ¹ and > as follows:

C¹"

m(cos g!cosh m)
sinh m

, p>"g#
m sin g
sinh m

. (4.21)

Here C is the instability growth rate in the dispersionless limit, i.e. C"2p [see Eq. (3.6)]. The
parameters (u, h) of a bright soliton reproduce, for large negative time, a planar bright soliton with
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Fig. 2. (a) The analytical solution (4.21) describing the transverse self-focusing of a bright NLS soliton within the gas
dynamics equations: 1!¹"!1.6, 2!¹"!1.0, and 3!¹"!0.4. (b) The analytical solution (4.22) describing
the transverse self-focusing of a KdV soliton for the same times as above.

the boundary condition uP1 as ¹P!R (see Trubnikov and Zhdanov, 1987). The analytical
solution u"u(>,¹) expressed through Eq. (4.21) is shown in Fig. 2(a).It has the form of a bubble
which becomes tighter and higher as ¹P0.

4.3.2. KdV solitons
Exact analytical solution to Eq. (4.12) in the limit eP0 is obtained by means of the transforma-

tion v"r2 and s
Y
"J3z, where r"r(m, g) and z"z(m, g) are the same as in Eq. (4.20) while m and

g are de"ned this time by the expressions

C¹"!

(m coth m!1)(cosh m!cos g)2
sinh2 m

,

p>"g#
sin g
sinh mA

3(m cothm!1)(cosh m!cos g)
sinh m

!mB ,
(4.22)

where C"(2/J3p) [see Eq. (3.8)]. The analytical solution v"v(>,¹) is shown in Fig. 2(b). It
displays the development of a singularity similar to Fig. 2(a).

Thus, the gas-dynamics equations exhibit the singular solutions for the transverse soliton
self-focusing. The principal further problem is to predict whether the singularities of the gas-
dynamics equations still persist within the original evolution problem, or they are removed by
taking into account a weak dispersion or dissipation. For example, the development of modula-
tional instability described by the cubic NLS equation in one dimension displays a bounded
scenario (`recurrencea) (Yuen and Lake, 1986). Also, the characteristic features of the
soliton self-focusing might be di!erent for the nonlinear regime of the soliton dynamics. The
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aforementioned problems can be solved only within the modulation equations modi"ed by
dispersive or dissipative corrections.

4.4. Reduction to the NLS equation

The gas-dynamics equations are similar to the hydrodynamics form (3.21) of the NLS equation.
Therefore, some predictions about the long-term dynamics of the soliton transverse instability may
be extracted by deriving the e!ective power p of a nonlinear term in the gas-dynamics equations.
In some exceptional cases, further remarkable reductions to the NLS equation (1.1) may also
take place.

4.4.1. Bright NLS solitons in the elliptic problem
It was "rst realized by Degtyarev et al. (1975) that the truncated modulation equations (4.6) are

nothing but the hydrodynamics form (3.21) of the quintic NLS equation (1.1) for r"2. Indeed, the
corresponding transformation is given by

u(x, t)"A
u
3 B

1@4
expA

ih

4JkeB ,

where the new variables are

x"
>

4Jke
, t"

¹

4Jke
.

Such a reduction leads to several important consequences. First of all, a steady-state periodic
solution to Eq. (1.1) resembles a steady-state transversely modulated soliton in two dimensions,
while the soliton solution to Eq. (1.1) approximates a two-dimensional soliton in Eq. (2.1). Second,
it is well-known that the steady-state solutions are weakly unstable for the quintic NLS equation
and possess singularities associated with the so-called critical collapse (Rasmussen and Rypdal,
1986). The latter feature enables us to predict that the self-focusing of a planar bright soliton within
the elliptic NLS equation leads to the formation of two-dimensional localized modes along the
soliton front which then collapse according to the critical NLS equation. A self-similar form of each
individual localized mode is described by an asymptotic solution of Eq. (1.1) at r"2 (Fibich and
Papanicolaou, 1998; Pelinovsky, 1998). We express this solution in terms of the parameters of
a bright NLS soliton,

u&3X sech2A
JX
2ke
>B, h&P

T

0

X(¹@) d¹@ , (4.23)

where the scaling law for the singularity formation modi"ed by the radiation-induced factor is the
following:

X(¹)P
logDlog(¹

0
!¹)D

(¹
0
!¹)

as ¹P¹
0

(see also Fraiman, 1985; Malkin, 1990). It is well-known that the two-dimensional elliptic NLS
equation (2.1) for p

/
"p

$
"#1 also possesses the critical collapse dynamics. Thus, the reduced
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modulation equations (4.6) preserve this principal property of the model (2.1). We exploit this
analogy further in Section 7.1.1, where some generalizations of the NLS equation are considered.

4.4.2. KdV solitons
Exact reduction of the modulation equations (4.12) to a NLS model cannot be veri"ed because

these equations have dissipative rather than dispersive perturbative terms. However, in the leading
order, the modulation equations (4.12) coincide with the dispersionless limit (eP0) of the NLS
equation (1.1) for r"2/3. The corresponding transformation is given by the relation

u(x, t)"A
3
5
vB

3@4
expA

ijs
e B ,

where x"j>/e, t"j¹/e, and j is arbitrary. As is well-known, the NLS equation (1.1) with r"2/3
is subcritical (Rasmussen and Rypdal, 1986), i.e. it does not display any singularity dynamics or any
instability of steady-state localized solution. Therefore, we can expect that the self-focusing of
a KdV soliton is suppressed by the nonlinear and dissipative e!ects and displays a bounded
scenario of the soliton evolution. However, this hypothesis can only be checked within the
extended modulation equations.

4.5. Higher-order perturbation theory

Here we extend the asymptotic analysis to include higher-order approximations for the cases of
the bright NLS and KdV solitons. To do so, we construct a self-consistent solution to the linear
equation of the "rst-order perturbation theory. This perturbation term determines distortions of
the soliton shape due to the self-focusing dynamics as well as the structure of radiation emitted
outside the soliton core. Depending on the type of the radiation emitted, the modulation equations
include either dispersive or dissipative terms. We show that a balance between the dispersive and
dissipative e!ects depends on properties of a nonlinear system under consideration.

4.5.1. Bright NLS solitons in the elliptic problem
For a systematic asymptotic procedure we set

u
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#2u

Y
h
Y
#4uh

YY
"e2u6

T
,

h
T
#h2

Y
!u"e2hM

T
.

(4.24)

Then, neglecting in Eq. (4.4) the terms of order of O(e), we "nd the "rst-order perturbation term
induced due to the soliton adiabatic dynamics, /

1
"u

1
(x;>,¹)#iw

1
(x;>,¹), where u

1
"0 and

w
1
"1

2
h
YY

x2U
b
(x; u) . (4.25)

Generally speaking, a solution of an initial-value problem associated with Eq. (4.4) is decomposed
through the wave packets of the continuous spectrum which may evolve also at the fast time scale t.
Here we have supposed that the induced wave packets are self-consistent with the adiabatic
self-focusing dynamics of a solitary wave. The "rst-order perturbation (4.25) to the soliton shape
(2.2) represents a quadratically growing chirp of a complex phase of t [see Eq. (4.3)]. The phase
chirp is responsible for radiation emitted by a bright NLS soliton but such a radiation is
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exponentially small in e (Pelinovsky, 1998). Therefore, this e!ect is negligible for the dynamics of
a self-focusing bright soliton. Then, one can proceed to higher orders where the linear equations for
/
2
"u

2
(x;>,¹) and /

3
"iw

3
(x;>,¹) are de"ned as follows:
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(4.26)

where LK
0

and LK
1

are the same as in Eqs. (3.3). Using the orthogonality conditions (4.5) and Eqs.
(4.24), we extend the modulation equations for the soliton self-focusing to include the second-order
e!ects. After a simple algebra, the generalized modulation equations for the soliton parameters can
be written in the form,
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h3
YY
u

#

u
YY

h
YY

2u BD"0 ,

h
T
#h2

Y
!u#e2A3k

u2
Y

u2
!

(16k#k
2
)

4u
u

YY
!

k
4

4u
h2
YYB"0 ,

(4.27)

where k is the same as in Eqs. (4.6), k
2
"(p2/6), and k

4
"(7p4/120). The O(e2) terms describe

completely the dispersive e!ects of the soliton dynamics while the dissipative e!ects are negligible
(exponentially small) in terms of e. The modulation equations (4.27) represent an extended version
of the modulation equations (4.6) of the "rst-order asymptotic theory.

4.5.2. KdV solitons
We apply the leading-order system (4.12) and "nd the explicit form of the "rst-order perturbation

term u
1
"u

1
(m;>,¹), where

u
1
"

s
YY

6Jv

R2
Rm2

[m2 tanh(Jvm)]#aA1!2
R;
Rv B . (4.28)

It follows from Eq. (4.28) that the perturbation term u
1

is not localized at in"nity, i.e. u
1
PuB as

mP$R. This indicates the generation of a radiation tail similar to that which appears in the
instability-induced dynamics of a KdV soliton (Pelinovsky and Grimshaw, 1996). Moreover, the
second-order perturbation term u

2
also grows at in"nity, i.e. u

2
&uB

X
m as mP$R. Proceeding to

the second-order approximation, we "nd the linear equation for u
2
"u

2
(m;>,¹),

(LK u
2
)m"4Avb#v6

T

R;
Rv #u

1T
#2s

Y
u
1Y

#s
YY

u
1
!au

1m!P
m

0

;
YY

dm#3u
1
u
1mB , (4.29)

where LK is given after Eq. (3.5), b"b(>,¹) is another integration constant, and v6
T

is the extension
of v

T
to the next order. Then, applying the orthogonality condition (4.11) to Eq. (4.29), we extend

the modulation equations for a KdV soliton to the order of O(e),

v
T
#2v

Y
s
Y
#4

3
vs

YY
#e(2vb!2

3
as

YY
)"0 ,

s
T
#s2

Y
!v!ea"0 .

(4.30)

Parameters a and b de"ne the pro"le of the asymptotic series (4.10) extended outside the soliton
core, u"euB(X,>,¹), where X"ex. The boundary conditions for the radiation "elds uB
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calculated at the soliton position, i.e. at X"s(>,¹), are given by the matching conditions,

uBD
X/s

"a$
s
YY

3Jv
,

uB
X
D
X/s

"b#
1
v
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T
#2s

Y
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Y
#s

YY
a)G

1
v3@2A

1
9
s2
YY

#

1
6
v
YY

!

1
4
v2
Y
v B .

(4.31)

Outside the soliton core, the function uB(X,>,¹) satis"es the reduced wave equation in two
dimensions,

uB
TX

"uB
YY

. (4.32)

The boundary conditions (4.31) supplemented by system (4.30) determine the radiation "elds
uB propagating according to the wave equations (4.32). A proper solution of this (radiation)
problem closes the system (4.30) by additional relations between the parameters a and b and the
soliton parameters s and v. We solve this problem in a small-amplitude approximation (see Section
5.2.3). In Eqs. (4.30), the terms of order of O(e) describe the radiation-induced dissipative e!ects in
the soliton dynamics while the dispersive e!ects [of order of O(e2)] are beyond this approximation.

4.6. Diwerent scenarios of soliton self-focusing

As has been discussed above, the extended modulation equations include either dispersive or
dissipative e!ects in the e!ective elliptic-type asymptotic problem. The solution of those equation
in the form of a (unstable) c.w. mode always corresponds to an unperturbed planar soliton.
For example, the modulation equations (4.6) and (4.9) have the c.w. solution, u"u

0
and

h"u
0
¹#h

0
, where u

0
and h

0
are constants; this solution corresponds to a planar bright NLS

soliton. On the other hand, Eqs. (4.12) and (4.15) have the c.w. solution v"v
0

and s"v
0
¹#s

0
corresponding to unperturbed KdV and dark solitons.

Although the gas-dynamics equations always lead to a formation of singularities for elliptically
unstable problems, the higher-order dispersive or dissipative e!ects may suppress an exponential
growth of modulations. Depending on the type of higher-order e!ects, we can distinguish, in
general, four diwerent types (or scenarios) of the instability-driven soliton self-focusing dynamics:

f wave collapse or formation of a chain of two-dimensional localized singularities along the front
of a planar soliton;

f monotonic transition from a planar soliton to a periodic chain of two-dimensional solitons;
f breakup of a planar soliton into localized states which gradually decay due to the action of the

wave dispersion;
f quasi-recurrence, i.e. a periodic growth and damping of transverse modulations along the front

of a planar soliton.

Unfortunately, the extended modulation equations that describe all such types of the solitons
self-focusing dynamics, can be usually solved only numerically. As an exception, some exact
solutions for the soliton self-focusing can be found in an explicit analytical form, if an original
nonlinear equation is integrable by the inverse scattering transform method (see Section 4.7).
Nevertheless, the extended modulations equations for the soliton parameters can be analyzed
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e!ectively by employing small-amplitude asymptotic expansions summarized below in Sections
5 and 6. Applying those methods, we are able to demonstrate that the bright NLS solitons of the
elliptic NLS equation display the "rst scenario of the soliton self-focusing, the KdV solitons decay
according to the second scenario, and the bright NLS solitons in the hyperbolic NLS equation
follow the third scenario of the soliton self-focusing. Dark solitons, depending on their initial
parameters, can display either second or fourth scenarios of the soliton instability-induced decay.

4.7. Exact solutions for the soliton self-focusing

Some nonlinear evolution equations describing the soliton self-focusing in two or more dimen-
sions are solvable by means of the inverse scattering transform method (e.g., Ablowitz and Segur,
1981). These so-called integrable models possess a rich functional structure of explicit solutions
that allow to describe, in some particular cases, both linear and nonlinear regimes of the soliton
self-focusing (see, e.g., Zakharov, 1975; Kuznetsov et al., 1984; Pelinovsky and Stepanyants, 1993;
Allen and Rowlands, 1997). Here we present exact solutions for the soliton self-focusing obtained in
the framework of the KP equation (2.6). Analytical solution of the KP equation can be expressed in
a bilinear form,

u(x, y, t)"R2
x
log q , (4.33)

where the function q"q(x,y, t) possesses a determinant representation (Pelinovsky and
Stepanyants, 1993). We discuss here only a scalar reduction of this solution de"ned by the following
expression for q:

q"1#P
x

~=

D/D2dx , (4.34)

where the function /"/(x, y, t) satis"es the system of linear equations,

2

J3
i/

y
#/

xx
"0, /

t
#/

xxx
"0 .

In a particular case when /&exp[Jvx#i(J3v/2)y!Jv3t], the solution given by Eqs. (4.33)
and (4.34) reproduces a single KdV soliton (2.7). To "nd more general solutions, we select /(x, y, t)
in the form of two exponentials,

/"(2Jv)1@2 expAJvx#
iJ3v

2
y!Jv3tB#(2i)1@2a expAix#

iJ3
2

i2y!i3tB , (4.35)

where v, i, and a are real parameters. Then, the corresponding exact solution of the KP equation
has the form (Zakharov, 1975)

q(x,y, t)"1#e2Jv(x~vt)#4a
(iJv)1@2

(i#Jv)
e(i`Jv)(x~vt)`Ct cos(py)#a2e2i(x~vt)`2Ct , (4.36)
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where C and p are de"ned as

p"
J3
2

(v!i2), C"i(v!i2) .

In the limit aP0, a Taylor expansion of Eqs. (4.33) and (4.36) leads to the exact solution (3.14) of
the linear eigenvalue problem (3.5) obtained for the KP equation. Exact solution (4.36) for "nite
values of the parameter a describes a monotonic transition (&splitting') of a planar soliton moving
initially with the velocity v into a chain of two-dimensional KP solitons, the so-called lumps,
propagating with the velocity v

1
"v#Jvi#i2, and a complimentary small-amplitude planar

KdV soliton moving with a small velocity v
2
"i2.

Numerical simulations (Infeld et al., 1994, 1995) completely con"rmed this result as the basic
physical mechanism of a decay of a plane KdV soliton in two dimensions. However, in three
dimensions the two-dimensional lump solitons are known to be unstable and, moreover, the
instability of three-dimensional azimuthally symmetric solitons were found to lead to gradual
collapse (Kuznetsov et al., 1983; Kuznetsov and Musher, 1986). Recent numerical simulations
(Senatorski and Infeld, 1998) con"rmed the scenario of the graduate collapse and display steep-
ening, narrowing, and slow disintegration of two-dimensional solitons in higher dimensions.

5. Long-scale approximation

Long-scale small-amplitude asymptotic approximation is based on the assumption that the
amplitude of the long-scale transverse perturbation remains small compared to the amplitude of
a planar (unperturbed) soliton. This approximation simpli"es the extended modulation equations
derived in Section 4 and it allows to reduce them to a number of universal asymptotic equations
(Section 5.1). The main objective for this reduction is to improve the predictions of the gas
dynamics equations by describing a balance between weak nonlinear (e.g. quadratic or cubic) and
linear (e.g. dispersive or dissipative) terms of the extended modulation equations (Section 5.2).
Then, the asymptotic equations can be employed for constructing analytical solutions describing
the development of the transverse instability in the case of periodic modulations of the soliton front
(Section 5.3). Extensions of these equations can also be derived for the problems, where some of the
coe$cients vanish in the small-amplitude limit (Section 5.4).

5.1. Basic asymptotic equations

Two universal asymptotic equations appear within the long-scale small-amplitude approxima-
tion depending on a type of a balance between the dispersive and dissipative e!ects. If the dispersive
e!ects are dominant over the dissipative ones, the small-amplitude approximation reduces the
extended modulation equations to the elliptic Boussinesq equation (see, e.g., Pelinovsky and Shrira,
1995),

H
TT

#aH
YY

#e2(bH
YYYY

#c
1
H

Y
H

YT
#c

2
H

T
H

YY
)#O(e4)"0 , (5.1)
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where the coe$cients a and b are determined from a linear approximation and they are positive
within the instability band (see Section 3.2), and the coe$cients c

1
and c

2
are responsible for the

e!ect of quadratic nonlinearity. In the opposite case, when the dissipative terms are dominating,
the small-amplitude approximation results in the elliptic Shrira}Pesenson equation (see Shrira and
Pesenson, 1983),

S
TT

#aS
YY

#e(!bS
TYY

#c
1
S
Y
S
YT

#c
2
S
T
S
YY

)#O(e2)"0 , (5.2)

where the coe$cients a, b, c
1
, and c

2
have the same meaning as in Eq. (5.1). The hyperbolic

analogue of the governing equation (5.2) was "rst derived by Shrira and Pesenson (1983) (see also
Pesenson, 1991) for describing the weakly nonlinear dispersive waves propagating along a trans-
versely stable planar soliton.

The reduction to a linear problem can be made by substituting H, S&eCt`*pY, where the
dependence C"C(p) has the form,

C2"ap2!e2bp4 , (5.3)

for Eqs. (5.1), and

C2"ap2!ebp2C , (5.4)

for Eq. (5.2), respectively. For some problems, the coe$cients c
1

and c
2

in Eqs. (5.1) and (5.2) may
vanish. For example, this occurs for bright solitons in the hyperbolic NLS equation and for dark
solitons in the limit of zero velocities (the so-called &black solitons'). Then, the asymptotic equations
should include higher-order (namely, cubic) nonlinear terms (see Section 5.4).

5.2. Derivation

Equations for the long-scale modulations have constant-background solutions corresponding to
an unperturbed planar soliton. Then, the purpose of the small-amplitude asymptotic expansion
technique is to derive a nontrivial evolution equation governing the evolution of small-amplitude
modulations of the background solution. Such evolution equations are valid for certain time
intervals when the amplitude of the perturbation mode becomes comparable with the background
amplitude. Since the instability leads to a growth of the amplitude, the applicability of the
small-amplitude evolution equations is generally limited by a certain time interval. Nevertheless,
we show that the results obtained in the small-amplitude approximation give a surprising good
agreement with the results that can be obtained by some other methods for analyzing modulational
and self-focusing instabilities.

5.2.1. Modulational instability
We start with the hydrodynamical form (3.21) of the NLS equation (1.1) and set the asymptotic

scaling,

h"(r#1)qr
0
¹#e2H(X,¹) .
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Then, the kinematic equation of system (3.21) de"nes the asymptotic expansion for q(X,¹),

q"q
0
#

e2
r(r#1)qr~1

0

H
T

# e4C
1

r(r#1)qr~1
0

H2
X
!

r!1
2r2(r#1)2q2r~1

0

H2
T
!

1
2r2(r#1)2q2r~1

0

H
TXXD#O(e6) . (5.5)

This expansion describes small-amplitude long-scale perturbations propagating along the constant
background q"q

0
. It follows from the "rst equation of system (3.21) that the function

H"H(X,¹) satis"es the elliptic Boussinesq equation (5.1) (written for the variables X and ¹) with
the coe$cients

a"2r(r#1)qr
0
, b"1, c

1
"4, c

2
"2r . (5.6)

Linear dispersion relation (5.3) with these coe$cients corresponds to the linear relation (3.19) for
k"0 and q

0
"o2.

5.2.2. Bright NLS solitons in the elliptic problem
We impose the asymptotic expansion for the extended modulation equations (4.27),

h"u
0
¹#e2H(>,¹) ,

u"u
0
#e2H

T
#e4AH2

Y
!

(16k#k
2
)

4u
0

H
TYYB#O(e6) .

(5.7)

This expansion describes small-amplitude long-scale disturbances at a planar soliton background
with the propagation constant u"u

0
. It follows from Eqs. (4.27) and (5.7) that the function

H(>,¹) satis"es asymptotically the elliptic Boussinesq equation (5.1) with the coe$cients

a"4u
0
, b"

4
3A1#

p2

3 B, c
1
"4, c

2
"4 . (5.8)

The linear part (5.3) reproduces the dispersion relation (3.6). The instability region is limited by
a critical wave number p"p

#
"J3u

0
. Expansion (3.6) however gives an approximation for

p
#

beyond the applicability of this expansion, i.e. ep
#
"3Ju

0
/J3#p2+0.836Ju

0
. Neverthe-

less, the existence of the instability band cut o! is described by the dispersive term of the Boussinesq
equation (5.1), and therefore it provides an improved version of the elliptic gas dynamics equations,
where the instability band is not bounded.

We mention that the same small-amplitude approximation can be applied to the truncated
version of the modulation equations (4.6) and it also results in the elliptic Boussinesq equation (5.1)
but with the numerical constant b replaced by 16k.

5.2.3. KdV solitons
We start with the extended modulation equations (4.30) for a KdV soliton and the associated

radiation problem (4.31) and (4.32) and impose the asymptotic expansion, s"v
0
¹#eS(>,¹),

a"eA(>,¹), b"eB(>,¹), uB"e;B(X,>,¹), and v"v
0
#eS

T
#e2(S2

Y
!A)#O(e3). For
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small-amplitude expansions, system (4.30) reduces to a single equation,

S
TT

#

4v
0

3
S
YY

#eA4S
Y
S
YT

#

4
3
S
T
S
YY

!A
T
#2v

0
BB#O(e2) . (5.9)

In order to connect the parameters A and B with the parameter S, we solve the problem for the
radiation "eld. In the reference frame propagating with the soliton velocity v"v

0
wave equation

(4.32) is rewritten as

;B
TX

D
X/v0T

"v
0
;B

XX
D
X/v0T

#;B
YY

D
X/v0T

. (5.10)

Now we connect the >-derivatives with the ¹-derivatives using the leading order of modulation
equation (5.9), i.e.

;B
YY

D
X/v0T

"!

3
4v

0

;B
TT K

X/v0T

.

Then, two characteristic velocities for the radiative "elds can be found from Eq. (5.10), i.e.
;B";B(X!v

0
¹!j

B
¹), where j

`
"2v

0
and j

~
"!(2v

0
/3). Thus, we come to the con-

clusion that the radiation "eld ;` in front of a KdV soliton propagates with the velocity equal to
a triple soliton velocity in a laboratory reference frame, while the radiation "eld ;~ behind the
soliton moves with the third of the soliton velocity. This explicit solution of the wave emission
problem results in the di!erential relations for the boundary values (4.31),

;B
T

D
X/v0T

"!j
B
;B

X
D
X/v0T

. (5.11)

Substituting Eq. (4.31) taken into the small-amplitude approximation into Eqs. (5.11), we de"ne the
parameters A and B in terms of S,

A"

1

3Jv
0

S
YY

, B"!

1

2Jv3
0

S
YYT

. (5.12)

It follows from Eqs. (4.31) and (5.12) that the radiation "eld behind the KdV soliton is not excited
along the characteristics j

~
, i.e. ;~,0, while the radiation "eld in front of the KdV soliton is

generated, and it can be determined from the boundary condition,

;`D
X/v0T

"

2

3Jv
0

S
YY

. (5.13)

We notice that the radiation induced due to the long-scale soliton self-focusing di!ers from
a typical adiabatic evolution of a KdV soliton, when the radiation is emitted behind the KdV
soliton (Pelinovsky and Grimshaw, 1996). The relations (5.12) enable us to close the asymptotic
equation (5.9) for the function S(>,¹) and reduce it to the elliptic Shrira}Pesenson equation (5.2)
with the coe$cients

a"
4v

0
3

, b"
4

3Jv
0

, c
1
"4, c

2
"

4
3

. (5.14)

The linear part (5.4) reproduces the result of the linear stability analysis (3.8). If we use the
approximation C+2Jv

0
p/J3 to simplify the last term in Eq. (3.8), then this expansion coincides
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with the exact result (3.15). The instability band is limited by the transverse wave numbers, p(p
#
,

where ep
#
"J3v

0
/2.

5.2.4. Dark NLS solitons
In small-amplitude limit, a dark NLS soliton transforms into a KdV soliton. As a result, the

elliptic Shrira}Pesenson equation (5.2) can be derived for a dark soliton of a "nite amplitude. In
order to derive this equation, we use the asymptotic representation (4.13) together with the
small-amplitude expansion, s"v

0
¹#eS(>,¹), h"eH(>,¹), and v"v

0
#eS

T
!2e2v

0
S2
Y
#

O(e3). The "rst-order correction /
1
(l;>,¹) can be found from Eq. (4.14) within the small-

amplitude approximation,
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1
3
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k2!v2
0

3kv
0

i tanh(km)B ,

where m"x!2v
0
t!2S(>,¹), k"(o2!v2

0
)1@2, and Q"Q(>,¹) is a parameter associated with

radiation. The analysis shows (see Pelinovsky et al., 1995a, for details) that S"S(>,¹) satis"es the
extended evolution equation,
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3
S
T
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YY

#v
0
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YY
!

1
2
Q

TD#O(e2) , (5.15)

where H and Q are related to S through a solution of the radiation problem. We notice that the "rst
linear and quadratic terms of Eq. (5.15) can also be obtained from Eq. (4.15) within the small-
amplitude approximation. The radiation "eld, tPtB(X,>,¹) as mP$R and X"ex&O(1),
can be found in the asymptotic form (2.5), where the boundary conditions for uB and RB are
de"ned at the soliton X"2v

0
¹,

uBD
X/2v0T

"!

1
oAv0Q!

1
2
H
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$

2(k2!v2)
3k

S
YYB ,

RB
X
D
X/2v0T

"QG

2v
3k

S
YY

.

(5.16)

Outside the soliton, the radiation "eld uB"uB(X,>,¹), where X"ex, satis"es the scalar wave
equations,

uB
TT

!4o2(uB
XX

#uB
YY

)"0 . (5.17)

Using the analysis similar to the case of KdV solitons, we "nd from Eq. (5.17) that the radiation
"elds are generated along the characteristic directions uB"uB(X!2v

B
¹,>), where

v
B
"

$2o(o2!v2
0
)#3o2v

0
4o2!v2

0

, (5.18)
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Together with Eqs. (5.16), this relation allows us to "nd the parameters H and Q as follows:

H"!

v
0

ok
S
T
, Q"

2(o2#k2)
3ok

S
YY

. (5.19)

As a result, we derive from Eq. (5.15) the elliptic Shrira}Pesenson equation (5.2) with the
coe$cients,

a"
4
3
(o2!v2

0
), b"

2(o2#v2
0
)

3oJo2!v2
0

, c
1
"!8v

0
, c

2
"!

8
3
v
0

. (5.20)

The linear part (5.4) corresponds to the relation (3.9). In addition, we "nd from Eqs. (5.16) and (5.19)
the boundary conditions for the radiation "elds,

uBD
X/2v0T

"

2[!ov
0
$(2v2

0
!o2)]

3oJo2!v2
0

S
YY

. (5.21)

Thus, in contrast to the evolution of an unstable KdV soliton, the radiation "elds are excited in
both directions. In the limit v

0
P!o#1

2
v8
0

and SP1
2
SI , results coincide with those for a KdV

soliton at o"1, so that the "eld u~ vanishes.

5.3. Analysis

Asymptotic reduction either to the elliptic Boussinesq equation (5.1) or to the Shrira}Pesenson
equation (5.2) helps us to construct explicit asymptotic solutions for describing the transverse
soliton self-focusing. We mention that the Boussinesq equation (5.1) can be transformed, within the
same asymptotic approximation, to the integrable Boussinesq equation, where the exact solutions
can be found by regular methods (see Pelinovsky and Shrira, 1995, and references therein).
However, there exists a universal method that allows to construct these asymptotic solutions. This
method does not use the properties of integrability but, instead, reduce the elliptic equations to two
partial (`one-wavea) equations by means of the Laplace (complex) coordinates. We apply this
method to both Eqs. (5.1) and (5.2) as well as to their extentions.

5.3.1. The Boussinesq equation
The Laplace coordinates are de"ned by the relations,

z"¹#ia~1@2>, z6 "¹!ia~1@2> . (5.22)

Then, the function H"H(>,¹) can be expanded into an asymptotic series,

H"B(z, q)#BM (z6 , q)#e2H
2
(z, z6 , q)#O(e4) , (5.23)

where q"e2¹ andBM is a complex conjugate toB. The straightforward asymptotic analysis reduces
Eq. (5.1) to the KdV equation for the function B(z, q),

B
zq!

(c
1
#c

2
)

2a
B

z
B

zz
#

b
2a2
B

zzzz
"0 . (5.24)
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The complex conjugated function BM satis"es the same equation (5.24), while the correction term
H

2
can be explicitly found as the following:

H
2
"

(c
2
!c

1
)

4a
(BBM

z
#B

z
BM ) . (5.25)

The KdV equation (5.24) has a family of soliton solutions (Ablowitz and Segur, 1981). In particular,
a one-soliton solution for B(z, q) reproduces, through Eq. (5.23), an asymptotic solution describing
the transverse soliton self-focusing under the action of a periodic perturbation,

H"!

12bp

Ja(c
1
#c

2
)

sinh(C¹)
[cosh(C¹)!cos(p>)]

, (5.26)

where C is the linear instability growth rate (5.3). In application to the bright NLS solitons in the
elliptic problem, the asymptotic solution (5.26) describes the appearance of a periodic chain of
large-amplitude (singular) localized modes along the planar soliton front. The corresponding
analytical solution u"u(>,¹) is expressed through Eqs. (5.7) and (5.26) and it is shown in
Fig. 3(a).The variable t(x, y, t) [see Eq. (4.3)] for the elliptic NLS equation is displayed in Fig. 3(b).

Thus, the asymptotic solution is singular as ¹P0 at the center of a self-focusing region. This
singular structure di!ers quantatively from that predicted by the elliptic gas dynamics equations
[see Eq. (4.21) or Fig. 2(a)] because the latter equations are limited by a shorter time scale. The
formation of collapsing two-dimensional modes along the front of a planar bright soliton was
numerically con"rmed for the elliptic NLS equation (Degtyarev et al., 1975; Litvak et al., 1991).

5.3.2. The Shrira}Pesenson equation
We introduce the same Laplace coordinates z and z6 as in Eq. (5.22) and expand S"S(>,¹) into

the asymptotic series,

S"B(z, q)#BM (z6 , q)#eS
1
(z, z6 , q)#O(e2) , (5.27)

where q"e¹ and BM is a complex conjugate to B. The straightforward asymptotic analysis reduces
Eq. (5.2) to the Burgers equation for the function B(z, q),

B
zq!

(c
1
#c

2
)

2a
B

z
B

zz
#

b
2a
B

zzz
"0 . (5.28)

The complex conjugate function BM satis"es the same equation (5.28), while the correction term
S
1

can be found through B as follows:

S
1
"

(c
2
!c

1
)

4a
(BBM

z
#B

z
BM ) . (5.29)

We mention that the reduction of the KP equation (2.6) to the Burgers equation (5.28) was "rst
presented by Shrira and Pesenson (1983) for describing the propagation of "nite-amplitude
modulations along the transversely stable planar KdV soliton in a medium with a negative
dispersion (see also Pesenson, 1991). The corresponding KP equation di!ers from Eq. (2.6) by the
negative sign in front of the y-derivative term. In the latter problem, the small-amplitude asymp-
totic approach allows to describe a shock wave propagating along the stable soliton. This
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Fig. 3. (a) The analytical solution (5.26) describing the transverse self-focusing of a bright NLS soliton in the elliptic
problem within the long-scale analysis: e"0.2 and 1!¹"!0.9, 2!¹"!0.6, and 3!¹"!0.3. (b) The
corresponding pro"le of Dt(x, y)D2 at ¹"!0.2.

phenomenon is typical for nonlinear dynamics of stable solitons in the negative-dispersion medium
(Zakharov, 1986; Anders, 1995) and it leads to the formation of resonant soliton triads (see also
Infeld and Rowlands, 1990, and references therein).

In the problems of the transverse soliton self-focusing, the Burgers equation is written in terms of
the complex Laplace coordinates z. However, one can still proceed with constructing an asymp-
totic solution for the soliton self-focusing under the action of a periodic perturbation. To do this,
we "nd a one-soliton solution of Eq. (5.28) for B(z, q) which reproduces, with the help of Eq. (5.27),
an asymptotic solution of Eq. (5.2),

S"!

2b
(c

1
#c

2
)
MC¹#log[cosh(C¹)!cos(p>)]N , (5.30)

where C is the instability growth rate (5.4). In application to the KdV solitons, the asymptotic
solution (5.30) describes a chain of large-amplitude (nonsingular) localized mode growing along
the front of a planar soliton. The asymptotic solution for v"v(>,¹) follows from Eqs. (5.27) and
(5.30) and it is shown in Fig. 4(a). In addition, we "nd from Eq. (5.13) the radiation "eld
;`";`(X!3v

0
,>) generated in front of the self-focusing soliton,

;`"k2
1!cos(p>) cosh[k(X!3v

0
¹)]

[cosh(k(X!3v
0
¹))!cos(p>)]2

(5.31)

where k"p/J3. The corresponding function u [see Eq. (4.10)] satisfying the KP equation (2.6) is
presented in Fig. 4(b).
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Fig. 4. The analytical solution (5.30) describing the transverse self-focusing of a KdV soliton within the long-scale
analysis: (a) e"0.2 and 1!¹"!0.5, 2!¹"!0.125, 3!¹"0.125, and 4!¹"0.5. (b) The corresponding
pro"le of u(x, y) at ¹"0.75.

It is remarkable that the spatial structure defened by Eq. (5.31) is identical to a chain of
two-dimensional solitons in the asymptotic limit of a long period of transverse modulation. Still
a singularity is presented at the centers of the self-focusing, this feature is intrinstical for the
long-wave small-amplitude expansions. In spite of the presence of singularities, the asymptotic
solution shown in Fig. 4(b) clearly corresponds to a decay of a planar soliton with velocity v"v

0
into a chain of two-dimensional solitons propagating with the velocity v

1
"3v

0
and a residuent

planar soliton moving with the velocity v
2
"v

0
!eC. This asymptotic solution agrees, in the limit

pP0 (iPJv), with exact solution (4.36). Thus, in the long-scale asymptotic approximation, we
have improved drastically the predictions of the gas dynamics equations [see Eq. (4.22) and Fig. 2(b)].

In application to the dark NLS solitons, the asymptotic solution (5.30) describes the self-focusing
instability of a "nite-amplitude dark soliton. If the dark soliton has the velocity v

0
within the

interval !o(v
0
(!1

2
o, then the radiation "elds uB describe chains of two-dimensional dark

solitons. The corresponding solution for the function t"t(x, y, t) [see Eq. (4.13)] is shown in
Fig. 5(a). The scenario of the splitting of a dark soliton into a residuent dark soliton with generation
of two chains of two-dimensional dark solitons agree with numerical simulations of the NLS
equation (Pelinovsky et al., 1995).

For v
0
"!1

2
o the radiation "eld u` vanishes because the generation of this "eld implies v

`
"0

[see Eq. (5.18)]. For !1
2
o(v

0
(0 the "eld u` acquires an `oppositea polarity to the "eld u~ [see

Eq. (5.21)]. This corresponds to a n-phase shift between two-dimensional dark solitons generated in
the opposite directions of the radiation "elds. When a dark soliton transforms into a stationary
black soliton, i.e. v

0
tends to zero, the coe$cients c

1
and c

2
for the quadratic nonlinear terms in

Eq. (5.2) vanish. In this case, the self-focusing dynamics becomes symmetric in space [see Figs. 5(b)
and (c)], and it is governed by an e!ective equation with cubic nonlinear terms (see Section 5.4).
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Fig. 5. (a) The level lines of Dt(x, y)D2 for the transverse self-focusing of a dark NLS soliton within the long-scale analysis:
e"0.1, v

0
"!0.75 and ¹"1.5. (b)}(c) The level lines of Dt(x, y)D2 for the transverse self-focusing of a black NLS soliton

within the long-scale analysis: e"0.1, v
0
"0., and (b) ¹"!0.2 and (c) ¹"0.2.

5.3.3. Necessary criteria for collapse
Here we discuss the necessary condition for collapse, that can be obtained in the framework of

the extended modulation equations. It follows from Eqs. (5.23) and (5.25) for the particular solution
(5.26) that the correction H

2
has the same sign of in"nite singularity as the leading term

H
0
"B#BM provided the following condition helds:

dc"(c
1
!c

2
)/(c

1
#c

2
)(0 . (5.32)

In the opposite case, i.e. when dc'0, the correction H
2

has the opposite sign of a singularity and,
being taking together with the main term, it can prevent the singularity to be developed in the latter
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case. Other words, summation of the (singular) asymptotic series (5.23) may result in a regular
solution, while no regular solution is expected for dc(0. We conclude therefore that, in the
extended modulation equations, collapse takes place if the small-amplitude asymptotic expansion
satisfy dc(0. Similar conclusion follows also for the Shrira}Pesenson equation by analyzing
Eqs. (5.27) and (5.29).

In application to the modulational instability of the NLS equation (1.1), we "nd from Eq. (5.32) that
the collapse is supported by the power nonlinearity with r'2. In the opposite case, i.e. when r(2,
the bounded scenarios of the soliton self-focusing are likely to happen. This conclusion agrees with
the conventional classi"cation of the NLS equations into supercritical and subcritical cases
(Rasmussen and Rypdal, 1986). For instance, the modulational instability in the integrable NLS
equation (r"1) results in long-lived periodic oscillations discussed in Section 4.6 (Yajima, 1983;
Ma, 1984).

In application to the KdV and dark NLS solitons, we "nd from Eqs. (5.14) and (5.20) that the
condition dc'0 is satis"ed. As a result, the instability-induced dynamics of those solitons displays
a bounded scenario of the soliton self-focusing, i.e. a monotonic transition to a chain of two-
dimensional solitons.

Finally, the bright NLS solitons in the elliptic problem satisfy the condition dc"0, i.e. c
1
"c

2
(see

Eq. (5.8)). This is a marginal case between unbounded and bounded soliton dynamics, and it still
possesses critical collapse (Rasmussen and Rypdal, 1986).

5.4. Extensions

In a number of nonlinear problems, the small-amplitude evolution equations (5.1) and (5.2) turn
out to be inconsistent because either linear or nonlinear coe$cients vanish. In these special cases,
(5.1) and (5.2) should include higher-order corrections. Here we discuss two such cases which
include dark solitons of near-zero velocity and bright solitons in the hyperbolic NLS equation.

5.4.1. &Almost Black' NLS solitons
When v

0
approaches zero, the coe$cients c

1
and c

2
vanish and one should reconsider

the small-amplitude asymptotic expansion to include the higher-order (cubic) nonlinear terms
into the asymptotic balance with the linear (dissipative) term in Eq. (5.2). This can be done
by a simple scaling s"JeS(>,¹) and the extention of v following from Eqs. (4.15),
v"e1@2S

T
!2e3@2S

T
S2
Y
#O(e5@2). Then, it can be shown that the function S"S(>,¹) satis"es the

modixed elliptic Shrira}Pesenson equation,
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S
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S2
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S
YYB#O(e2)"0 . (5.33)

A standard reduction based on the Laplace coordinates, z and z6 given by Eq. (5.22) and the
asymptotic expansion S"B(z, q)#BM (z6 , q)#eS

1
(z, z6 , q)#O(e2), where q"e¹, leads to the modi-

xed Burgers equation for the function B,

B
zq#

(d
3
!(d

1
#d

2
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2a2
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z
B

zz
#

b
2a
B

zzz
"0 . (5.34)
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Then, the asymptotic solution can be obtained in the form,

S"A
3bJa

[d
3
!(d

1
#d

2
)a]pB

1@2
log DFD2 , (5.35)

where

F"eCT`*pY#(1#e2(CT`*pY))1@2 ,

and C is the linear instability growth rate (5.4). This solution describes the transverse instability of
a black soliton under the action of a periodic perturbation. The soliton instability develops
symmetrically in space, and it results in a break-up of the planar soliton at the places of location of
two-dimensional vortices, the process is accompanied by small radiation propagating with the
velocities vB"$1

2
o [see Figs. 5(b) and (c)]. This scenario agrees with the results of numerical

simulations of the vortex generation in the defocusing NLS equation (McDonald et al., 1993; Law
and Swartzlander, 1993; Pelinovsky et al., 1995).

5.4.2. Bright NLS solitons in the hyperbolic problem
The system of modulation equations (4.9) derived for the soliton self-focusing in the framework

of the hyperbolic NLS equation can be reduced, in the small-amplitude approximation, to a system
of coupled equations. The scaling s"eS(>,¹) and h"u

0
¹#e2H(>,¹) results in the asymptotic

expansions for v and u,

v"eS
T
#e3(4S

T
S2
Y
!2S

Y
H

Y
)#O(e5) ,

u"u
0
#e2(H

T
#4u

0
S2
Y
!S2

T
)#O(e4) .

Then, the coupled system for S"S(>,¹) and H"H(>,¹) follows from Eqs. (4.9),
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TT

#O(e2)"0 .

(5.36)

Here we have included the linear dispersion term from Eq. (3.7), which can be obtained by means of
a direct asymptotic analysis.

The important property of the coupled equations (5.37) is that the reduction to the Laplace
coordinates fails since the nonlinear (cubic) term vanishes. Moreover, we can show that any power
nonlinearity cannot stabilize the growth of linear perturbations because the nonlinearity vanishes.
Indeed, the system of modulation equations (4.9) possess an explicit (complex-valued) solution,

S
Y
"u(>!c

0
¹), H

Y
"!

iJu
0

J3
(J1!u2!1) ,

v"
2iJu

0
J3

u

J1!4u2
, u"

u
0

(1!4u2)
,
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Fig. 6. The level lines of Dt(x, y)D2 for the transverse self-focusing of a bright NLS soliton in the hyperbolic problem within
the long-scale analysis.

where c
0

and u
0

are constants and u"u(>). The complex-valued parameter c depends usually on
u and this provides an e!ective nonlinearity in the evolution equations of a `single-wavea
approximation. Here c"c

0
"const and the nonlinearity vanishes identically for any power. As

a result, the development of self-focusing instability of a planar soliton cannot be stabilized in the
hyperbolic NLS equation and this leads eventually to a break-up of the soliton. The corresponding
solution is shown in Fig. 6. This scenario corresponds to numerical simulations reported earlier
by Pereira et al. (1978; see Fig. 4). Since two-dimensional solitons do not exist in the hyperbolic
NLS equation, each individual part of a planar soliton spreads out and gradually decays due to
dispersion.

6. Short-scale approximation

Asymptotic equations obtained in the long-scale small-amplitude approximation discussed in
Section 5 still possess singularities within the validity of the asymptotic expansion technique. This
occurs even in the problems where the exponential growth of the soliton amplitude due to the
transverse self-focusing is bounded by nonlinear e!ects leading to the formation of a chain of
non-singular two-dimensional solitons. The reason for such singularities of the asymptotic expan-
sions can be explained by the fact that, within the long-scale asymptotic approximation, two-
dimensional solitons formed due to the development of the transverse instability have large
amplitudes compared to the amplitude of the initially unstable planar soliton. Therefore, although
the long-scale expansion method is usually very simple for the asymptotic analysis, the applicabil-
ity of the asymptotic results is limited by the temporal and spatial domains where such asymptotic
singularities appear.

The short-scale approximation described in this section is based on the asymptotic analysis near
the cuto! of the instability band. Under the action of short-scale transverse modulations, two-
dimensional solitons formed in result of the development of instability have the amplitudes
compared with the amplitude of an initially unstable planar soliton. If the soliton self-focusing is
bounded by nonlinear e!ects (no collapse), the asymptotic technique is free of singularities and it
allows to describe, in a self-consistent manner, the nonlinear regime of the soliton self-focusing.
A disadvantage of this approach is that, in most of the cases, the cuto! wave number of the
instability band and the corresponding linear eigenmode cannot be found analytically, so that the
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whole asymptotic scheme may be developed only formally with the subsequent numerical calcu-
lations of the parameters and eigenfunctions. Here we discuss the basic asymptotic equation of the
short-scale approximation (Section 6.1) and also present a derivation of this equation for the
important examples (Section 6.2).

6.1. Basic asymptotic equations

From the physical point of view, the long-scale soliton transverse instability corresponds to
either phase or coordinate modulations which destabilize the propagation of a planar soliton. In
contrast, the short-scale instability is associated with the instability of the amplitude modulations
along the front of a planar soliton. Such an origin of the instability is supported by the existence
and bifurcations of the transversely periodic solitary-wave structures that occur near the cuto!
wave number (Laedke et al., 1986). Therefore, although the existence of the cuto! of the instability
band can be predicted within the long-scale asymptotic equations (5.1) and (5.2), the rigorous
asymptotic analysis should be developed on the basis of direct asymptotic expansions of nonlinear
evolution equations near p"p

#
.

We assume that a perturbation applied to a planar soliton is nearly periodic along the transverse
coordinate, i.e. it can be written in the form,

du(x, y, t)&[a(>,¹)e*p#y#aH(>,¹)e~*p#y];(x) , (6.1)

where p
#

is the critical transverse wave number for the instability cuto!, ;(x) is the corresponding
eigenmode of the linear eigenvalue problem. A slowly varying complex amplitude a"a(>,¹)
depends on a slow time ¹"et and the strechted transverse coordinate >"e2y [notice that
a di!erent streched coordinate, >"ey, has been used in the expansions of Sections 4 and 5].
Perturbation du in the form (6.1) describes, in the leading order, the amplitude modulations
along the front of a planar soliton. The main target of the asymptotic analysis is to derive
a governing equation for the amplitude a(>,¹). As a matter of fact, the universal equation that
appears in the short-scale small-amplitude asymptotic expansions is the unstable NLS equation
(Wadati et al., 1991),

!ip
#
a
Y
#ba

TT
#cDaD2a"0 , (6.2)

where the coe$cient b is determined from the linear analysis, and the coe$cient c describes the
nonlinear e!ects. According to the linear analysis, the instability appears for longer transverse
perturbations, i.e. for p(p

#
, this condition speci"es b to be positive. Indeed, for linear perturba-

tions of the form a&eCT`*DpY, we obtain

C2"!b~1p
#
D

p
, (6.3)

where C is the instability growth rate (C'0) while D
p

is the deviation of the transverse wave
number p from p

#
, i.e. p"p

#
#e2D

p
so that D

p
(0 in the instability domain. Within the unstable

NLS equation (6.2), the instability domain is not bounded, and therefore the initial-value problem
is ill-posed. However, this model still can provide accurate results for the transverse self-focusing
under the action of periodic or multi-periodic perturbations (see Janssen and Rasmussen, 1983;
Gorshkov and Pelinovsky, 1995a).
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We should also mention that an extension of the underlying model (6.2) to include higher-order
terms of the asymptotic expansions may bound the instability band making the initial-value
problem to be well-posed, similar to the case of the extended long-scale modulation equations
described below in Sections 4 and 5. However, for the self-consistent predictions of the instability-
induced soliton dynamics, it is usually su$cient to analyze only the unstable NLS equation (6.2) or
its analogues.

The coe$cient c in Eq. (6.2) determines whether the nonlinear dynamics of the transverse
instability remains bounded or not. If c(0, Eq. (6.2) describes an unbounded scenario of the
nonlinear dynamics, i.e. collapse may occur as a result of the self-focusing process. If c'0,
long-lived bounded oscillations (&quasi-recurrence') is the most typical scenario for, at least,
intermediate regimes of the nonlinear dynamics. At last, the case c"0 is special, and the unstable
NLS equation (6.2) should be modi"ed by higher-order nonlinear terms. For example, this
situation occurs in integrable models where the transverse self-focusing displays a monotonic
(resonant) transition from a planar soliton to a transversely modulated soliton-like structure.
Radiative e!ects, which are usually beyond the leading-order approximation described by the
unstable NLS equation (6.2), should be also taken into account for those special (resonant) cases.

6.2. Derivation

Since the asymptotic analysis is straightforward, we present here only the main steps of the
derivation and the "nal results obtained by the short-scale expansion technique referring to the
original papers where more details can be found. We consider the basic soliton equations and
construct the asymptotic solutions for di!erent scenarios of the instability-induced evolution of
a planar soliton under the action of periodic short-scale transverse modulations.

6.2.1. Bright NLS solitons in the elliptic problem
We start from the following asymptotic expansion for the NLS equation (2.1) for p

/
"p

$
"#1

[cf. Eqs. (4.3) and (5.7)],

t"CUb
(x;u)#e/

1
(x, y;>,¹)#

=
+
n/2

en/
n
(x, y;>,¹)De*(t`eh) , (6.4)

where u"1#e2h
T
#O(e4), U

b
(x; u) is given by Eq. (2.2), and the "rst-order perturbation

/
1
(x, y;>,¹) is selected according to the structure of the linear eigenmode (3.10),

/
1
"[a(>,¹)e*p#y#aH(>,¹)e~*p#y] sech2x , (6.5)

where the cuto!wave number is p
#
"J3. Such a perturbation describes nearly periodic amplitude

modulations along a planar bright soliton. Self-consistent phase modulations are introduced
through the slowly varying function h"h(>,¹). The short-scale asymptotic analysis was con-
sidered by Janssen and Rasmussen (1983) where the "rst terms of the asymptotic series (6.4) were
found for a particular case of periodic modulations, a"A(¹)e*DpY,

/
2
"DaD2u

0
(x)#[ia

T
e*p#y#iaH

T
e~*p#y]w

1
(x)#[a2e2*p#y#aH2e~2*p#y]u

2
(x) , (6.6)
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Fig. 7. (a) The phase plane corresponding to Eq. (6.2) for a bright NLS soliton under a periodic transverse perturbation.
(b) The pro"le of Dt(x, y)D2 within the short-scale analysis with p"1, e"1, and ¹"!0.8.

where u
0
"!4 sechx#2 sech3x, while the real functions w

1
(x) and u

2
(x) can be expressed

through the Legendre functions (see Appendix B in the original paper by Janssen and Rasmussen,
1983). Furthermore, the parameter h(>,¹) is related to the amplitude a(>,¹) through the relation

h
T
"8DaD2 ,

and the modulation amplitude a(>,¹) satis"es the unstable NLS equation (6.2) with the coe$cients,

b"
1
4A

p2

6
!1B, c"!A

108
35

#

27
2

IB ,

where I is given by Eq. (B6) in the paper by Janssen and Rasmussen (1983). It was found
numerically that I+0.164 and therefore c+!5.300.

The unstable NLS equation (6.2) describes an unbounded scenario of a singularity formation for
the amplitude of a modulated bright NLS soliton. Fig. 7(a) shows the corresponding phase plane of
the dynamical system (6.2) for the periodic perturbation a"A(¹)e*DpY. A particular analytical
solution for a separatrix trajectory represents a nonlinear regime of the soliton self-focusing,

A(¹)"A
2b
DcD B

1@2
C cosech(C¹) , (6.7)

where C is de"ned by Eq. (6.3). This asymptotic solution, rewritten for the original "eld t with the
help of Eqs. (6.4) and (6.7), is presented in Fig. 7(b). The unbounded dynamics of the soliton
self-focusing is associated with the development of a two-dimensional collapse known to occur for
the elliptic NLS equation (Janssen and Rasmussen, 1983).

6.2.2. KdV solitons
We analyze the short-scale transverse modulations of the KdV soliton in the framework of the

KP equation (2.6). We start from the following asymptotic expansion [cf. Eqs. (4.10) and (5.9)],

u";(m; v)#eu
1
(m,y;>,¹)#

=
+
n/2

enu
n
(m, y;>,¹) , (6.8)
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where m"x!t!es, v"1#e2s
T
#O(e4), ;(m; v) is the pro"le of a KdV soliton (2.7), and the

"rst-order perturbation u
1
(m, y;>,¹) is speci"ed by the linear eigenmode,

u
1
"[a(>,¹)e*p#y#aH(>,¹)e~*p#y](sech m!2 sech3 m) , (6.9)

where p
#
"J3/2. Perturbation of this form describes nearly periodic amplitude modulations

along a planar KdV soliton. The amplitude modulation induces also the coordinate modulation
described by the parameter s"s(>,¹). The second-order term of the asymptotic expansions was
found explicitly by Gorshkov and Pelinovsky (1995a), and it can be written in the following form:

u
2
"DaD2w

0
(m)#[a

T
e*p#y#aH

T
e~*p#y]w

1
(m)#[a2e2*p#y#aH2e~2*p#y]w

2
(m) , (6.10)

where w
0
(m)"3m tanhm sech2 m!7 sech2 m#6 sech4 m, w

1
(m)"(R2/Rm2)(m sechm), w

2
(m)"!2 sech2 m

#3 sech4 m. The coordinate s(>,¹) is related to the amplitude a(y,¹) as s
T
"DaD2, and the

amplitude a(>,¹) satis"es Eq. (6.2) with b"3/4 and c"0. Thus, the asymptotic expansion done in
the framework of the integrable KP equation corresponds to a critical soliton self-focusing, and
therefore it should include higher-order nonlinear terms. Such a modi"cation of the asymptotic
procedure was developed by Gorshkov and Pelinovsky (1995a, 1995b) who derived the unstable
Eckhaus equation (see, e.g., Calogero and Eckhaus, 1987) for the amplitude a"a(>,¹) rescaled to
the order of Je,

!

4
3
ip

#
a
Y
#a

TT
#DaD4a#2a(DaD2)

T
"0 . (6.11)

The last term in Eq. (6.11) describes an e!ective dissipation due to the emission of radiation behind
the KdV soliton. Within the asymptotic analysis (see Gorshkov and Pelinovsky, 1995a), the
generation of a radiation "eld behind the soliton, u"e2u~, is de"ned by the boundary condition at
the soliton front,

u~D
X/T

"2(DaD2)
T

. (6.12)

In the framework of the short-scale approximation, the generation of the radiation "eld in front of
the KdV soliton does not occur.

Model (6.11), derived by means of an extended short-scale asymptotic analysis, predicts a mono-
tonic transition of an unstable planar KdV soliton to a steady-state transversely modulated soliton
structure. Fig. 8(a) presents the phase plane of the dynamical system (6.11) for the periodic
modulations in the form a"A(¹)e*DpY. A particular solution for the separatrix trajectory can be
found analytically,

A(¹)"C
C
2

eCT sech(C¹)D
1@2

, (6.13)

where C is de"ned by Eq. (6.3) for b"3/4. A monotonic transition from a planar soliton to
a transversely modulated structure described by the solution (6.13) is accompanied by the
generation of a radiation "eld u~ behind the solitary wave,

u~"C2 sech2(CX) . (6.14)
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Fig. 8. (a) The phase plane corresponding to Eq. (6.2) for a KdV soliton under a periodic transverse perturbation. (b) The
pro"le of u(x, y) within the short-scale analysis with p"0.7, e"1, and ¹"7.5.

Radiation "eld (6.14) has a structure of a planar KdV soliton (2.7) of smaller amplitude and
velocity. Thus, within the short-scale asymptotic analysis, the analytical solution describes a
splitting of an initially unstable planar KdV soliton moving with the velocity v

0
"1 into a chain of

two-dimensional KP solitons moving with the velocity v
1
"1#e2C and a complimentary planar

KdV soliton moving with a small velocity v
2
"e2C2 remaining behind the modulated soliton

chain. The asymptotic solution for the "eld u [see Eqs. (6.8) and (6.14)] is shown in Fig. 8(b). The
asymptotic solution (6.13) and(6.14) agrees with the exact solution (4.36) calculated in the limit
pPp

#
(iP0).

6.2.3. Dark NLS solitons
The analysis of short-scale self-focusing of dark solitons is similar to that for KdV solitons. In

particular, the short-scale asymptotic expansion has the form [cf. Eq. (4.13)],

t"CU$
(m; v)#e/

1
(m, y;>,¹)#

=
+
n/2

en/
n
(m, y;>,¹)De~2*o2

t , (6.15)

where m"x!2vt!es, U
$
(m; v) is de"ned by the pro"le of a dark soliton (2.3), and the "rst-order

perturbation /
1
(m, y;>,¹) is given by

/
1
"[a(>,¹)e*p#y#aH(>,¹)e~*p#y]G!

3v sinh(km)
2k cosh2(km)

#i
(p2

#
#3k2)

4k2 cosh(km)H , (6.16)

where k"Jo2!v2 and p
#
"[!(o2#v2)#2Jv4!v2o2#o4]1@2. The instability dynamics is

described again by the e!ective NLS equation (6.2) with the coe$cients calculated numerically
(Pelinovsky et al., 1995). It was found that the coe$cient c"c(k) is positive and cP0 as kP0 (the
limit of a KdV soliton). The radiation "elds uB propagate to the right and to the left with the sound
speed $2o. Their pro"les are generated by certain boundary conditions (see Pelinovsky et al.,
1995) similar to Eq. (6.12). Thus, the short-scale self-focusing of a dark soliton displays the bounded
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Fig. 9. (a) The phase plane corresponding to Eq. (6.2) for a black NLS soliton under a periodic transverse perturbation.
(b) The level lines of Dt(x, y)D2 within the short-scale analysis with p"0.5, e"1, and ¹"1.5.

scenario of long-lived oscillations of a modulated dark soliton. Fig. 9(a) displays the corresponding
phase plane of the dynamical system (6.2) for the periodic perturbation a"A(¹)e*DpY. A particular
analytical solution for the separatrix trajectory is given by the explicit result,

A(¹)"A
2b
c B

1@2
C sech(C¹) , (6.17)

where C is the same as in Eq. (6.3). The asymptotic solution for the "eld t [see Eqs. (6.15) and
(6.17)] is presented in Fig. 9(b). The analytical asymptotic results agree with numerical simulations
of the defocusing NLS equation which revealed formation of a train of vortex pairs from a planar
soliton (McDonald et al., 1993; Pelinovsky et al., 1995) and long-lived periodic oscillations
(Pelinovsky et al., 1995). As kP0, one can modify the asymptotic analysis and derive the mixed
unstable NLS and Eckhaus equation that describes a transformation of a small-amplitude planar
soliton into a chain of two-dimensional solitons accompanied by some intermediate oscillations
(see Pelinovsky et al., 1995).

7. Some other models

In the previous sections, we have presented an overview of di!erent approaches for analyzing the
soliton self-focusing phenomena on the basis of a few fundamental nonlinear models. Di!erent
varieties of soliton-bearing models still appear in physical problems of di!erent physical context,
and they bring many novel modi"cations of the classical methods. Here we review a few more
examples, which we classify into several groups, namely the NLS-type models (Section 7.1), the
KdV-type models (Section 7.2), and the kink-type models (Section 7.3).
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7.1. NLS-type models

There exist several di!erent modi"cations of the NLS equation (2.1). Some of them have been
already mentioned in Section 2.2 in the discussions of realistic physical models employed to
describe the suppression of wave collapse. Here we analyze more examples of this type.

7.1.1. Power-law nonlinearities
A balance between power-law nonlinearity and wave di!raction can be described by the

generalized NLS equation in D dimensions,

it
t
#+2

D
t#(r#1)DtD2rt"0 , (7.1)

where +2
D

is the Laplace operator in D dimensions, and r is the power of nonlinearity. It is
well-known that the D-dimensional soliton of the model (7.1) is stable provided D(2/r, and
unstable otherwise. In the latter case Eq. (7.1) displays collapse of localized solitons (Rasmussen
and Rypdal, 1986). The c.w. background is modulationally unstable within the generalized NLS
equation (7.1). Being related to the analysis of the soliton stability, the modulational instability of
the c.w. background develops into singularities for the case D'2/r while, in the opposite case, it
results in long-lived periodic oscillations between the c.w. and modulated states. Stable D-
dimensional solitons can be formed at later stages of the instability-induced dynamics. The case
r"2/D corresponds to a weak instability of a soliton which results in a critical collapse of slowly
growing perturbations (see, e.g., Rasmussen and Rypdal, 1986). Here we discuss how these
well-known properties of the generalized NLS equation (7.1) are related to the symmetry-breaking
instabilities and the transverse self-focusing of planar solitons.

It was shown in Section 4.4 that the modulation equations for transverse perturbations of
a one-dimensional soliton of Eq. (2.1) reduce to the one-dimensional NLS equation (1.1) for r"2.
Here we generalize this result and show that the modulation equations for the transverse
perturbations of a d-dimensional (d(D) soliton of Eq. (7.1) with the parameters D and r reduce to
the same NLS equation (7.1) but with the di!erent parameters, DK and r( , where

DK "D!d, r("
2r

2!rd
. (7.2)

The generalized NLS equation (7.1) follows from the Lagrange function,

¸"

i
2
(tHt

t
!ttH

t
)!D+

,
tD2!D+

M
tD2#DtD2r`2 , (7.3)

where the gradient vector +
,

includes d dimensions parallel to a planar soliton, while the vector
+
M

includes DK "D!d dimensions transverse to the soliton. The planar soliton solution can be
written in the form,

t"u1@2r f (X
,
)e*h@e , (7.4)

where X
,
"Jux

,
, h/e"ut, and the function f satis"es the equation for a steady-state normalized

envelope, +2
,
f!f#(r#1) f 2r`1"0. The transverse modulation of a planar soliton can be

described by Eq. (7.4) with the varying soliton parameters, u"u(X
M
,¹) and h"h(X

M
,¹), where
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X
M
"e x

M
, ¹"et, and e;1. Integrating the function (7.3) with respect to x

,
, we "nd the following

averaged Lagrangian (see also Kuznetsov et al., 1986; Trubnikov and Zhdanov, 1987),

S¸T"
:=
~=

¸ dx
,

:=
~=

f 2dX
,

(7.5)

in the form

S¸T"!u(2~rd)@2r[h
T
#(+

M
h)2]#

2!rd
2(r#1)!rd

u(2(r`1)~rd)@2r

!e2ku(2(1~2r)~rd)@2r(+
M
u)2 ,

where

k"
:=
~=

(1
r
f#X

,
)+

,
f )2dX

,
4:=

~=
f 2dX

,

'0 .

For r"1 and d"1 this expression reduces to Eq. (4.17). The modulation equations can be
obtained from Eq. (7.5) by varying S¸T with respect to the parameters u and h,

(u(2~rd)@2r)
T
#2+

M
(u(2~rd)@2r+

M
h)"0 ,

h
T
#(+

M
h)2!u!e2kC

4r
2!rd

+2
M
u

u
!

2(1!2r)!rd
2!rd

(+
M
u)2

u2 D"0 ,
(7.6)

The new function tK (g, q)"cu(2~rd)@4re*h@j satis"es Eq. (7.1) written for the variables g"X
M
/j and

q"¹/j with the parameters DK and r( given by Eqs. (7.2). The constants c and j are de"ned as

c"C
2!rd

2(r#1)!rdD
(2~rd)@4r

, j"
4r

(2!rd)
Jke .

For r(2/d, the modulation equations (7.6) are elliptic, and this property indicates immediately
the existence of a self-focusing instability of planar (d-dimensional) solitons. The scenario of the
development of the self-focusing instability depends on the ratio between DK and 2/r( , according to
the scheme discussed above. It follows from Eq. (7.2) that the critical NLS equation, with respect to
the modulational instability of a c.w. background, i.e. D"2/r, remains the critical NLS equation
with respect to the self-focusing instability of a planar soliton, i.e. DK "2/r( . In addition, the
subcritical (D(2/r) and the supercritical (D'2/r) cases of Eq. (7.1) transform to the correspond-
ing cases of Eqs. (7.6). This implies that the long-term instability-induced dynamics of a modulated
soliton should display a collapse scenario, for DK 52/r( , and a quasi-recurrence scenario, for DK (2/r( .
Thus, we come to the conclusion that there exists one-to-one correspondence between modula-
tional instability of continuous waves and self-focusing instability of solitons in nonlinear disper-
sive/di!ractive media.

For r52/d, the modulation equations (7.6) are hyperbolic, i.e. they fail to predict the self-
focusing instability of a planar (d-dimensional) soliton. This is explained by the appearance of
longitudinal instabilities of planar solitons within the generalized NLS equation (7.1). If a planar
soliton is unstable against the symmetry-preserving (longitudinal) perturbations, none of the
methods discussed in this survey can help to describe the instability (see, e.g., discussions in
Pelinovsky and Grimshaw, 1997).
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7.1.2. Parametric quadratic solitons
For three decades optical self-trapped beams (or spatial solitons) con"ned in the transverse plane

were commonly believed to be a prerogative of media with cubic-like nonlinearities or their
generalizations. However, about 25 yr ago, Karamzin and Sukhorukov (1974) predicted a possibili-
ty to achieve beam the self-trapping in an optical medium with a quadratic nonlinear response in
the form of mutually interacting and coupled beams of the fundamental and second-harmonic
"elds, the so-called parametric quadratic solitons. The "eld of quadratic solitons has acquired
importance only recently (e.g., Buryak and Kivshar, 1994, 1995; Torner et al., 1996; He et al., 1996;
see also the review papers by Stegeman et al., 1996, and Kivshar, 1998b) being also actively
stimulated by experiment. Since the parametric solitons are, strictly speaking, solitary waves,
i.e. localized solutions of nonintegrable equations, a crucial issue is their stability, including the
symmetry-breaking instabilities.

To investigate the symmetry-breaking instabilities of quadratic solitons, we consider a nearly
phase-matched interaction of two beams in a quadratic medium governed by two coupled
equations for the normalized "eld envelopes u

1
, at the fundamental frequency u, and u

2
, at the

second-harmonic frequency 2u (see, e.g., De Rossi et al., 1997a,b)

iu
1z
#

1
2
+2

M
u
1
!

c
1
2

u
1tt

#u
2
uH
1
"0 ,

iu
2z
#

1
2p

+2
M
u
2
!

c
2
2

u
2tt

#dku
2
#

u2
1
2
"0 ,

(7.7)

where +2
M
"R2

x
#R2

y
, is the transverse Laplacian, z is the propagation distance, the normalized time

t is in the reference frame travelling at the common group velocity, dk,Dkz
d
"(k

2
!2k

1
)k

1
r2
0

is
the phase-mismatch, and p,k

2
/k

1
. Here k

2
and k

1
are the wave numbers at the corresponding

frequencies and r
0

is the characteristic beam width.
Similar to the NLS solitons, two-wave quadratic solitons of a plane geometry display the

symmetry-breaking instabilities in a planar geometry (De Rossi et al., 1997a,b; Skryabin and Firth,
1998b) or in higher dimensions (Skryabin and Firth, 1998b). Importantly, it was proven for
di!erent cases (Kanashov and Rubenchik, 1981; BergeH et al., 1995; Turitsyn, 1995) that the
equations for quadratic solitons possess no collapse dynamics for localized solutions. Therefore, as
was shown in the recent studies, the development of the instability leads either to the formation of
a train of higher-dimensional solitons (De Rossi et al., 1997b), similar to the elliptic NLS equation,
or to the complete disintegration and radiative decay of a plane soliton (De Rossi et al., 1997a),
similar to the case of the hyperbolic NLS equation.

Because the model (7.7) is not integrable, explicit results can be obtained when the soliton pro"le
is known in a closed analytical form (see, e.g., Buryak and Kivshar, 1995). The full analysis of the
linear eigenvalue problem was performed numerically for both the cases (DeRossi et al., 1995a,b).

Once established that the plane solitons are unstable, a crucial issue is their long-range
evolutions. For the transverse instability, whenever the eigenfunction pro"les follow those of the
bell-shaped soliton, the dynamics of the instability process should show no signi"cant changes
along the trapping dimension and remain essentially one dimensional. However, in the model (7.7)
the problem of long-range evolutions of plane solitons is complicated by a large number of e!ective
frequency modes (at least two carriers and two pairs of sidebands). De Rossi et al., 1995a,b; see also
Baboiu and Stegeman, 1998) investigated a nonlinear stage of the soliton symmetry-breaking
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Fig. 10. Self-focusing modulational instability of two-wave parametric quadratic solitons in the cases of (a) normal and
(b) anomalous dispersion. In the latter case, the stripe decays into a periodic train of solitary waves stable in higher
dimension.

instability by integrating numerically Eqs. (7.7) with slightly modulated initial front corresponded
to one of the instability eigenmodes. A typical result for the focusing case (De Rossi et al., 1997b) is
that a stripe breaks up into a periodical sequence of spots forming a lattice of trapped waves, which
are naturally expected to be the (2#1)-dimensional solitons, the so-called &neck instability' (see
Fig. 10, left column).

In the problem of temporal or modulational instability, the temporal break-up of guided modes
in waveguides leads to spatio-temporal trapping for the case of the anomalous dispersion with no
qualitative changes in comparison with the transverse instability. Conversely, in the normal
dispersion regime no spatial analogy exists. The unstable modes are anti-symmetric and they lead
to spatio-temporal wave breaking with characteristic snake-like shapes (De Rossi et al., 1997a),
followed by the radiative decay of the soliton (see Fig. 10, right column).

Thus, parametric solitons undergo symmetry-breaking instabilities in the way quite similar to
the cases discussed above in the framework of the hyperbolic and elliptic NLS equations with cubic
nonlinearity. The resulting collapse-free soliton dynamics can be compared with the e!ect pro-
duced by a saturable nonlinearity in the NLS models, in particular, the transverse break-up of
plane solitons leads to the soliton buncing (via the neck instability), and oscillations around
a lattice of stable higher-dimensional solitons.

Recently, Skryabin and Firth (1998c) analyzed also the symmetry-breaking instabilities in
a more general case of nondegenerate three-wave mixing which describes a phase matched interac-
tion between three waves satisfying the resonant condition, u

3
"u

1
#u

2
, so that the model (7.7)
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is a particular case. These authors found a new branch of unstable eigenvalues corresponding to
a two-parameter phase symmetry of the three-wave solitons which appears due to the second
invariant of the equations associated with the conservation of the power unbalance of the di!erent
frequencies "elds. This new branch was shown to have a dramatic e!ect on the soliton instability in
the case of the normal dispersion. Indeed, this new branch of the symmetry preserving unstable
eigenvalues corresponds to a neck instability which, under certain conditions, may become domi-
nant even in a normal dispersion case when the corresponding NLS model displays only the
snake-like soliton instabilities. The similar results have been very recently obtained for two
incoherently coupled NLS equations (Skryabin and Firth, 1999).

7.1.3. The Davey}Stewartson equation
There are known several physical situations when a resonant coupling occurs between high- and

low-frequency waves. In one-dimensional systems, this e!ect is described by the so-called Zakharov
model which, with the same accuracy, reduces to an e!ective NLS equation. For multi-dimensional
case, such a simple reduction is no longer valid, leading to a new model described by the
Davey}Stewartson (DS) equation. As one of the possible examples of the corresponding physical
system, we mention the evolution of weakly nonlinear gravity-capillary waves at a free surface
where a fundamental wave is coupled to an induced mean "eld (Ablowitz and Segur, 1981; Craig
et al., 1997). If the #uid is deep, the governing model reduces either to the hyperbolic or to the
elliptic NLS equation. In the opposite limit of a shallow #uid, the equations can be reduced to the
DS equation,

it
t
#pt

xx
#t

yy
#2t(n!DtD2)"0 ,

n
xx
!pn

yy
!2(DtD2)

xx
"0 .

(7.8)

Here t is the amplitude of a wave packet, n is a self-consistent mean #ow, and p"$1. The case
p"#1 occurs for weak capillary e!ects, and it is referred to as the DS-I equation. The case
p"!1 occurs for pure gravity waves and it is referred to as the DS-II equation. Both the cases
are known to be integrable by means of the inverse scattering technique. Soliton solutions (bright
solitons) are stable with respect to transverse perturbations for p"!1 and unstable for p"#1
(Ablowitz and Segur, 1979). Exact solutions describing the development of the soliton self-focusing
instability were constructed for the DS-I equation by Pelinovsky (1994), who considered both dark
and bright solitons of Eqs. (7.8) for p"#1. However, it can be shown that the nonvanishing c.w.
background is also unstable in this model, therefore, dark solitons do not survive at wave
background due to the background instability. Here we reproduce the exact solutions for bright
solitons of Eq. (7.8) at p"#1.

The DS-I equation has an explicit bilinear representation,

t"

q`
q

, DtD2"(R2
x
!R2

y
) log q, n"2R2

x
log q . (7.9)

The bilinear functions q(x,y, t) and q`(x, y, t) can be speci"ed in the following particular representa-
tion (Pelinovsky, 1994):

q`"2/sH, q"1#P
x

~=

D/D2dxP
x

~=

DsD2dx , (7.10)
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where the functions / and s satisfy the system of linear equations,

/
x
#/

y
"0, s

x
!s

y
"0, i/

t
#/

xx
"0, !is

t
#s

xx
"0 . (7.11)

We consider the plane-wave solution to Eqs. (7.11),

/"c
1

exp[p(x!y)#2ip2t]#c
2

exp[i(x!y)#2ii2t] ,

s"c
1

exp[p(x#y)!2ip2t]#c
3

exp[i(x#y)!2ii2t] ,
(7.12)

where i"p!ik, c
1
"(2p)1@2, c

2
"(2p)1@2a, c

3
"(2p)1@2b, and a, b, and k are real parameters.

Taking, for simplicity, the case b"0, we can write the following exact solution to Eq. (7.8),

t(x, y, t)"
4pe2px`4*p2

t(1#e~*k(x~y`2kt)`Ct)

1#e4pxA1#
2p

2p!ik
e~*k(x~y`2kt)`Ct#

2p
2p#ik

e*k(x~y`2kt)`Ct#e2CtB
, (7.13)

where C"4pk. If C'0, this solution describes, for tP!R, a planar soliton perturbed by
a transverse periodic perturbation that exponentially grows in time. The instability is induced by
asymmetric (translational) eigenfunctions in the long-scale limit (kPR), as in the case of bright
solitons of the hyperbolic NLS equation. The instability domain is not bounded from above, i.e.
CPR as kPR. This unusual feature of the soliton self-focusing is explained by the pro"le of
n(x, y, t). It is clear from Eqs. (7.9), (7.10), and (7.12) that the self-focusing of a bright soliton is driven
by a transverse periodic modulation of the self-consistent mean #ow n nonlocalized in the direction
of the soliton as xP#R. This perturbation in the mean #ow pumps the fundamental wave and
induces the soliton transverse instability.

At a nonlinear stage of the instability development, the growth of transverse perturbations is
stabilized, and it alternates with damping. As a result, the bright soliton returns to its unperturbed
planar shape but it acquires a drift velocity, v"!4k. In the framework of this exact solution, the
energy of a soliton is not changed and radiation is not generated. In the symmetric case, a"b, the
exact solution for the soliton self-focusing in the DS-I equation is presented in Figs. 11(a)}(c).

7.1.4. Discrete NLS equations
All the models analyzed above describe nonlinear waves and instabilities in the continuous

systems. However, in the solid state physics, continuous models often appear as a limiting case of
more general, discrete physical models where the lattice spacing is a fundamental physical para-
meter. Discreteness introduces a number of new features in the system dynamics, in particular, it
modi"es the conditions for modulational instability of plane waves (Kivshar and Peyrard, 1992).
A simplest model to demonstrate some basic features introduced by discreteness is a model of an
array of optical "bers (or planar optical waveguides) coupled by a weak overlapping of the guided
wave "elds excited in each core of the waveguide array (Christodoulides and Joseph, 1988; Kivshar,
1993; Aceves et al., 1994b),

iR
t
t

n
#R2

x
t

n
#K(t

n`1
#t

n~1
!2t

n
)#2Dt

n
D2t

n
"0 , (7.14)

where the variable t
n
stands for an envelope of the average electric "eld in the "ber with the number

n, and the variables t and x have a reverse meaning in the "ber optics, t is the coordinate along the
"ber in the reference frame moving with the group velocity and x is the retarded time. If we neglect
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Fig. 11. (a)}(c) Self-focusing instability in the DS-I system described by the exact analytical solutions.

the coupling, i.e. K"0, Eq. (7.14) becomes a standard (1#1)-dimensional NLS equation, and
therefore the coupling introduces the second dimension described by the discrete variable n.

We follow Aceves et al. (1994b) and study transverse stability of the plane solution
t
n
(x, t)"U

s
(x)e*ut, where U

s
(x)"Ju sech(Jux), to the perturbation in the discrete lattice vary-

ing with n. To do so, we write as usual t
n
(x, t)"[U

s
(x)#dt

n
(x, t)]e*ut, where this time the small

perturbation is selected in the form, dt
n
(x, t)"dt(x, t) cos(Qn). Linear eigenvalue problem for dt is

standard, and it is known to possess unstable eigenmodes for the interval DQD(Q
#
, where Q

#
is

de"ned di!erently for the discrete problem,

4K sin2(Q
#
/2)"3u , (7.15)

which, as expected, transforms into the well-known result of the continuum limit for Q;1.
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Aceves et al. (1994b) analyzed numerically the scenario of a decay of a plane soliton in the case of
the transverse instability in such a partially discretized lattice. In a sharp contrast with the (2#1)
dimensional NLS equation displaying the collapsing dynamics, in the discrete model Eq. (7.14)
localized states are formed after the early stage of the instability development and exponential
growth of the amplitude. Such localized modes are the analog of multi-dimensional solitons
localized in both time (continuous variable) and space (discrete variable) (see e.g., Aceves et al.,
1994a; and also Pouget et al., 1993, for the similar localized modes in a discrete two-dimensional
lattice). The collapse mechanism can be associated with the initial stage of the evolution, whereas
any singular dynamics is suppressed by discreteness (Aceves et al., 1995).

Thus, the lattice discreteness in the transverse dimension prevents collapse and it allows to
develop a sequence of spatially localized states as a result of the transverse instability of a plane
soliton acting, in some sense, as an e!ective nonlinearity saturation.

Some further results in the analysis of transverse instabilities of solitons in discrete lattices and
waveguide arrays were obtained by Darmanyan et al. (1997), who considered transverse instability
of envelope solitons in the model (7.14) but with an arbitrary wave number of the carrier wave.
Unlike the case of the continuous NLS equation where the instability growth rate does not depend
on the carrier wave number, this is not so even for modulational instability in discrete lattices
where the carrier wave modi"es the e!ective dispersion and it can lead to stabilization of plane
waves (Kivshar and Peyrard, 1992).

Considering the stability of the NLS solitons in the model (7.14) with a moving carrier wave, i.e.

t
n
(x, t)"U

s
(x!vt)e*(ut~qn~ix) ,

Darmanyan et al. (1997) obtained the following result for the cut-o! wave number Q
#

of the
instability band [cf. Eq. (7.15)]

4K cos q sin2(Q
#
/2)"3u , (7.16)

which is valid for cos q'0 and therefore it generalizes the result (7.15). Similarly, for cos q'0 the
plane soliton forms a train of stable localized modes of higher dimensions (the soliton bunching
e!ect), as in the case of the elliptic NLS equation with a saturable nonlinearity.

For the case cos q(0 the analysis is more involved, and e!ectively this case coresponds to the
hyperbolic NLS equation, and it can be analyzed by an asymptotic technique. In that case, the
maximum growth rate is reached near the edge of the Brillouin zone, and asymmetric instability
leads to a bending of the initially plane soliton. Thus, the carrier wave number q allows to vary the
e!ective dispersion in the lattice and to transform the scenario of the soliton instability from the
elliptic case to the hyperbolic one.

Recently, Relke (1998) extended this kind of analysis to the case of a waveguide array with
a periodically varying coupling constant in the array, i.e. for KPK

n
. In a contrast to continuous

models, in the mixed continuous-discrete NLS model (7.14) the asymptotic analysis of the soliton
stability can be performed in the approximation of weak coupling but for arbitrary values of
the perturbation wave numbers. For a periodic variation of the coupling constant,
K

n
"K#*K cos[p(n#1

2
)], Relke (1998) revealed the existence of two types of unstable eigen-

modes, optical and acoustic ones. This analogy comes from the fact that a discrete array of
waveguides coupled by a periodically varying constant K

n
form an e!ective diatomic lattice with

the spectrum consisting of two branches separated by a gap (see e.g., Kivshar and Flytzanis, 1992).
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The existence of two branches of unstable eigenvalues open a new mechanism of the instability
scenario when at the initial stage of the instability-driven evolution the energy gets redistributed
between adjacent solitons in the array, and a kind of doubling of a spacial period occurs
(Relke, 1998).

7.2. KdV-type models

The integrable KP equation (2.6) is an example of a higher-dimensional model that describes
long-wave transverse modulations of a KdV soliton. Here we discuss a few more examples of
this type.

7.2.1. The Zakharov}Kuznetsov equation
The Zakharov}Kuznetsov (ZK) equation is another, alternative version of a nonlinear model

describing two-dimensional modulations of a KdV soliton. It was "rst derived for describing
the evolution of the ion density in strongly magnetized ion-acoustic plasmas (Zakharov and
Kuznetsov, 1974). If a magnetic "eld is directed along the axis x, the ZK equation in renormalized
variables takes the form,

u
t
#uu

x
#+2u

x
"0 . (7.17)

The ZK equation appears as a generalization of the KdV equation to two spatial dimensions but,
unlike the KP equation, it is not integrable by the inverse scattering transform method (see, e.g.,
Shivamoggi et al., 1993).

Instability of a plane KdV soliton to transverse dimensions, in the framework of the model (7.17),
was extensively investigated analytically and numerically (e.g., Laedke and Spatschek, 1982;
Laedke et al., 1986; Infeld and Frycz, 1987; Frycz and Infeld, 1989a, 1989b; Allen and Rowlands,
1993, 1995; Infeld, 1985; Infeld et al., 1995; Bettinson and Rowlands, 1998a,b). To analyze the
soliton instabilities, Laedke et al. (1986; see also Laedke and Spatschek, 1982) developed a modi-
"cation of the short-scale small-amplitude asymptotic analysis. Instead of the unstable NLS
equation (6.2), for the ZK equation (7.17) they derived a "rst-order evolution equation,

!ip
#
a
Y
#ba

T
#cDaD2a"0 , (7.18)

where the coe$cients b and c are positive. In contrast to the case of the unstable NLS equation, this
short-scale asymptotic model describes a monotonic transition from a planar soliton to a periodic
train of two-dimensional solitons generated along the soliton front (Laedke et al., 1986). Such
a scenario of the soliton decay was con"rmed numerically by Frycz and Infeld (1989b) and Frycz
et al. (1992). Later, Allen and Rowlands (1993) suggested an extension of the multi-scale perturba-
tion approach and also obtained the maximum growth rate for all k in the form of a two-point
PadeH approximant (see also the case of obliquely propagating plane solitons discussed by Allen and
Rowlands (1995)).

7.2.2. The Shrira and Benjamin}Ono equations
Large-amplitude localized structures were experimentally observed in boundary layers gener-

ated by subsurface shear #ows (Kachanov et al., 1993). An analytical description of this phenom-
enon was developed by Shrira (1989) who derived a two-dimensional model generalizing the
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well-known Benjamin}Ono (BO) equation. If a shear #ow is directed along the x-axis, the Shrira
model is described by the equation,

u
t
#uu

x
#QMu

x
N"0 , (7.19)

where QMuN is the Cauchy}Hadamard integral transform,

QMuN"
1
2pPP

`=

~=

u(x@, y@, t) dx@dy@
[(x!x@)2#(y!y@)2]3@2

.

Linear transverse instability of (1#1) dimensional solitons of the model (7.19) was predicted and
analyzed by Pelinovsky and Stepanyants (1994) (see also D'yachenko and Kuznetsov, 1994).
Numerical simulations indicated the formation of singular two-dimensional structures in Eq. (7.19)
(D'yachenko and Kuznetsov, 1995). This conclusion was con"rmed by Pelinovsky and Shrira
(1995) who constructed approximate analytical solutions describing a singular localized mode.
Eq. (7.19) can be simpli"ed under the assumption Du

yy
D;Du

xx
D, and then it takes the form of a two-

dimensional BO equation,

u
t
#uu

x
#HMu

xx
N#1

2
HMu

yy
N"0 , (7.20)

where HMuN is the Hilbert integral transform,

HMuN"
1
pP

=

~=

u(x@, y, t) dx@
x@!x

.

Transverse modulations of the BO soliton,

u(x)"
2v

[1#v2(x!s)2]
,

can be studied by the averaged Largangian method outlined in Section 4.2, which generates the
modulation equations for the soliton parameters,

v
T
#1

2
(v2s

Y
)
Y
"0 ,

s
T
!v#

1
2
e2Avs2Y#

v2
Y

v3
!

v
YY
v2 B"0 .

(7.21)

A small-amplitude limit of these equations corresponds to the elliptic Boussinesq equation for
which the asymptotic solutions for the transverse soliton self-focusing was obtained by Pelinovsky
and Shrira (1995). Furthermore, there exists an exact transformation for the modulation equations
(7.21),

v"A
¹

0
¹

0
!¹B

1@3
=(g), g"A

¹
0

¹
0
!¹B
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=(z)

,
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where

=(g)"
p2

1!J1!p2 cos(pg)
,

p is the transverse wave number for a periodic modulation, ¹
0

is the time of blowup of the
asymptotic solution. This solution resembles the formation of singular localized modes along
the front of a planar soliton due to the development of a transverse instability. Basically the same
phenomenon was observed numerically by D'yachenko and Kuznetsov (1995).

7.3. Kinks in the Cahn}Hilliard equation

A wide class of the stability problems can be formulated for solitary wave solutions of dissipative
models. In such models, the most common localized solution is a kink (or an interface solution)
that connects two equilibrium states of the system. Generally speaking, the asymptotic methods
described above for conservative models are well applicable for the stability analysis of localized
solutions of dissipative models. To give a speci"c example and also point out some new features
of dissipative models, here we mention some results for the transverse stability of the (1#1)
dimensional kink solution in the Cahn}Hilliard equation (Cahn and Hilliard, 1958) with general
nonlinearity,

u
t
"+2A

dF
du

!+2uB , (7.22)

where F(u) is some general nonlinear free energy. Eq. (7.22) admits a stationary (1#1) dimensional
kink solutions u

k
(x) connecting two equilibrium states u"u

1
and u"u

2
, i.e. it is assumed that

F(u
1
)"F(u

2
)"0, F@(u

1
)"F@(u

2
)"0, u

1
4u

k
(x)4u

2
.

Eq. (7.22) was derived from classical thermodynamic considerations of the interdi!usion of two
components A and B, to describe the phase transition induced rapidly decreasing the temperature
from some ¹

1
'¹

#
to some ¹

2
(¹

#
(for an overview of the physics, see Novick-Cohen and Segel,

1984).
In a particular case, the free energy F(u) can be taken in the form,

F(u)"1
4
(1!u2)2 , (7.23)

and then the Cahn}Hilliard equation becomes, u
t
"+2(u3!u!+2u), and its kink solution can be

found in an explicit form, u
k
(x)"tanh(x/J2).

To analyze stability of the (1#1) dimensional kinks u
k
(x) to small perpendicular perturbations

of the wave number k, we follow Bettinson and Rowlands (1996a), and write a solution of Eq. (7.22)
in the form,

u(r, t)"u
k
(x)#edu(x)e*(kyy`kzz)ect ,

where u
k
(x) is a kink solution of the equation (u@

k
)2"2F(u

k
), and du(x) stands for a perturbation

amplitude. The linear eigenvalue problem for du(x) can be analyzed by means of the asymptotic
expansions for small and large k,Jk2

y
#k2

z
. For small k, the asymptotic result for the growth rate
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c(k) is (Bettinson and Rowlands, 1996a)

c(k)"!c
3
k3!c

4
k4 , (7.24)

where the positive coe$cients c
3

and c
4

are de"ned by the speci"c form of F(u), e.g. for the potential
(7.23) they are c

3
"J2/3 and c

4
"11/18. In the lowest order, the result (7.24) agrees with that

obtained by a variational method (Shinozaki and Oono, 1993).
In the case of large k, the asymptotic expansion in k~1 yields: c/k3"!1!c

#
/k2#2, where,

e.g., c
#
+0.303 for the potential (7.23). Bettinson and Rowlands (1996a) suggested a general PadeH

approximation to describe the full dispersion relation c(k) for all k, which provides a reasonably
good agreement (within 1.3% of the exact results) with numerical results and particular cases.
This analysis shows that the kink solution of the dissipative model (7.22) is stable to transverse
perturbations for all k.

Eq. (7.22) admits also both cylindrical and spherically symmetric stationary kink solutions. As has
been shown by Bettinson and Rowlands (1996b) for the case of large radius R, the cylindrically
symmetric kink solution is stable to perturbations involving angular variation, but is unstable
to a general perturbation. In contrast, the spherically symmetric kink solution is stable for all
small perturbations. This suggests that the unstable cylindrically symmetric solution may
decay into spherically symmetric states similar to the cases discussed above for some conservative
models.

It is interesting to note that a discrete version of the Cahn}Hilliard equation, which can also
have some physical applications, shows new features for the kink stability (see Bettinson and
Rowlands, 1998a,b). Analytical kink solution of a discrete model, u

n
"tanhb tanh(nb#s), can be

found for some special form of F(u), so that the asymptotic analysis for small and large k can be
developed, similar to the continuum case. As a result of that analysis, a kink is stable to trans-
verse perturbation in the discrete model as well, however, the growth rate vanishes at the edges of
the Brollouin zone, k"2pp, p is integer.

8. Experimental observations

8.1. Self-focusing and bright solitons

Theoretical predictions of self-focusing of light in an optical medium with nonlinear refractive
index (Askar'yan, 1962; Chiao et al., 1964; Talanov, 1964) were followed by experimental evidence
of this phenomenon in di!erent optical materials, e.g. glasses, Raman-active liquids, gas vapors, etc.
In particular, Pilipetskii and Rustamov (1965) reported the generation of one-, two- and three-
"laments due to self-focusing of a laser beam in di!erent organic liquids. Later, Garmire et al.
(1966) reported a direct observation of the evolution of beam trapping in CS

2
in the simplest

cylindrical mode. They found that the threshold, trapping length, nonlinearity-induced increase in
the refractive index in the trapped region, and beam pro"le are consistent with theoretical
predictions, and the steady-state input beam of circular symmetry asymptotically collapses to
a bright "lament as small as 50lm. As a matter of fact, this was one of the "rst experimental
manifestations of the phenomenon which we now call spatial optical soliton.
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Because ruby-laser beams used in the experiments have intensities far above threshold for
self-trapping in CS

2
(25$5 kW), Garmire et al. (1966) also observed the formation of rings around

the self-focused spots and the development of many "laments from an apparently homogeneous
beam about 1 mm in diameter and considerably above the threshold power. The former e!ect can
be associated with the existence of a set of higher-order circularly symmetric steady-state modes
(Yankauskas, 1966; Haus, 1966), whereas the latter e!ect is a direct manifestation of the transverse
beam instability, spatial modulational instability of a broad beam.

Steady-state self-focusing and self-trapping was observed for several other media, including
potassium vapor (e.g., Grischkowsky, 1970), sodium vapor (Bjorkholm and Ashkin, 1974), etc.
Additionally, detailed studies of a spatial breakup of a broad optical beam due to self-focusing was
reported by Campillo et al. (1973, 1974) who used a 50-cm cell of CS

2
to study self-focusing and

observed that radially symmetric ring patterns created by circular apertures breakup into focal
spots having azimuthal symmetry and regular spacing. This kind of e!ect can be associated with
the transverse modulational instability of quasi-plane bright rings created by the input beam, and
the number of the bright spots and critical powers are in a good qualitative agreement with the
simple theory of transverse instabilities, as was discussed in detail later by Campillo et al. (1974).

A number of similar experiments were performed later for di!erent types of nonlinear media,
including arti"cial Kerr media made from liquid suspensions of submicrometer particles (e.g.,
Ashkin et al., 1982), where the smallest-diameter self-trapped "laments (&2 lm) were observed.

Similar experiments were recently done for vortex rings, i.e. bright rings with a nonzero angular
momentum created by passing the laser beam through a di!racting phase mask and then
propagating it in a nonlinear medium (a 20-cm cell with rubidium vapor) (Tikhonenko et al., 1995,
1996b) and also for a quadratically nonlinear medium (KTP crystal) (Petrov et al., 1998). An
angular momentum introduced in the input beam, strongly a!ected the dynamics of bright spots
(in fact, spatial solitons) created by the transverse instability of the rings, so that they can attract
and repel each other, or even fuse together.

Formation of a variety of di!erent patterns of spots (bright spatial solitons) was investigated by
Grantham et al. (1991) in a sodium vapor. They varied the input beam power from 30 to 460mW
and observed spatial bifurcation sequences due to spatial instabilities seeded by intentionally
introduced aberrations. They used the structure of the instability gain curve for an input-
wavefront-encoding feedback to accelerate particular unstable wave vectors, and observed com-
plicated spatial bifurcations as a function of intensity or detuning, with `2complexity and beauty
rivaling that of a kaleidoscopea (Grantham et al., 1991).

The analysis of self-focusing based on the spatial (2#1) dimensional NLS equation and
associated with the spatial instabilities, bifurcations, and formation of spatial solitons is valid for
both c.w. beams and long pulses. In contrast, short pulses undergoing self-focusing do not collapse
to wavelength dimensions. A number of experimental results (e.g., Strickland and Corkum, 1991)
demonstrated the resistance of short pulses (&50 fs) to self-focusing. In spite of the fact that these
process can be modelled by the hyperbolic NLS equation with normal group-velocity dispersion,
experimental results (Strickland and Corkum, 1994) indicate that spectral dispersion and other
non-slowly-varying are also important to explain di!erent behavior of short pulses.

A detailed experimental investigation of the self-focusing dynamics of a femtosecond pulse in
a normally dispersive (glass) medium was recently reported by Ranka et al. (1996) who observed
one of the main e!ects predicted by the theory based on the hyperbolic NLS equation, i.e. the
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splitting of a short pulse (85}90 fs) into two pulses for the power above the threshold value,
P'P

#3
+3 MW, and even additional splittings, for higher powers (P+4.8MW). Moreover,

Ranka et al. (1996) noticed that above the threshold power for pulse splitting, the pulse spectrum
undergoes signi"cant broadening which eventually develops, at higher powers, into supercontinuum
generation (SCG) or while-light generation "rst observed by Alfano and Shapiro (1970). Such
a spectrum broadening con"rms a hypothesis that SCG is a result of the nonlinear dynamics of
self-focusing in which the temporal and spatial degrees of freedom are coupled. However, the
corresponding model describing both these phenomena, i.e. the pulse splitting and SCG, should be
not based on the slowly varying envelope approximation. More recently, Diddams et al. (1998)
reported the similar e!ects for the propagation of intense fs pulses in fused silica. Frequency-
resolved optical gating was used to characterize the pulse splitting into subpulses which were found
to be not generally symmetric, in accordance with the theoretical predictions based on a three-
dimensional NLS equation that includes the Raman e!ect, linear and nonlinear shock terms, and
third-order dispersion (Zozulya et al., 1998).

Theoretical prediction and a number of experimental observations of beam self-trapping in
photorefractive media allow to observe spatial solitons in crystals at relatively low input powers.
The "rst observation of two-dimensional spatial solitons was reported by Shih et al. (1995; see also
Shih et al., 1996) who used an electric "eld of 5.8 kV/cm applied to a crystal of strontium barium
niobate (SBN) to create an e!ective self-focusing nonlinearity and trap an optical beam into
a "lament as small as 9.6lm at micro-Watt power levels.

Experimental observation of breakup of a quasi-plane bright spatial soliton into a sequence of
higher dimensional solitons due to the transverse (&neck'-type) instability was observed by Mamaev
et al. (1996c). In the experiments, Mamaev et al. (1996c) used a 10mW beam from a He}Ne laser
(j"0.6328lm) to create a highly asymmetric elliptical beam (15lm]2mm) with a controlled
waist. The beam was directed into a photorefractive crystal (10]9 mm) of SBN:60, lightly doped
with 0.002% by weight Ce. A variable DC voltage was applied along the crystal c( -axis to take
advantage of the largest component of the electro-optic tensor of SBN, and to vary an e!ective
self-focusing nonlinearity.

Fig. 12 shows the near-"eld distributions of the input (a) and outputs [(b) to (f )] beam for
di!erent values of the applied voltage, i.e. di!erent values of the nonlinearity. First of all, without
the applied voltage, the output beam spreads due to di!raction [Fig. 12(b)]. As the nonlinearity
increases, the beam starts to self-focus [Fig. 12(c)] forming a self-trapped channel of light [Fig.
12(d)]. A further increase of nonlinearity leads to the modulational instability, and the self-trapped
stripe beam breaks up into a periodic sequence of "laments [Figs. 12(e) and (f )]. No arti"cial
seeding was added to the input beam, and it was argued that the instability developed from the
natural level of noise present on the beam and /or in the crystal (Mamaev et al., 1996c).

As a matter of fact, the transverse instability of a plane spatial soliton in photorefractive media is
more complicated phenomenon than that in a cubic Kerr medium, due to the applied electric "eld
which makes the problem anisotropic. The equations describing these e!ects can be written as
a system of normalized equations for an optical beam envelope, B, and the normalized electrostatic
potential induced by the beam, /, as follows:

iB
z
#1

2
+2
M
B#/

x
B"0 ,

+2
M
/#+

M
ln(1#DBD2)+

M
/"Mln(1#DBD2)N

x
,

(8.1)
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Fig. 12. Experimental observation of a plane-soliton decay in a photorefractive medium: (a) input beam, and (b)}(f )
output beams for di!erent values of the applied DC voltage, <"0, 600, 1000, 1560, and 2200V, respectively (Mamaev
et al., 1996c).

where + acts on components x and y perpendicular to the direction of propagation of the beam
z (see, e.g., Mamaev et al., 1996c).

Numerical simulations were carried out by Mamaev et al. (1996c) in order to show that the
transverse self-focusing of a plane soliton can occur for Eqs. (8.1), similar to the elliptic NLS
equation. First of all, a plane soliton is a stationary solution of Eqs. (8.1), which satisfy an
equivalent saturable NLS equation because the second equation of Eq. (8.1) can be integrated to
yield, /

x
"(DBD2!B2

0
)/(1#DBD2). Transverse instability of this stationary solution was analyzed,

for both focusing and defocusing cases, in the framework of the complete model (8.1) by Infeld and
Lenkowska-CzerwinH ska (1997), by means of the asymptotic p-expansions for small wave numbers,
and also by using a trial sech-type function for the soliton pro"le.

At last but not least, we would like to mention the most recent observations of the soliton
instability due to parametric beam self-focusing in quadratic nonlinear media, via the cascaded
interaction between the fundamental wave and its second harmonic under the condition of the
phase matched second-harmonic generation process (see, e.g., Stegeman et al., 1996, for a compre-
hensive review of cascaded nonlinearities). The cascading mechanism of self-focusing allows to
observe a number of interesting nonlinear e!ects in noncentrosymmetric crystals, similar to those
already observed in gases and liquids. In particular, Fuerst et al. (1997a; see also Fuerst et al.,
1997b) reported the "rst observation of the transverse modulational instability of a spatial
two-wave soliton in a quadratically nonlinear optical medium (see also Section 7.1.2 for discussions
of the theoretical results).

In the experiments, the transverse instability was demonstrated for a 1 cm long KTP crystal,
similar to that earlier used in the experiments on the beam self-focusing (Torruellas et al., 1995).
The 35 ps pulses were generated by Nd:YAG laser with 10 Hz repetition at j"1064 nm. A variable
elliptical beam was created with an adjustable cylindrical telescope, so that the small dimension of
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Fig. 13. Break-up of an elliptic beam in a quadratic optical medium: (a) input beam, (b) output beam at 48 GW/cm2,
(c) output beam at 57GW/cm2. Shown is the beam of the fundamental frequency but the similar structures appear for the
second harmonic beam (Fuerst et al., 1997a).

the beam was about 20lm, and the larger dimension was varied to be more than in "ve times
larger, at the input face of the crystal. This ratio made reasonable plane soliton since at a 1 cm long
crystal the e!ects of di!raction are minimal with such large waists.

Figs. 13(a)}(c) present the experimental results (Fuerst et al., 1997a) for the evolution of the input
elliptic beam with the ratio of its dimension 12:1, shown in Fig. 13(a). Figs. 13(b) and (c) show the
beam of the fundamental frequency at the output of the crystal for intensities of 48 and 57 GW/cm2,
respectively. The main e!ect observed by Fuerst et al. (1997a) is a breakup of the beam into
a sequence of well-de"ned circular spots with the radius 9.5$1.5lm [see Fig. 13(c)], essentially
equal to the value of 10}12lm obtained for spatial solitons created by 20lm circular beams
(Torruellas et al., 1995). According to the theory, the number of created spatial solitons should
depend on the intensity, and indeed the experimental results were found to give a qualitatively
good agreement with the results of the simpli"ed theory of modulational instability in quadratic
media.

8.2. Dark solitons

Most of the experimental demonstrations of spatial and temporal dark solitons have been
recently discussed in the paper by Kivshar and Luther-Davies (1998). For the case of spatial dark
solitons, the experiments reported the creation of dark soliton stripes in a (2#1)-dimensional
geometry. As discussed above, such stripes should be unstable due to transverse modulational
instability which leads to stripe breakup and the eventual creation of optical vortex solitons.
However, it turns out that this instability was avoided in the early experiments by the use of
"nite-sized background beams and weak nonlinearity. By increasing nonlinearity, the transverse
instability should be observed even with "nite sized beams. The "rst experiments to verify the
existence of this transverse instability, and through it the creation of optical vortex solitons,
have been performed by Tikhonenko et al. (1996a) using a continuous wave, Ti:sapphire laser and
a nonlinear medium comprised of atomic rubidium vapour. Very similar observations, with less
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Fig. 14. Out beam intensity pro"les demonstrating the instability of a dark soliton stripe as the nonlinearity is increased.
The cell temperatures are: (a) 823C (b) 903C, (c) 1123C, and (d) 1253C. The power of the beam at the cell input was
240mW, corresponding to a maximum intensity +170W/cm2 (Tikhonenko et al., 1996a).

evidence of the stripe decay into a sequence of vortex solitons, were performed almost simulta-
neously by Mamaev et al. (1996a,b) for spatial dark solitons in a photorefractive medium.

In the experiments using rubidium vapour (Tikhonenko et al., 1996a), the laser output was
a linearly polarized slightly elliptical Gaussian beam with a wavelength tuned close to the rubidium
atom resonance line at 780 nm. A p phase jump was imposed across the beam center using a mask
and the resulting beam imaged into the nonlinear medium. The rubidium vapor concentration
could be increased up to 1013 cm~3 by changing the cell temperature. Images of the beam at the
output of the cell were recorded by a CCD camera and frame capture system. As a matter of fact,
a schematic of this experimental arrangement is similar to that used to observe optical vortex
solitons (see, e.g., Kivshar et al., 1998, and references therein).

The important step in observing the instability was to resonantly enhance the value of non-
linearity of the medium by tuning the laser frequency close (!0.4 to !1.0GHz) to the rubidium
atom D

2
line and the use of the maximum vapor pressure consistent with tolerable absorption. The

power in the beam at the input face of the cell was 240 mW with a 1/e2 waist of 0.3 mm. A maximum
nonlinear refractive index change of order of 10~4 was achieved.

Fig. 14 shows a series of output intensity pro"les observed experimentally, with increasing cell
temperature and with the detuning "xed at approximately 0.85GHz. For vanishingly small vapor
concentration, the beam underwent linear propagation through the medium. With increasing
temperature (i.e., increasing nonlinearity), the output beam developed a vertically uniform dark
soliton stripe, as shown in Fig. 14(a). Further increase in the temperature led to the growth of
a periodic modulation of the uniformity of the stripe. As the temperature was further increased, the
breakup of the stripe began, initially appearing as a growing, &snake-type' bending [Fig. 14(b)], then
as breaking, with "eld coalescing into dark spots at the in#ection points in the bends [Fig. 14(c)].
At the highest nonlinearity the dark spot assumed close to circular symmetry consistent with the
predicted formation of a pair of optical vortex solitons [Fig. 14(d)].

Tikhonenko et al. (1996a) also carried out numerical simulations based on the generalized NLS
equation including saturation and dissipative e!ects for comparison with the experimental results.
The calculated output intensity distributions showed the same dynamics observed experimentally
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with increasing nonlinearity. The beam defocusing, power depletion and instability growth rates
seen in experiments appeared to be well approximated by the simulations. However, the period of
the transverse perturbation corresponding to the maximum growth rate appeared to be smaller
than that seen in experiment, by a factor of 1.5}2. This discrepancy is most likely due to (i) the
physically complicated nonlinear response of rubidium vapour, which was only approximated by
the model used in the simulations; (ii) the di$culty in accurately characterizing the initial "eld
which was found to sensitively a!ect the simulations. It should be noted that this sensitivity was not
observed in the experiments, suggesting that the breakup process may have been partially
stabilized by some physical mechanisms not included in the model (e.g., nonlocality in the form of
di!usion).

Similar experimental results were reported by Mamaev et al. (1996a). In their experiments
a biased photorefractive SBN crystal, irradiated with a 10mW He}Ne laser beam containing
a phase step, was used as the nonlinear medium. Numerical simulations using the generalized NLS
equation with a saturable nonlinearity demonstrated a similar breakup of the initial stripe into
a set of optical vortex solitons as reported by Tikhonenko et al. (1996a). The e!ectively nonlinearity
could be varied by increasing the bias voltage on the crystal. When zero voltage was applied, the
dark stripe spread due to di!raction as did the background beam. As the applied voltage increased
the background beam underwent self-defocusing and a dark-stripe soliton was clearly formed.
A further increase in the voltage up to 990V [the maximum voltage reported was 1410V (Mamaev
et al., 1996a) and 2000V (Mamaev et al., 1996b)] led to the appearance of the snake-like bending
of the dark soliton stripe. However, the "nal state was markedly di!erent from that shown in
Fig. 14(d) because it did not present clear evidence of the creation of optical vortex soliton pairs.
However, the authors reported the observation of zeroes in the electromagnetic "eld from
interferometric measurements of the output beam with the distances between the zeroes being
about 40lm. This measurement indicates that wave-front dislocations similar to single vortices
were being formed.

The experiments, which reported the "rst observation of the transverse dark-soliton instability,
indicate that the scenario of the periodic modulation of a plane soliton is really hard to observe
because it is strongly a!ected by radiative losses and dissipative losses in real physical systems.
However, a decay of a plane dark soliton into vortex solitons is readily observed being a funda-
mental physical phenomenon only slightly a!ected by dissipation.

9. Concluding remarks

We have discussed above the asymptotic analytical methods for describing linear and nonlinear
regimes of the symmetry-breaking instabilities and self-focusing of plane solitons induced by
transverse modulations in higher spatial dimensions or self-modulation due to temporal disper-
sion. The analytical methods are associated with di!erent approximations and approaches, namely

f geometric optics approach,
f linear stability analysis,
f gas dynamics approach (Whitham equations),
f modulation equations for the soliton parameters,
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f long-scale and short-scale asymptotic expansions,
f exact solutions for integrable nonlinear equations.

Each of those analytical methods is valid in the corresponding asymptotic domain where analytical
solutions can be obtained. We have demonstrated the applications of all of those methods to the
analysis of the transverse instability of bright and dark envelope solitons in the cubic NLS
equation, and also long-wave solitons of the KdV equation. The asymptotic methods allow to
describe, in a self-consistent manner, both weak nonlinear and linear e!ects in the soliton
self-focusing, and they provide a rather informative and adequate picture of the instability-induced
soliton dynamics. We believe that these analytical methods will be useful in the analysis of the
soliton self-focusing dynamics in other physically important nonlinear models, and also for some
other problems we brie#y summarize below.

Indeed, in a context of di!erent physics, there exist a number of problems which are closely
connected to the topics discussed above. Some of them still require further investigation, and we
believe that the analytical methods and physical concepts discussed above may help to achieve
a further progress in this research. Below, we mention just a few such problems.

9.1. Random or periodic yuctuations

One of the important physical generalizations of the problems discussed above is the soliton
self-focusing and instabilities in the presence of spatial (random or periodic) inhomogeneities or
temporal yuctuations of the physical parameters. The e!ect of a periodic spatial modulation of the
refractive index in the spatiotemporal pulse evolution was analyzed by a variational aproach
(Aceves and De Angelis, 1992), by the virial theorem (Turitsyn, 1993a,b), and by the averaging
method (Kivshar and Turitsyn, 1994). More recently, Gaididei and Christiansen (1998) have
demonstrated analytically, by means of the virial theorem and the Furutsu}Novikov technique,
that delta-correlated random #uctuations &delay' the threshold power for the pulse self-focusing.
This is in agreement with the case of periodic variations where, for the averaged equations, the
e!ect of renormalized nonlinearity was demonstrated (Kivshar and Turitsyn, 1994), suggesting
a shift of the instabilily band. The qualitatively similar e!ects were observed in numerical
simulations (see, e.g., Rasmussen et al., 1995; Christiansen et al., 1996a,b).

9.2. Self-focusing of coupled waves

Other class of important physical problems is self-focusing of coupled waves. The e!ect of the
wave coupling on modulational instability was "rst analyzed by Agrawal (1987; see also Agrawal
et al., 1989), in the framework of two coupled NLS equations. Agrawal (1987) pointed out that the
cross-phase modulation between two waves leads to a number of interesting new e!ects and, in
particular, he predicted that modulational instability of two waves can occur even in the case of
normal group-velocity dispersion when a single wave is always stable. For the spatial beams, the
e!ects of the wave interaction have been studied for the mutual focusing of coupled waves
(Berkhoer and Zakharov, 1970; McKinstrie and Russell, 1988; Agrawal, 1990b; BergeH , 1998b), and
also for the transverse modulational instability of both counterpropagating (Vlasov and Sheinina,
1983; Firth and PareH , 1988; Firth et al., 1990) and copropagating (Agrawal, 1990a; Luther and
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McKinstrie, 1990) optical beams, and some of the theoretical predictions were observed experi-
mentally (Grynberg et al., 1988; Gauthier et al., 1990).

In general, the instability growth rate of the coupled waves is larger, and a range of unstable
wave numbers is broader, than those of either wave alone. Moreover, waves that are modulation-
ally stable by themselves are often unstable in the other's presence, and this is true for both
copropagating and counterpropagating waves. The transverse modulational instability of cop-
ropagating waves is always convective.

An overview of transverse e!ects in other cases, when two or more beams propagate and interact
in a nonlinear medium can be found in the paper by Abraham and Firth (1990). A similar kind of
transverse instabilities, for both focusing and defocusing media, is expected for two-component (or
vector) spatial optical solitons. The simplest problem of this kind is the analysis of the e!ects of
vectorial perturbations on scalar solitons (see, e.g., Bondeson, 1979). More general analysis of the
transverse instability should include the vectorial nature of solitons, and this is still an open
direction of research. Recently, Musslimani et al. [1999; see also Skryabin and Firth (1999) for
a more general case of incoherently coupled bright solitons] made the "rst step in this direction and
found the long-wave-expansion results for the transverse instability of vector solitons, including
a special case of dark-bright soliton pairs.

An important class of the problems is associated with the models of interaction between
high-frequency and low-frequency "elds, such as the Zakharov equation for the nonlinear Lan-
gmuir waves (e.g., Kuznetsov et al., 1986, and references therein), the model for multi-dimensional
light bullets supported by nonresonant quadratic nonlinearity (Ablowitz et al., 1997), the Iizuka-
Kivshar model for the propagation of gap solitons in quadratically nonlinear gratings (Iizuka and
Kivshar, 1999), etc. Some preliminary results (e.g., Kuznetsov et al., 1986; Hadzy ievski and Sx koricH ,
1991) are not su$cient to make a general conclusion about the e!ect of the wave coupling of the
multi-component soliton self-focusing.

At last, Sa!man (1998) suggested another form of the coupled NLS equations describing the
interaction of copropagating electromagnetic and matter waves, when the optical self-focusing
generates dipole forces on the atoms (the original physical concept was suggested by much earlier
Klimontovich and Luzgin, 1979). Numerical studies of the coupled equations revealed Sa!man
(1998) the "lamentation due to modulational instability, and the formation of localized waves
anticorrelated in the two "elds. Even there exists no analysis of the solitary waves and their stability
in two spatial dimensions, the numerical results suggest a typical scenario of the soliton self-
focusing with the formation of localized solutions stable in higher dimensions.

9.3. Transverse vs. longitudinal instabilities

Several generalized evolution models, such as the saturable NLS equation (Mamaev et al.,
1996a,b,c; Tikhonenko et al., 1996a,b) and the model for two- and three-wave mixing in quadratic
nonlinear materials (Fuerst et al., 1997a; DeRossi et al., 1997a,b; Skryabin and Firth, 1998b) do not
possess properties of the scaling invariance. In such nonscalingly invariant models the longitudinal
instabilities of solitary waves are known to occur in a certain range of the soliton parameters. Then,
the transverse self-focusing may compete with the longitudinal soliton instabilities, the latter may
display rather di!erent types of long-term instability-induced soliton dynamics (Pelinovsky et al.,
1996a,b). The analytical studies of such a competition between two instabilites and the soliton
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evolution is still an open problem, although a proper combination of the asymptotic methods
developed for the longitudinal instabilities (see, e.g., Pelinovsky and Grimshaw, 1997) with the
methods described here are expected to lead to the asymptotic analytical models which will cover
the whole class of such complex phenomena.

9.4. Transverse instabilities of nonlinear guided waves

An extensive theoretical literature is devoted to nonlinear stationary waves localized at optical
interfaces and in layered dielectric media (see, e.g., Maradudin, 1983, and references therein). Such
nonlinear guided waves are localized due to the fact that one or more of the dielectric layers shows
either a positive or negative nonlinear optical response to an incident electromagnetic wave, and
the trapped surface modes may appear above a certain critical power. These are the so-called
nonlinear guided waves which can be regarded, in some approximation, as spatial solitons trapped
by the interface, and therefore they are expected to be unstable to transverse spatial #uctuations in
the dimension parallel to the coupling layers (e.g., Moloney, 1987). As a result of the development of
such an instability, localized peaks located within the guided layer or near the interface appear,
similar to the decay of plane solitons into two-dimensional solitons (see, e.g., Vysotina et al., 1990).
Because a decay of guided waves is a!ected by an attractive potential created by the interface, the
instability scenarious, especially in the case of the bending (snake-type) dynamics of the hyperbolic
NLS equation, are expected to be di!erent from those for spatial solitons in homogeneous models.
However, an analytical study of this type of problems is still absent.

9.5. Higher-order localized modes

At last, we would like to mention a variety of problems involving the instability and decay of
higher-order localized modes and ring-type soliton structures.

Additionally to the radially symmetric (no nodes) localized solution for a self-trapped optical
beam, the NLS equation in higher dimensions possesses a discrete number of the so-called
higher-order localized modes which consist of bright or dark central spots surrounded by one or
more rings. Such higher-order nonlinear localized modes have been "rst suggested as radially
symmetric solutions of the (2#1) dimensional cubic NLS equation without (Yankauskas, 1966;
Haus, 1966) or with an angular momentum (i.e., &bright vortex solitons'; see Kruglov and Vlasov,
1985; Kruglov et al., 1992), and then the similar solutions were found in higher dimensions and for
other nonlinear models, including the saturable NLS equation (e.g., Edmundson, 1997; and
reference therein) and the models of two- and three-wave mixing in a quadratic optical medium
(Firth and Skryabin, 1997; Torres et al., 1998; Skryabin and Firth, 1998a).

Stability of the higher-order localized modes is an important problem which was analyzed by
many authors for di!erent models. No universal stability criterion is known for this kind of
solutions, but it is clear that the instability of the rings (or &shells', in higher dimensions) is similar to
the modulational instability of plane solitons. Indeed, it was shown that all types of higher-order
localized modes are unstable with respect to azimuthally dependent perturbations and they decay into
"laments, i.e. stable bright solitons of the lowest order. The scenario of the decay depends on the
angular momentum of the modes. The modes with a bright central spot have no angular
momentum, and the rings break up into "laments that move radially to the initial ring, the similar
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e!ects were observed experimentally for the transverse modulational instability of broad beams
(Campillo et al., 1973,1974). The number of the "laments is de"ned by the maximum of the
instability growth rate (Feit and Fleck, 1988; Soto-Crespo et al., 1991). The decay of the modes with
a dark central spot is a!ected by the angular momentum (Tikhonenko et al., 1995,1996b; Firth and
Skryabin, 1997; Petrov et al., 1998).

Recently, Skryabin and Firth (1998a) have analyzed stability and dynamics of higher-order
localized modes in the problem of two-wave mixing in a di!ractive bulk medium and found
another scenario of the decay of these modes. For su$cient negative values of the phase mismatch
between the harmonics, rings were found to coalesce with the central peak forming a single
oscillating "lament. For positive phase mismatch, the standard break-up into "laments was
observed. This coalescence scenario is not observed in the saturable NLS models. For a quadratic
nonlineaar material [KTP crystal], the "rst experimental demonstration of the azimuthal self-
breaking of intense beams with a vortex phase dislocation into optical spatial solitons was recently
reported by Petrov et al. (1998).

Instability of the higher-order localized modes (&light bullets') was investigated numerically in the
framework of the three-dimensional saturable NLS equation (Edmundson, 1997). In contrast with
the two-dimensional case (e.g., Soto-Crespo et al., 1991), rather than a single structure emerging
independent of the weak perturbation, in the three-dimensional case &the shells' of the higher-order
modes decay in a miriad of complicated intermediate patterns attributed to a degeneracy in the
number of maximally unstable eigenmodes.

9.6. Ring-like models and ring solitons

A number of interesting physical e!ects is associated with a ring geometry. Let us bend a plane
soliton to form a ring of the length ¸. Then, if the instability band of a plane soliton is characterized
by the maximum wave number q

.!9
, we expect that this instability will be suppressed in the ring

geometry provided the condition ¸(2p/q
.!9

(or, for the ring radius R, q
.!9

R(1) holds. This
simple observation explains why for the so-called ring solitary waves, the transverse instability is
either suppressed or completely eliminated. This is true for many types of ring solitons, including
bright (Lomdahl et al., 1980; Afanasjev, 1995), and dark (Kivshar and Yang, 1994) ring solitons of the
(2#1) dimensional NLS equation, and the solitons of the so-called cylindrical KdV equation (e.g.,
Maxon and Viecelli, 1974; Ko and Kuehl, 1979; Stepanyants, 1981). However, the ring solitons do not
exist as stationary localized states, they either expand or contract due to an e!ective surface tension
introduced by the bending into a ring. If the condition q

.!9
R(1 is not ful"eld, the ring soliton is

expected to decay into a number of "laments, similar to the decay of the higher-order localized modes
discussed above. Recently, it has been demonstrated numerically (Soljacy icH et al., 1998) that a ring of
two-dimensional stable bright solitons in the form of the so-called `necklacea beam possesses an
unique robustness due to the stabilizing interaction forces between the solitons in the ring. In
particular, a necklace beam expands much slower that a quasi-plane soliton in the ring geometry.

9.7. Instabilities in higher dimensions

Many interesting problems related to the soliton self-focusing and symmetry-breaking instabili-
ties appear in higher dimensions. We did not touch this topic at all in the present review paper,
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however, it is worth mentioning, as the most interesting problem of this kind, the transverse
instability of a vortex tube subjected to the action of higher dimensions or dispersion. This problem
was "rst discussed more than 10 yr ago by Jones et al. (Jones et al., 1986) and the most recent
analysis has been presented by Kuznetsov and Rasmussen (1995).
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