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ABSTRACT. We study standing periodic waves modeled by the nonlinear Schrédinger
equation with the intensity-dependent dispersion coefficient. Spatial periodic profiles are
smooth if the frequency of the standing waves is below the limiting frequency, for which
the profiles become peaked (piecewise continuously differentiable with a finite jump of
the first derivative). We prove that there exist two families of the periodic waves with
smooth profiles separated by a homoclinic orbit and the period function (the energy-to-
period mapping) is monotonically increasing for the family inside the homoclinic orbit
and decreasing for the family outside the homoclinic orbit. This property allows us to
derive a sharp criterion for the energetic stability of such standing periodic waves under
time evolution if the perturbations are periodic with the same period for both families
and, additionally, for the family outside the homoclinic orbit, spatially odd with respect
to the half-period. By numerically approximating the sharp stability criterion, we show
that both families are energetically stable for small frequencies but become unstable
when the frequency approaches the limiting frequency of the peaked waves.

1. INTRODUCTION

We consider the nonlinear Schrédinger (NLS) equation, where the dispersion coefficient
depends linearly on the wave intensity. This model in one spatial dimension can be written
in the normalized form:

iy + (1 — |ul*) e + |ul*u =0, (1.1)

where u = u(t,z) and u : RxR — C. We assume that u(t, ) is spatially periodic with the
period L for any t € R. If the dispersion coefficient is constant, the model is equivalent
to the cubic focusing NLS equation, one of the fundamental models of nonlinear science
[10, 17]. We refer to (1.1)) as the NLS-IDD equation.

1.1. Background and motivations. Mathematical models with the intensity-dependent
dispersion terms have been studied in the physics of the coherently prepared multistate
atoms [I3], quantum well waveguides [19], fiber-optics communication systems [23], and
the quantum harmonic oscillators in the presence of nonlinear effective masses [4].

The NLS-IDD equation also arises as the continuum limit of the Salerno lattice model [33],

Zaden + (1 - |¢n|2)(¢n+1 + 77/}71—1) + :u|1/}n|2¢n = 07 (12)

where 1 € R is the coefficient of the onsite nonlinearity and v, = 1,(7) is the wave
function in (1,n) € R x Z. If p = 2+ h? and ¢, (1) = e*"u(h*r, hn) with a smooth
1
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u = u(t, x), then expanding in powers of the small stepsize h yields the NLS-IDD equation
from the Salerno model at order O(h?).

The mathematical analysis of model without the local cubic term |u|?u was devel-
oped in [32], where it was shown that a continuous family of bright solitons exists among
the standing wave solutions. The spatial profiles of bright solitons have two logarithmic
singularities for the first derivative and the continuous parameter is given by the distance
between the two singularities. The energetic stability of the bright solitons was obtained
in [30] by using the variational characterization of the singular profiles as minimizers of the
mass subject to a fixed energy. Well-posedness of the model was not studied in [30, [32].

A similar model without the local cubic term |u|[*u and with the inverted intensity—
dependent coefficient (1— |u|*)~ u,, was considered in [28], where a family of dark solitons
(traveling wave solutions) was shown to have smooth spatial profiles and the limiting black
solitons (standing wave solutions) were shown to be energetically stable as constrained
minimizers of the energy subject to fixed mass and momentum. Dark solitons in the
quasilinear NLS equations with nonconstant dispersion terms were considered in [20)], 21
22]. Both bright and dark solitons were also studied in the NLS equations with regularized
dispersion terms [I} 2] 29].

The NLS-IDD equation was studied in [18], where the continuous family of bright
solitons is parameterized by the frequency of the standing wave solution u(t, z) = e“!¢(z)
with the spatially decaying pofile ¢. The profile ¢ smooth for 0 < w < 1 and peaked
(piecewise continuously differentiable with a single jump of the first derivative) for w = 1.
A sharp criterion for energetic stability of bright solitons with respect to the spatially
decaying perturbations in H'(R) was obtained in [I8] from the variational characterization
of the smooth profiles as local minimizers of the energy subject to a fixed mass. The sharp
criterion is given by the monotone increase of the mass with respect to the frequency, the
latter condition is checked numerically.

Energetic stability is equivalent to the orbital stability if the local well-posedness of
the NLS-IDD equation can be obtained in H'(R). However, the state-of-the-art in
the well-posedness of quasilinear NLS equations is not yet at the level of H*(R). Local
well-posedness of the models which include was proven in Sobolev spaces of higher
regularity [15], 25, 31]. More recently, the local well-posedness of quasilinear NLS equations
was established in H*(R) for s > 2 in [26] and for small data in H*(R) for s > 1 in [14].
Local well-posedness of quasilinear NLS equations including the NLS-IDD equation (|1.1])
was also extended to the periodic domain in Sobolev spaces of higher regularity [7 [, [9].

The main purpose of this work is to study the energetic stability of standing periodic
waves with the smooth profiles with respect to periodic perturbations of the same period.
The periodic spatial domain is more practical for physical experiments modeled by the
NLS-IDD equation (L.I)). The mathematical analysis of stability in the periodic setting
introduces additional challenges because the Morse index in the variational characteriza-
tion may exceed a single negative eigenvalue. We control the Morse index with a precise
analysis of the monotonicity of the period function (the energy-to-period mapping). Sim-
ilarly to the scopes of [I8], we obtain a sharp criterion for the energetic stability of the
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smooth periodic waves as local minimizers of the energy in H;er subject to fixed mass,
provided that the mass at the periodic wave profile is monotonically increasing with re-
spect to frequency w for 0 < w < 1. We compute the latter criterion numerically and
point out inaccuracies in the previous numerical approximations in [I8] performed for the

case of bright solitons. These main results of our study are described next.

1.2. Main results. We denote the space of square integrable L-periodic functions by
L?_. For s > 0, the Sobolev space H?__ is the set of periodic distributions such that

per* per

o 1/2
1 Vg, == ( >+ Ik\Q)SIf(/f)F) < 00,

k=—o00

where f is the periodic Fourier transform of f (the Fourier series of f). The space HS,,

is a Hilbert space with a natural inner product denoted by (,-)us, . When s = 0, the

space Hp,, is isometrically isomorphic to the space Lger, that is, le)er = ngr. The norm
and inner product in L7, are denoted by || - [|z2_ and (-, )2 .
per per

The time-dependent NLS-IDD equation (1.1)) admits the conserved energy H(u) and
mass Q(u) given by

A = [l + uf +log(1  uf*) da (13)

and
Q) =~ [ 1og(1 = fuf)i (1.4)

where fTL denotes the integral over the periodic domain T with the spatial period L,
which is independent on the starting point of integration. The conserved quantities are
well defined in the set of functions

X ={ueH,,:

The NLS-IDD equation also admits the conserved momentum P(u) if u # 0, see
[18]. Since the momentum does not play any role in our study, we do not introduce it
here.

We consider standing waves of the form u(t,z) = e*'¢(x), where w is the wave fre-
quency. Substituting this ansatz into , we obtain

— (1= )" +wo— ¢ =0, (15)
which can be rewritten as Newton’s equation for a 1D particle in a potential energy V:
¢ (w—¢?) av 1 1 l—w
= = —— V(g) = =(w—¢°) + =(1 —w)log ——. 1.
== VO = jw- P 5i-wle—g  (10)

The total energy F of Newton’s particle is conserved along every solution of ((1.6)):

B(6,9) = 5(6) + V(6). (1.7
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The variational characterization of the spatial profile ¢ is possible since the second-order
equation ([1.6)) is the Euler-Lagrange equation for the augmented energy functional

G(u) = H(u) + wQ(u), (1.8)

defined from the conserved energy H(u) and mass Q(u) in and (L.4).

The phase portrait in Figure represents all bounded solutions of the system (|1.6))
for 0 < w < 1, see also [I8]. There exist two families of periodic orbits with smooth
profiles separated by a pair of homoclinic orbits. One family is inside one of the two
homoclinic orbits with the left (negative) periodic orbits being symmetrically reflected
from the right (positive) periodic orbits due to the symmetry transformation: ¢ — —a.
The other family is outside the two homoclinic orbits and symmetrically span all four
quadrants of the phase plane.
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FIGURE 1.1. The phase portrait of system ([1.6) for w = 0.5.

The following theorem summarizes the existence properties of the two families of the
periodic orbits.

Theorem 1.1. Fix the spatial period L > 0 for the periodic domain Ty and define

272 4r?
=—7 Q=-——=
L? + 272 L?
For any w € (wg, 1), there ezists a periodic orbit of system (@ with the smooth profile

¢ satisfying

wr

{ 0< ¢(x) <1, Ve Ty, (1.9)

d(x —x0) = p(xg —x), x0€Ty, VaeTy.

For any w € (Qr, 1), there exists a periodic orbit of system @ with the smooth profile
¢ satisfying

{—1<<;5(a:)<1, VareTy,

P(x — xp) = —P(x0 — ) =¢(§—$+xg), xo € Ty, VY xeT;. (1.10)
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For both families, xq is an arbitrary translational parameter along the periodic orbit.

Remark 1.2. For simplicity of terminology, we call the family of periodic orbits inside
the homoclinic orbits satisfying (@ as the even waves and the family of periodic orbits
outside the homoclinic orbits satisfying as the odd waves. Figure shows a
former periodic orbit in blue and a latter periodic orbit in red together with its symmetric
reflection. The homoclinic orbits are shown by dashed black lines.

Each family of periodic orbits correspond to the energy level F(¢,¢') = £ given by the
first invariant (1.7). For w € (0, 1), the family of even waves satisfying ((1.9)) corresponds
to £ € (0,&,) and the family of odd waves satisfying ((1.10]) corresponds to &€ € (&, 00),
where )

1
E,=V(0) = ow + 5(1 — w)log(1 — w)
is the energy level corresponding to the homoclinic orbits for the saddle point (0,0). If
w € (—00,0), the family of odd waves satisfying ([1.10) correspond to & € (&,, ), where
&, = V(0) is the energy level corresponding to the center point (0,0). For each energy
level E(¢,¢') = £, we can define the period function 7'(€,w) by

T, w) :j{ d¢ , (1.11)

V2(E-V(9))
where § corresponds to the line integral taken along the closed periodic orbit. Figure
shows the dependence of T'(€,w) versus & for fixed values of w € (0,1), where the
divergence of T'(€,w) corresponds to the homoclinic orbit at € = &,. The figure suggests
that, for w € (0, 1), the mapping & — T(€,w) is monotonically increasing for the even
wave and is monotonically decreasing for the odd wave. These properties are formulated
in the following theorem.

Theorem 1.3. The period function T = T(E,w) in (1.11) is a C* function of £ €
(0,00)\&, if we (0,1) and &€ € (&,,0) if w € (—00,0). For any w € (0, 1), the mapping
(0,&,) 2 & — T(E,w) is monotonically increasing. For any w € (—oo, 1), the mapping
(Ewy0) 3 E = T(E,w) is monotonically decreasing.

Due to smoothness and monotonicity of the period function in Theorem one can
uniquely define the energy level £ = £ (w) for any spatial period L > 0 in Theorem
from the root of T'(Ef(w),w) = L, where w € (wr, 1) for the even wave and w € (2, 1) for
the odd wave. Furthermore, the mappings (wr,1) 3 w — &(w) and (21,1) 3 w — EL(w)
are C1. These smoothness properties play a central role in the energetic stability analysis
of the periodic waves.

The Hessian operator £ = H"(¢) + wQ"(¢) of the augmented energy functional
computed at the critical point with the profile ¢ is defined as

£+ 0 _ 2 14¢2
E _ £+ — _am "‘ ]. + (Cd - 1) (1,(;52)27 112
) L = 82 1 ( )

0 L -= %I+ W - Dy
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FIGURE 1.2. The period function T(€,w) versus &£ for fixed values of w.

The dots denote the cutoff value of £ satisfying T'(E,w) = m/2(1 — w)/w
for w = wy. The vertical lines show divergence of T'(E,w) at € = &,.

For simplicity of notations, we set

H, = H:, x H; L2, =L2 xL?

per per per? per per per?’

endowed with their usual norms and scalar products. When necessary and since C can
be identified with R?, notations above can also be used for complex-valued functions in
the following sense: for f € Hy, we have f = fi +if; with fi, fo € H},,.

By studying the spectrum of £ in ]Lger, we obtain the sharp criterion for the energetic

stability of the periodic waves with the spatial profile ¢ stated in the following theorem.

Theorem 1.4. Fix the spatial period L > 0 as in Theorem[I.1 and set xqg = 0. The profile
¢ € H), is a C* function of w for the even wave in (w, 1) and for the odd wave in (Qr, 1).
For any w € (wr, 1), the even wave with the profile ¢ is a local minimizer of energy H(u)
for a fixred mass Q(u) in ngr, which is degenerate only due to translational and rotational
symmetries, if and only if the mapping w — Q(¢) is monotonically increasing. For any
w € (Qr,1), the odd wave with the profile ¢ is a local minimizer of enerqy H(u) for a

fized mass Q(u) in Y C Hj,., where

y:{ueH;er: u(é—x)z—u(x—g), V:CE’]TL}, (1.13)

which is only degenerate by the rotational symmetry, if and only if the mapping w — Q(¢)
s monotonically increasing.
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By using accurate numerical approximations based on the first invariant and the
period function , we can compute solutions of the implicit equation T'(Er(w),w) = L
for a fixed spatial period L > 0 and the approximations of the spatial profile ¢ of the
periodic wave.

Figureshows the corresponding results for the even wave satisfying with zg = 0.
The left panel plots £ (w) == E(w) — &, versus w in (wy, 1) for L = 27,37, 47 and the
right panel shows the spatial profile ¢ = ¢(x) versus x for L = 47 and w = 0.3,0.6,0.9.
Numerical inaccuracies in the computations occur near w = 1 and the end points in the
numerical data on the left panel are shown by solid dots. The spatial profile of the even
periodic wave becomes peaked as w — 1. Solving for w = 1 yields the peaked profile

cosh (£ — |z) L L
w=1: r)=——2 7 €El—=,=,

¢(x) cosh (%) [ 2 2}
which is shown on the right panel by dashed line. The corresponding energy level can be
computed as

(1.14)

1
" 2cosh? (%) ’

which is shown on the left panel by open dots. An interpolation between the right solid
dot and the open dot for ([1.15)) is shown by dotted line.
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FIGURE 1.3. Numerical approximations for the even waves satisfying (1.9)
with x¢o = 0. Left: the dependence of £, versus w for L = 27, 3w, 47. Right:
the spatial profile ¢ versus x for w = 0.3,0.6,0.9 and L = 4.

Figure shows the corresponding results for the odd wave satisfying (1.10) with
xg =0 for w € (Qg,1) with Q; < 0. We note the non-monotone dependence of £ (w) :=
Er(w)— &, versus w on the left panel, which is not an obstacle to our analysis. The spatial
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profile of the periodic wave becomes peaked as w — 1. Solving (|1.5)) for w = 1 yields the
odd spatial profile in the form:

( sinh (5 + ) L _L
T simh (B) ve -5 -]
sinh L L
w=1: ¢x)= sinh (L) ve -4, (1.16)
sinh (%—I) I L
| e mc e

which is shown on the right panel by dashed line. The corresponding energy level can be
computed as
1
= T eI
2 sinh (%)
which is shown on the left panel by open dots. The end points in the numerical data on

the left panel are shown by solid dots. An interpolation between the right solid dot and
the open dot for (1.17)) is shown by dotted line.
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FIGURE 1.4. Numerical approximations for the odd waves satisfying (L. 10)
with o = 0. Left: the dependence of £, versus w for L = 27, 3w, 4w. Right:
the spatial profile ¢ versus x for w = 0.3,0.6,0.9 and L = 4.

By using the numerical approximation of the spatial profile ¢, we can also compute
the mass Q(¢) for a fixed spatial period L > 0 and plot it versus w to verify the sharp
criterion for the energetic stability of the periodic waves given by Theorem Figure|L.5
plots Q(¢) versus w for L = 27,3m, 4. The dashed line shows the dependence of Q(¢)
in the limit I — oo, which corresponds to the solitary waves. The left panel presents the
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mapping w — Q(¢) for the even wave satisfying and the right panel presents the
same for the odd wave satisfying . The numerical inaccuracies occur near w = 1 and
the end points of the numerical data are shown by solid dots. By using and (|1.16]),
we are able to compute Q(¢) analytically at w = 1 for the peaked waves, see (6.4) and
below, and show the result in Figure by open dots. An interpolation between
the right solid dot and the open dot is shown by dotted line.

L=3nr L =47 == == Lﬂoo‘

0.5+

w w

FIGURE 1.5. Dependence of Q(¢) versus w for L = 2w, 3w, 47 and in the
limit L — oo (dashed line). Left panel: the even wave satisfying ((1.9).
Right panel: the odd wave satisfying (1.10]).

Based on the numerical approximations and the sharp criterion in Theorem [1.4] we
conclude from Figure that both even and odd periodic waves are energetically stable
for smaller values of w and energetically unstable for values of w near w = 1. To be
precise, we formulate the following conjecture.

Conjecture 1.5. There is w, € (wr, 1) and Q, € (0,1) such that the even wave satisfying
is energetically stable for w € (wr,w.) and unstable for w € (wy, 1), whereas the odd
wave satisfying is energetically stable for w € (2, $,) and unstable for w € (., 1).

Remark 1.6. The numerical data in Figures[I1.3, and[1.9 are obtained with high
numerical accuracy, controlled within 1078 error, since the numerical error only arises
in the computation of the period function T(E,w) and the wave profile ¢(x) from the
corresponding integrals. The dependence of Q(p) versus w in the limit L — oo shown in
Figure contradicts the claim from [18, Figure 5] that the dependence is monotonically
increasing near w = 0 and w = 1 and decreasing for w € (wy,wsq) for some 0 < wy < wy <
1. Although the numerical data on Q(¢) versus w in [18] was consistent with the numerical
approzimations of unstable eigenvalues in the spectral stability problem, see same Figure
5 in [18], we have found that the claim of stability of bright solitons near w = 1 in [I§] is
a numerical artefact. It is related with the center-difference approximations of the second-
order derivatives with a large stepsize, which were used in [I8]. By reducing the stepsize
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or performing computations with adaptive methods directly from and , we have
found that Q(¢) is monotonically decreasing in w near w = 1. Although our numerical
data has a tiny gap near w = 1 due to the lack of numerical accuracy, comparison between
the last numerical data (solid right dots) and the analytically computed limiting value of
Q(¢) at w =1 (open dots) suggest the monotone decrease of Q(¢p) near w = 1.

1.3. Methodology and organization of the paper. The existence of periodic orbits
stated in Theorem is obvious from the phase portrait shown in Figure Neverthe-
less, we complement this dynamical system picture with the functional-analytic setup and
prove the existence of periodic orbits based on the implicit function theorem. The family
of even waves satisfying with xo = 0 is studied in a subspace of the Sobolev space
Hje., s = 0 constituted by even periodic functions and denoted by Hj, .. The family
of odd waves satisfying with zp = 0 is studied in a subspace constituted by odd
periodic functions and denoted by H,, ,. These results are described in Section

The monotonicity of the period function stated in Theorem is proven with two
different methods for the even and odd waves. For the even wave, we use Chicone’s
theorem [5] and confirm the monotonicity criterion based on the explicit analysis of the
logarithmic and polynomial functions. For the odd wave, we estimate the period function
by using convexity of the integrand functions. These results are described in Section [3|

The energetic stability criterion stated in Theorem is proven in two steps. As a
first step, we analyze the Morse and nullity indices of the Schrodinger operators L. :
HZ,, C L2, — L2, given by , where the Morse index denoted by n(L) is the
number of negative eigenvalues with the account of their multiplicities and the nullity
index denoted by z(L.) is the multiplicity of the zero eigenvalue. For the even wave, we
prove that n(L£;) = 2(L4) = 2(£L-) = 1 and n(L£_) = 0. For the odd wave, we prove that
n(Ly) =2,n(L_) = z(Ly) = z(£_) = 1. These results are described in Section [4]

As a second step, we analyze the Morse and nullity indices of the constrained operator
L {41+, Where the constraint with ¢y = # is due to the fixed mass () restriction
[12]. We show that n(Ly|rs3+) = 0 and z(Li|gn+) = 1 for the even wave if and
only if the mapping w — @Q(¢) is monotonically increasing, which yields Theorem
for the even wave. We also show that n(L|(4+) = 1 and z(Ly|f41) = 1 for the
odd wave if and only if the mapping w — @Q(¢) is monotonically increasing. This is
still inconclusive for the energetic stability of the odd wave. However, restricting H;er
to the space ) of odd perturbations with respect to the half-period allows us to obtain
(L] ggorrry) = n(L_|y) = 0and 2(L [p011ny) = 2(L-|y) = 1if and only if the mapping
w — Q(¢) is monotonically increasing, which yields Theorem for the odd wave. These
results are described in Section[§] We note that the idea of restricting the space of periodic
functions to odd perturbations with respect to the half-period is proposed in [11] for the
stability analysis of odd waves in the cubic NLS equation.

Finally, the numerical methods used to compute the data in Figures [I.2] and
LA are described in Section [6l We also elaborate Remark [L.G] about the limit L — oo

with more details.
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2. EXISTENCE OF PERIODIC WAVES

We prove Theorem [1.1] within a functional analysis framework. Section [2.1] defines the
basic facts used in the proofs. Sections [2.2] and provide global continuations of the
even and odd waves for the fixed spatial period L > 0.

2.1. Preliminary facts. We first recall some facts regarding Fredholm operators on
a Banach space X. An unbounded operator S : D(S) C X — X is called a Fredholm
operator if Range(.S) is closed and dim( Ker(S)) and dim(Coker(S)) are both finite, where
Coker(S) denotes the quotient space given by Coker(S) = X /Range(S). The index of
an unbounded Fredholm operator S : D(S) C X — X is given by

ind(S) = dim(Ker(5)) — dim(Coker(S5)) € Z.

A Fredholm operator is of index zero if ind(S) = 0.
The following lemma provides a result that is useful for our purposes since we obtain a
suitable relation between ¢(.S) = dim(Coker(S)) and z(S) = dim( Ker(5)).

Lemma 2.1. Let H be a real Hilbert space and let K C H be a closed subspace. Then,
H/Kg ~ K"
Proof. Let us define T : H /K — K=+ given by T (u) = u — Pxu for any u € H, where

Py is the orthogonal projection from H onto the closed subspace K. Since ||T (u)||g =
||u — Pxul|, we obtain by the Pythagorean theorem

ull7r = [Pl + llu = Prull; = [[Preullf + [T ()]l
The equality implies ||7 (u)||% = ||ull% — ||Pxull? < ||ul|%, and thus, T is a bounded
operator. T is a one-to-one operator since T'(u) = 0 implies u = Pgu and this fact
automatically implies v € K. To show that 7 is onto, we consider v € K*. By the

definition of orthogonal projection from H onto the closed subspace K, there exists u € H
such that v = u — Pgu, and T is onto as desired. |

Remark 2.2. If S: D(S) C H — H is an unbounded self-adjoint linear operator with a
closed range on a Hilbert space H, then we have by Lemma that

H /Range(S) = H [/ Ker(S)+ = Ker(S)™ = Ker(5).
Therefore, if dim( Ker(S)) is finite, then S is always a Fredholm operator of index zero.

We conclude this section by stating a version of the implicit function theorem used in
our study, see [3| Theorem 8.3.1].

Theorem 2.3. Suppose that X and Y are Banach spaces, that F: X xR — Y is of class
Ck, k > 2, and that F(zg, \o) =0 €Y for some (19, \g) € X x R. Suppose also that
(1) 9,F(g, ) is a Fredholm operator of index zero when F(g,\) =0 for all (g,\) € U.
Here U C X x R denotes an open subset.
(2) For some (xg, \o) € X xR, ker(Ly,) is one dimensional, where Ly, = 0,F (o, Ao).
This means that ker(Ly,) = {h € X; h = shy for some s € R}, hy € X\{0}.
(3) The transversality condition holds: 05 ,F[(xo, Mo)](1, ho) ¢ Range(Ly,).
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Then, there exists ag > 0 and a branch of solutions {(x(a), A(a)); a € (—ag,a0)} C X xR,
such that A(0) = \g and x(0) = zg. In addition, we have

e F(x(a),A(a)) =0 for all a € (—aqg, ap)-

e a— A(a) and a — x(a) are of class C*! on (—ag, ag).

e there exists an open set Uy C X x R such that (zo, \g) € Uy and

{(9.A) € Uo; F(g,A) =0, g # 0} ={(x(a),A(a)); a € (—ao,a0)}.
e IfF is analytic, then x and A are analytic functions on (—ag, ag).

2.2. Existence of (positive) even periodic waves. To prove the existence of even
periodic waves, we consider the subspace Lgere contained in Lger, which consists of even
periodic functions, that is, functions in the Hilbert space

L L
Lf)er,e = {f S L?Jer : f(_x> = f(.l‘) a.e. I € |:_§7 51 } )
where the spatial period L > 0 is fixed. The first result establishes a local bifurcation of
small (positive) even periodic waves from the (positive) constant solution ¢ = y/w of the

second-order equation (|1.5]).

Proposition 2.4. There exists ag > 0 such that for all a € (—ag, ag) there exists an even
periodic solution ¢ € Hg to the second-order equation given by

er,e

6(x) = Vo + 3 bu(a)a”, (2.1)

where {¢n tnen are uniquely determined in ngr’e. The frequency w of the L-periodic wave
15 given by
w = wy, + ngna%, (2.2)
n=1

2 . .
where wy, = ﬁ and {wap, tnen are uniquely determined constants. Furthermore, we
have w > wy, for small a # 0.

Proof. We outline the steps used to prove the existence of small-amplitude periodic waves
using Theorem . Let F: H2 xR — L?_ _ be the smooth map defined by

per,e per,e

F(g,\) = —(1 - ¢%)g" + g — ¢°.
We see that F(g, \) = 0if and only if g € H2,, , satisfies ([1.5) with corresponding frequency

A=w e R. Let \y > 0 be fixed. The Fréchet derivative of the function F with respect to
the first variable at (v/Ag, Ag) is given by

D,F(v/ Ao, Mo)f = —(1=Xo)f" =2\ f.
The nontrivial kernel of D F(v/Ag, Ag) is determined by functions h € H2,, . such that

per,e

2mn

h(n) ((1 — o) (T)2 - 2)\()) =0, neN\{0},
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where h(n) is the n-th coefficient of the Fourier series of h € L2,

We see that D,F(v/Ag, \o)

270 |2
has nontrivial kernel if, and only if, \g = () > 0 for some n € N\{0}. In this case,

(25

we have
2mn

KerD,F(\/ Ao, Ao) = Span(p,,), @n(z) = cos (Tx) , n € N\{0}.
In addition, since DgF(\/)\_o, X\o) is a self-adjoint operator defined in L?_ . with domain

per,e
H?_ . the transversality condition is also satisfied:

per,e
2 I / = I{a |g g Y

To obtain periodic solutions with minimal spatial period L > 0, we must consider
n = 1. Thus, we have \g = ﬁsﬂg = wy, and define the set S given by

S ={(g9,)) € U; F(g,\) = 0},

where

U={(g9,\) € Hpo x (Xo,1); 0< g<1}.

per,e
Let (g,A) € S be a solution of the equation F(g, A) = 0. First, we prove that the linear
operator
DyF(g,)) = —(1 = ¢*)9; + X = 3¢° + 299"
is a Fredholm operator of index zero. In fact, in order to simplify the notation, let us
denote
Q=D,F(g,)\) and P=(1-g°)""'Q.
First, P is clearly a self-adjoint operator. Thus, o(P) = 0gisc(P) U 0ess(P), where o(P)
denotes the spectrum of P, and ogis.(P) and oes(P) denote, respectively, the discrete
and essential spectra of P. Since HZ, , is compactly embedded in L?, ., the operator
P has compact resolvent. Consequently, oess(P) = 0, and o(P) = oaisc(P) consists of
isolated eigenvalues with finite algebraic multiplicities (see e.g., [16, Section III1.6]). Since
(g,\) € S, we see that 0 is an eigenvalue for P associated with the eigenfunction ¢’ and
z(P) is finite. A basis for the subspace Ker(P) can be taken as {vy, -+, v,}.
On one hand, by Remark we have

Lo /Range(Q) = Range(Q)" = Ker(Q*) = Ker(P(1 — ¢?)).

Since {v;(1 —¢*)7!, -+ ,v,(1 —¢*) 7'} is a basis for the subspace Ker(Q*), it follows that
2(P) = z(Q*), and z(Q*) is finite. On the other hand, we have Ker(P) = Ker(Q), so
that 2(Q*) = z(P) = 2(Q) and the index of the Fredholm operator @ is zero as desired.
Thus, by defining \g = wy, € (0, 1), the local bifurcation theory established in The-
orem guarantees the existence of an open interval I C (0,1) near wy, an open ball
B(\/wr,r) C H., . around the equilibrium solution /wg, for some r > 0 and a smooth
mapping
welr ¢e B(ywyr)CH ., (2.3)
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such that F(¢,w) =0 for all w € [ and ¢ € B(\/wg,T).

Next, we determine the first terms in the expansions (2.1)) and (2.2]). To simplify the
notation, let us define s = \/wy. The Taylor expansion of the square-root function at wy,
yields

Vw = s+ %aQ + O(a%).
s
The correction terms wy and {¢y, ¢a, ¢3} are uniquely determined by the following recur-
rence relations

Ofa) : —(1—s*)¢f —25°¢; =0,

O(a?): —(1 — %)y — 252y + 25010 — 3s¢? = 0, (2.4)

O(@a®) : —(1—5%)dy — 25%¢3 + wa(Pf — 2¢n) + 25(P1¢ + Pagdl) '
—65p1¢2 — @5 + ¢i¢] = 0.

We see that ¢;(x) = cos(kz) satisfies the equation containing the term O(a) for k = 2%

since wy, = ﬁ;g Solving the inhomogeneous equation for O(a?), we obtain
2
5743
r) = —————
b2(z) 12s(1 — s2)

We need to find the constant wy in the third equation of (2.4). The inhomogeneous
equation at O(a?®) admits a solution ¢3 € HZ . if, and only if, the right-hand side is

per,e
orthogonal to ¢;, which selects uniquely the correction

(cos(2kx) — 3).

s4+682—9_9—6wL—w%

Wo = =
27 6(s2— 1) 6(1—wy)
Since we > 0, the solution (2.1)) with (2.2)) exists for w > wy, near wy. This finishes the
proof of the proposition. |

Remark 2.5. The bifurcating solution obtained in Proposztwn 1S unique in ngre, up
to the parametrization provided by the bifurcation parameter. This uniqueness is ensured
since the Lyapunov-Schmidt reduction requires the application of the implicit function
theorem. In the case of a one-dimensional kernel, the bifurcation occurs along a single
branch of solutions. The implicit function theorem then guarantees the existence of a

unique smooth curve of solutions that bifurcates from the constant solution.

The next result establishes a global continuation of (positive) even periodic waves from
the local bifurcating solution obtained in Proposition [2.4]

Proposition 2.6. The local solution obtained in Proposition[2.4] is global, that is, ¢ exists
forallw € (wr,1). In addition, the pair (¢, ) € H2 _x(wr,1) is continuous with respect

per,e

to the parameter w € (wr, 1) and it satisfies (L.F).

Proof. To extend the local curve in (2.3) to a global curve, we need to prove that every

bounded and closed subset R C S is a compact set contained in HZ, . x (wg,1). To

this end, we want to prove that R is sequentially compact, that is, if {(¢,,, wm) bmen is a
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sequence in R, there exists a subsequence of {(¢m, wn) }men that converges to a point in
R. Up to a subsequence, we obtain

Wy = w in [wp, 1], (2.5)
and
Gm — ¢ in HZ,. ., (2.6)

as m — +00. Next, {¢,,} is a bounded sequence in H2, . and it satisfies 0 < ¢, < 1.
Since the embedding HZ,. . < H_, . is compact and H, . is a Banach algebra, we obtain

3 — ¢ in H! . as m — +oo. In particular, we have ¢2, — ¢* in H!, . < Chere and

per,e per,e

by ([2.6)), we obtain

(1 - ¢$n) ;/n - (1 - ¢2)¢// in L?)er,e? (27)
as m — +oc. Since in particular ¢, — ¢* in L2, . as m — 400, we obtain by (2.5 and
(2.7) that the pair (¢,w) € HZ,, . X [wr, 1] satisfies

—(1=¢%)¢" +wp — ¢* = 0. (2.8)

We see from that w < 1, since smooth periodic solutions to this equation do not exist
when w = 1. Moreover, if w = wr, the constant solution ¢ = ,/wy, is the only solution
to . Thus w € (wr, 1) as requested and we have ¢ > 0. On the other hand, if there
exists to € [0, L] such that lim;_,;, ¢(t) = 1, then w = 1, which is a contradiction, since
in this case there are no periodic solutions of . Therefore, we obtain 0 < ¢ < 1 as
requested.

Finally, by the frequency w of the periodic wave is not constant. By applying [3,
Theorem 9.1.1] we can extend globally the local bifurcation curve given in . More
precisely, there is a continuous mapping

w e (wr,1) — ¢ € H}

er,e’

where ¢ solves equation ({2.8]). [ |

Remark 2.7. Since ¢ is continuous, satisfies 0 < ¢ < 1, and there is no t+ € [0, L]
such that limy_,; ¢(t) = 0 and limy_;, ¢(t) = 1, we obtain that there exist m and M that
depend on w € (wr, 1) such that 0 <m < M <1 and m < ¢(x) < M for every x € [0, L].
In fact, since ¢ is continuous on the compact set [0, L], we have
= mi M = .
m %gdﬂ, %ﬁﬂﬂ
Propositions [2.4] and [2.6] as well as Remark justify the existence result stated in
Theorem for the even wave satisfying (1.9)) with zq = 0.

2.3. Existence of odd periodic waves. To prove the existence of odd periodic waves,

we consider the subspace Lger , contained in le)er, which consists of odd periodic functions,
that is,

szer,o = {f € Lf,er : f(=x)=—f(x) ae. x € {—g, g] },
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where the spatial period L > 0 is fixed. The first result gives a local bifurcation of small
odd periodic waves from the zero solution ¢ = 0 of the second-order equation (|1.5).

Proposition 2.8. There exists ag > 0 such that for all a € (—ag, ag) there exists an odd
periodic solution ¢ € Hg to the second-order equation 1} given by

er,o

$(x) =Y dona(x)a™ ", (2.9)

where {¢n, tnen are uniquely determined functions in Lier,o. The frequency w of the L-
periodic wave is given by

w=0 + ngna2n, (2.10)
n=1
where (7, = —%2 and {wop }nen are uniquely determined constants. Furthermore, we have

w > Qp for small a # 0.

Proof. The proof is similar to that of Proposition [2.4] and therefore, we only outline the
main steps. Indeed, let G: H2, . x R — L2_ _ be the smooth map defined by

per,o per,o

Gg,A) = —(1-¢%)g" + Ag — ¢*.
We see that G(g,\) = 0 if, and only if, g € H}, , satisfies (1.5) with corresponding

frequency A = w € R. Let Ay € R be fixed. The Fréchet derivative of the function G with
respect to the first variable at (0, Ag) is then given by

DyG(0, ) f = —f" + Ao f.
The nontrivial kernel of D,G(0, \g) is determined by functions h € H2,,  such that

h(n) (— (%T"f + )\0> =0, neN\{0}. |

Since DyG(0, Ag) has nontrivial kernel if and only if A\g = — (2”—”)2 < 0 for some n € N\{0},

L
we have
2mn

KerD,G(0, o) = [@n], @n(x) =sin <T:v) . n e N\{0}.
To obtain periodic solutions with the minimal spatial period L > 0, we must consider
n = 1. Thus, we have \g = —%2 = Q.

The remainder of the proof is identical to the one in Proposition but in order to
complete the proof, we shall compute the first terms in the expansions and .
Indeed, for k = 27” the corrections terms ws and {¢1, ¢3} are uniquely determined by the
following recurrence relations

O(a) : _(25/1/ - kngl - 07 (2 11)
O(a®) 1 —¢5 — k3 + wadhy + $id7 — ¢7 = 0. '

We see that ¢1(x) = sin(kz) satisfies the equation containing the term O(a). To find

the constant ws in the second equation of (2.11)), we use the fact that the inhomogeneous
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equation at O(a?®) admits a solution ¢3 € H?Z,_ if, and only if, the right-hand side is

per,o
orthogonal to ¢, which selects uniquely the correction
3
Wo = Z<1 + ]{?2)

Since wy > 0, the solution (2.9) with (2.10)) exists for w > Qp near {2;. Finally, we solve
the inhomogeneous equation for O(a?®) and obtain

1+ k2
() = ~ 312

This finishes the proof of the proposition. |

sin(3kx).

Remark 2.9. Using analogous computations as in Proposition [2.6] we can establish that
the local solution obtained in Proposition is global, that is, ¢ exists for allw € (Q, 1).
In addition, the pair (¢p,w) € H}, o X (Q, 1) is continuous with respect to the parameter
w € (Qr,1) and it satisfies (1.5)). Furthermore, there exists M that depends onw € (2, 1)
such that —1 < —M <0< M <1 and
M= — — mi .
max ¢(z) wmin ¢(z)
Proposition and Remark 2.9 justify the existence result stated in Theorem for
the odd wave satisfying ((1.10) with zo = 0.

3. MONOTONICITY OF THE PERIOD FUNCTION

We prove Theorem by analysing the period function 7' = T'(£,w) introduced in
(1.11). The period function is associated with the periodic orbits on the phase plane for
the system of ordinary differential equations

¢ =¢,
(3.1)

-6 ~ 1-¢2°
It follows from the theory of ordinary differential equations that the solution ¢ depends
smoothly on the parameter £ = E(¢, ¢'), where the energy function is

1 1 1 1—w
E(¢,¢') = §(¢')2 +Vi(g), V(¢)= §(W —¢%) + 5(1 —w)log 1=
For w € (0,1), the even wave satisfying (1.9)) corresponds to £ € (0,&,) and the odd
wave satisfying (1.10]) corresponds to € € (&, 00), where &, = E(0,0) corresponds to the
energy level of the pair of homoclinic orbits from the saddle point (0,0) which surround

the center points (4+/w,0). We note that
V(£y/w)=0 and lim V(¢) = +oo.
¢p—+1

5/ — wo <753

(3.2)

Furthermore, V(¢) > 0 for all ¢ € [—1,1] and V'(¢) > 0 for all ¢ € (y/w, 1).
Section gives the proof of 0:T(E,w) > 0, £ € (0,&,,) for the periodic orbits inside
the homoclinic orbit (the even waves). Section gives the proof of 0:T(E,w) < 0,
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& € (&,,00) for the periodic orbits outside the pair of homoclinic orbits (the odd waves).
The latter result also holds for w € (—00,0) and £ € (&, 00), for which &, = E(0,0)
corresponds to the energy level of the center point (0,0).

3.1. Monotonicity for even periodic waves. By the main theorem in [5], the period
function 7'(£,w) is monotonically increasing in £ in (0,&,) if I”(¢) > 0 for ¢ € (0,1),
where

V(¢)
V' (e)]*
Note that the theorem in [5] can be applied because V(y/w) = 0 is properly normalized
at the center point (1/w,0). Computing

I(¢) = (3.3)

/ o gb(w - ¢2) " W + (w _ 3)¢2 + ¢4 " _ 2<1 B w)¢(¢2 + 3)
Vv (¢) - _1_—¢27 Vv <¢> - (1 _ ¢2>2 ) 4 (¢) - (1 _ ¢2)3 ’
we obtain from that
Y _ 6v<vl/>2 _ 2vvlvl1/ _ 3(vl>2vl! B P((b)
o= vy = wera-or Y
where

P(¢) = 3¢"(w — ¢*)*A(9) + [3A(¢)" + 2(1 — w)¢* (3 + ¢*) (w — ¢%)] B(9),

with
1—w

1—¢?

Since P depends on ¢?, we introduce ¢t = ¢? and redefine P, A, and B as functions of ¢:
P(t) =3tw —t)?A(t) + [BA®)* +2(1 —w)t(3+t)(w — )] B(t), te[0,1), (3.5)

with

A(9) = w+ (w—3)p* + ¢, B(¢) :=w — ¢* + (1 —w)log

Al) =wt (—3)t+8,  B) —w—1t+(1—w)log 11_? (3.6)

Figure [3.1| shows the dependence of P versus t for w = 0.5. The plot suggests that

e P(t) has a quadruple zero at t = w,
e P(t)>0forte (0,w)U(w,1).

These facts are proven rigorously in Lemmas [3.1] and [3.3] below.

Lemma 3.1. The function P given by and (@) is real analytic on (0,1) and it
admits a zero of the quadruple order at t = w, such that
49 — 6w — w?)

P(w)=P'(w)=P"(w)=0, PWYWw) = - > 0. (3.7)

Consequently, there ezists § > 0 such that P(t) > 0 fort € [w — d,w + §]\{w}.
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FIGURE 3.1. The dependence of P versus t given by 1| for w = 0.5.
Proof. The function P(t) is real analytic on (0, 1), because the logarithmic function in B

is analytic for ¢ < 1 and other functions are polynomials in . The Taylor series of P at
t = w can be written as

% pn)(y
P(t) = P n'( it - "

We have B(w) = 0, and

B'(t) = —f—::, B'(t) = &:;2, (3.8)
which implies

Blt) = §r o+ g + s + O((t ) 3:9)

Furthermore, we define
G(t) :=3A1)* +2(1 —w)t(3+t)(w — 1) (3.10)

and expand
G(t) = 3w? — 12wt + (21 — 4w + w?)t? — (20 — 8w)t® + 3t*
= 120%(1 — w)? + 2w(1 — w)(15 — 19w)(t — w)
+ (1 — w)(21 — 43w)(t — w)? + O((t — w)?). (3.11)
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Similarly, we expand
3tA(t) = 3t(w + (w — 3)t +t7)
= —6w*(1 —w) — 15w(1l — w)(t —w) — (9 — 12w)(t — w)* + O((t —w)?). (3.12)
Substituting into yields
P(t) = (t — w)? [BtA(t) +G(t) (2(1 L 5" 38 :‘;))2 + 4((t1__°3)3 +O((t - @%)} .

By using (3.11]) and ([3.12]), we compute coefficients of powers (t — w) in P(t):

2 9 1203 (1 —w)*
(t—w) : —6w(1—w)+w—0,

5 20(l —w)(15 — 19w)  12w*(1 —w)®
(t—w)’: —1bw(l —w)+ 20 —w) + 30 —w)y =0,

4 (1-w)(21 —43w)  2w(l—w)(15—19w) 12w*(1 — w)?
(t — w) D= (9 — 120.!) + 2(1 — w) 3(1 _ w)Q 4(1 _ w>3

9 — 6w — w?
6l —w)
This yields ({3.7)).
The remainder of P(t) can be written in the integral form:

1 1
P(t) = (- w)4/ (1= $)°PD(w + s(t — w) ds.
‘ 0
and there exists &’ > 0, such that P (¢) is continuous on ¢ € (w — ¢, w + ¢'). By taking
€= %P(‘l) (w) and § < ¢, there is a local strictly positive estimation

1
P(t) > EP(@(w)(t—w)‘l > 0, tew—46w)U(w w4,
which yields the assertion on positivity of P(t) near t = w. |
To estimate the global behavior of the function P(t) for ¢ € (0, 1), we use the following
bounds on the function B(t) obtained from (3.8)).

Lemma 3.2. The function B defined in (@) can be estimated as

(w — '[;)2 (w — t)2
28 < B(t) < 20 w)’ te(0,w), (3.13)
and 1?2
B(t) < <20(J1_— i), te (w,1). (3.14)

Proof. 1t follows from (3.8)) that B can be written in the integral form:

Yw—s
B(t) = d t 1).
0= [ S=tds tel)
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For t € (0,w), let 0 < t < s < w, so that ﬁ < 1< %w Then, we have

B(t) < ﬁ tw(w—s)ds:%
and . " (0 1)?
B@)ZE t (w—s)ds:Q(l_t).

This yields (3.13). Similarly, for ¢ € (w,1), let w < s <t < 1, so that ;= > 1. Then,
we have

1 “ (w—1)?
B(t) < —— _ ) ds — '
O ) W=9)ds 21— 1)
This yields (3.14)). |

We use Lemma to extend Lemma and to guarantee that P(t) is positive for
every t € (0,1). This is obtained by controlling the derivative of P in t separately for
te (0,w)and t € (w,1).

Lemma 3.3. The function P is monotonically decreasing on (0,w) and increasing on
(w, 1).

Proof. To show that P'(t) < 0 for t € (0,w) and P'(t) > 0 for t € (w, 1), we use ({3.5))
rewritten as

P(t) = Q(t) + B()G(1),
where Q(t) := 3t(w — t)2A(t) with A and B defined in (3.6) and G defined in (3.10). By
using (3.8)) for B'(t), as well as

Q'(t) = 3(t —w) [5t* + (w — 12)¢* + w(9 — 2w)t — 7],
G'(t) =2 [6t° + 6(2w — 5)¢* + (w* — 4w + 21)t — 6w] ,
we obtain

P(t) = Q1) + BOGE) + BOE )
- [B@) - (w_t)2] a+ = [Low+ 1= ow+ Boew)

2(1—1) 1—t |2 (w—1)?
- [B(t) - %_—ti)] a(t) - <“1 :? (64 (1—w)t — 6], (3.15)
where the last identity is derived directly from
1—1 / /
Lo @0+ BOGH)
= ﬁ [3(1 —t) [5t° + (w — 12)t* + w(9 — 2w)t — w’] + G(1)]
= ﬁ [—12¢" + (31 4 5w)t* 4 (Tw® — 28w — 15)t* + 3w (5 — w)t]

= —12t3 + (31 — Tw)t? + 3(w — 5)t
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(Q'(t) + B'(t)G(t)) = —6t° + (5w + 1)t* + (w? — w + 6)t — 6w
= (w—1) [6t* + (w— 1)t —6].
For ¢ € (0,w), we use the estimate (3.13) and obtain

(w—1)2 w—1)?  (w—t)? (w—1)3

( _
21— =21 —w) = ' (3.16)

0< B(t)— w) 21—t 21-t)(1—-w)

<

Since

6+ (1 —w)t — 62 >min{6,1 —w} >0, te]l0,1],
for every w € (0, 1), it follows from ({3.15) and the lower bound in (3.16]) that P'(t) < 0
for t € (0,w) if G’(t) < 0. On the other hand, if G’(t) > 0, then we use the upper bound
in (3.16)) and obtain

P(t) < % %G’(t) — (1= w)(6+t—wt—62)
_ 2w —t)° 3 w— 4)¢2 — W) —
“ 000w [3t% 4 3(w — 4)t* 4 (10 — w)t — 3] .

We show that the last expression in the brackets is negative, which yields P'(t) < 0 for
€ (0,w) if G'(t) > 0. Indeed, we have

3+ 3(w -4+ (10 —w)t =3 =3(t — 1) — (1 — w)t(3t — 1)

which implies

1
3(t—17° — (1 —w)t(3t —1) < 3(t—1)* <0, gst<l
and
3 s 1—-w 1
3t—1)—(1—-witBt—1)=(t—-1)|3(t—1) —|—1—tt(3t—1) <0, O<t§§,
since =2 < 1 for t € (0,w) and
3(t—1) +1—tt(3t—1)23(t—1) +t(3t—1)=3—-Tt+6t Zg’ ogtgg.

For t € (w,1), we use again that

%G’(t) (1= w)(6+ (1 —w)t — 6) = 2 [3(t — 1) — (1 — w)t(3t — 1)] <0,
which yields
G'(t)
61 (1—w)l — 62

<2(1 —w).
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By using (3.14)), we know that B(t) — s— . < 0, so that we can estimate (3.15) for

t € (w, 1) as follows:

, > (w—1t)° G'(t) (w—1)?
P(t):(6+(1—w)t—6t){{B(t}—m_tJ T w68 17 }

N g2 B w1 (Wt
> (6+ (1 —w)t 6t){2(1 w) {B(t) 2(1—15)} T
= (6+ (1 —w)t—6t°) {2(1 —w)B(t) — (t —w)*}.
By using the definition of B in (3.6) and the variable z := {=2 € (0, 1), we get Taylor

1—
series expansion

1—w

2(1 —w)B(t) — (t —w)* =2(1 — w)*log T 2(1 —w)(t —w) — (t —w)?

1
=2(1 —w)? {— log(l —x) —x — §x2
oo xn
=21-w)*) —
-yt
which is strictly positive for x € (0,1). Hence, P'(t) > 0 for ¢t € (w, 1). [ |

The period function T'(€,w) given by (1.11)) can be rewritten for the even periodic
waves explicitly by
[ -
m 26+ (1 —w)log(l — ¢?) — (1 —w)log(l —w) + ¢* — w

Teven(gaw) =2 , (317)

where

m:= min ¢(z) € (0,y/w) and M := max ¢(r)€ (Vw,1)

L L L L
we[*g,i 16[7575]

are given by roots of V(¢) = £ for £ € (0,&,), see Remark 2.7 By using Lemma [3.3} we
prove monotonicity of the period function in € stated in Theorem [1.3]

Proposition 3.4. For every w € (0, 1), the period function Towen(E,w) given by is
monotonically increasing in € € (0,&,) such that
1 —w

im Toven (&, w) = 2my/ ——,  lim Tewen(€,w) = +00,
-0 2w E—Ew

Proof. Lemma implies that P(t) > 0 for ¢t € (0,1)\{w}, which yields I”(¢) > 0 for
¢ € (0,1) by (3.4)). Since V(¢) > 0 and V(y/w) = 0, we can apply the main theorem from

[5] by using the translated coordinate ¢ = ¢ — \/w. Since I”(¢) > 0, the main theorem of
[5] states that the period function Tiyen(€,w) is monotonically increasing in € € (0,&,)
for every w € (0,1). The limit for Tewen(E,w) as € — 0 follows from the linearization of
the center point (y/w,0). The divergence of Toyen(E,w) as € — &, follows from the infinite
period of the homoclinic orbit to the saddle equilibrium point (0, 0). |
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3.2. Monotonicity for odd periodic waves. The period function T'(£,w) given by
(1.11]) can be rewritten for the odd periodic waves explicitly by

do
\/25+ (1—w)log(l —¢?) — (1 —w)log(l —w) + ¢? —w

odd(g w s (318)

where

M= = min, ofr) € (0.V5) = max, ofr) € (VD

T€[=5,5 r€[-35,5

is a positive root of V(¢) = & for £ € (&, ), see Remark 2.9 m The proof of monotonicity
of the period function in £ is easier for the odd periodic waves. The following proposition
justifies the result stated in Theorem [1.3]

Proposition 3.5. For every w € (0,1), the period function Toaq(E,w) given by is
monotonically decreasing in € € (&,,00) such that

lim Thqq(€,w) = 400, lim Thqq(E,w) = 0.
E—=EL E—o0

Proof. Using the same transformation ¢ = ¢* as in Section [3.1} we redefine V(¢) in (3.2)

as
1 1 1l—w

Wi(t) := 2( 2(1 w)logl_t, te(0,1).

Similarly, we redefine M € (y/w,1) as q :== M? € (w,1). Since & = V(M) = W(q), we

use the change of variables t = ¢? for t € (0,q) and t = qu for u € (0,1) and rewrite the

integral in the equivalent form:

w—t)+

mﬁm=%;ﬁmm—wm

dt
:ﬂ/¢mmwww
/ \/Z_q du
VulW(q) — W(qu)]

Since V'(¢) > 0 for ¢ € (y/w, 1), we have W'(q) > 0. The chain rule

0Toaa  0Toaa (OE - 1 0Thaa
06 9q \9q)  W'(q) 9q

implies that for a fixed w € (0, 1), monotonicity of T,4q(€, w) in £ and ¢ coincide. Although

the integral for Tyqq(€,w) is weakly singular at v = 0 and u = 1, the derivative of

Toada(€E,w) in ¢ yields also weakly singular integrals and, hence, it can be computed by
pointwise differentiation as in

OToaa Vg (@) —uW'(qw)
dq \/_/ VulW W(qu)] /\/u W(qu)]3d7
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where the second integral remains weakly singular at u = 1 since W(q)—W (uq) = O(1—u)
and W'(q) — uW'(qu) = O(1 — u) as u — 1. The function W (¢) is strictly convex since

W(t) = % W (t) = ﬁ > 0.

If F(t) :=tW'(t) — W(t), then F'(t) = tW"(t) > 0 for t € (0,1), so that F(q) > F(qu)
for every uw € (0,1). This implies for u € (0, 1) that

gW'(q) = W(q) > quiW'(qu) — W(qu), = Wi(q) — W(qu) < q[W'(q) — uW'(qu)].
Since \/u[W (q) — W(qu)] > 0 for u € (0,1), it follows that
2 1 W'(q) — uW'(qu)
Vi@ e VR Wi

which proves that

u € (0,1),

OToaa

9q
This yields the desired monotonicity in £ by the chain rule. The divergence of T,4q4(E,w)
as & — &, follows from the infinite period of the homoclinic orbit to the saddle equilibrium

point (0,0). The zero limit of Tpgq(E,w) as € — oo follows from (3.18)) by the dominated
convergence theorem since M € (y/w, 1) is finite. [ |

<0, q€(w1),

Remark 3.6. The result of Proposition is true for w € (—o0,0) with the only change

2
ghm Todd(é',w) = il

e Vil

which is computed from the linearization of the center point (0,0) for w € (—o00,0). All
other computations are identical to the proof of Proposition[3.5,

4. SPECTRAL ANALYSIS NEAR THE PERIODIC WAVES
Consider the Hessian operator £L = H"(¢) + wQ"(¢) defined in ([1.12)) as an operator

on Lier with the domain in Hier. Since L is a diagonal composition of the Schrédinger
operators £, and £_ in Lf)er with the domain in ngr, the spectrum of L is a superposition
of the spectra of £, and £_. According to [24], the spectrum of either £, or £_ consists
of an unbounded sequence of real eigenvalues

A <A <A< A< A <Aoo S Ay oo

where equality means that Ay, 1 = Mg, is a double eigenvalue. By [0, Theorem 3.1.2(ii)],
if  is an eigenfunction associated to the eigenvalue X5, 1 or Ay, then ¢ has exactly 2n
zeroes on the periodic domain.

To characterize the Morse index of £4 denoted by n(£.) and the nullity index of £
denoted by z(L4), we use the following theorem, see [27, Theorem 3.1].
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Theorem 4.1. Let M = —0? + Q(x) be a linear Schridinger operator with the even, L-
periodic, bounded potential Q and let {y1, p2} be linearly independent solutions of My = 0

satisfying
901(0) = 17 { 902(0) = 07
and 4.1
{ 21(0) =0, 2h(0) = 1. (1)
Assume that there exists 0 € R such that

pr( + L) = ¢1(x) +0ps(x),  and - po(x + L) = ¢a(2), (4.2)

and that the L-periodic eigenfunction ps has two zeros on the periodic domain. The zero
eigenvalue of M in Lf)er is simple if 0 # 0 and double if 0 = 0. It is the second eigenvalue
of M if 6 > 0 and the third eigenvalue of M if 6§ < 0.

Remark 4.2. Since the linear operator L is related to the linearization of the second-
order equation on the periodic orbit with the profile ¢, the two solutions in Theorem
are constructed from the first invariant and the parameter 6 can be computed
from the derivative of the period function T'(E,w) with respect to €. See [12), Section 3.2].

4.1. Spectral analysis of even periodic waves. We proceed separately with the anal-
ysis of the Schrédinger operators £, and £_ defined in ([1.12)) and computed at the even
waves of Theorem with the profile ¢ satisfying ((1.9)).

Proposition 4.3. n(L,) = 2(L,) =1, that is, 0 is a simple eigenvalue of L associated
with the eigenfunction ¢', and there is only one negative eigenvalue, which is simple. In
addition, the remainder of the spectrum of L in Lf)e consists of a discrete set of positive
eigenvalues with finite multiplicities.

Proof. On comparison with M in Theorem we have

1+ ¢?

Q=14+ (w-1) T (4.3)
where 0 < ¢ < 1 is the spatial profile of the L-periodic orbit in Theorem satisfying
(1.9) with o = 0 and w € (wy, 1). Hence, @ is even, L-periodic, and bounded.

Consider the family of periodic orbits of the second-order equation associated
with the period function T'(€,w) for the energy level £ = E(¢,¢’) given by the first
invariant with £ € (0,&,). Due to monotonicity of the mapping € — T'(€,w) for
fixed w € (0,1) in Theorem [1.3] there exists a unique & = &, (w) of T(Er(w),w) = L for a
fixed spatial period L > 0 and w € (wp, 1). We further define ¢ (w) € (0,1) as a root of
V(p) =€ for £ = EL(w). Two roots exist for the maximum and minimum of the spatial
profile ¢, see Remark Since

T

vig) - -2=0),

we have V'(¢r(w)) # 0 for either choice for ¢ (w). Equations (1.6 and (1.7)) imply that

§0) = ~V(ér(w) and 220D 1

O e, ViGL@) Y
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where the family of periodic orbits parameterized by £ is restricted to even functions by
using the translational invariance of the second-order equation (|1.6)).

Since L, is a linearized operator for , we obtain two linearly independent solutions
of £L,¢ = 0 in Theorem [.1] by using

_ 9¢(z)

() = o ¢'(v)

Vior(w)), @or) = —————. (4.5)
E=E (w) ( V'(¢r(w))

Since ¢ is even, we obtain (4.1)) from (4.4)). The second solution ¢ is L-periodic and has
two zeros on the periodic domain according to the assumption of Theorem[4.1] Computing

the first solution ¢, after the period L, we obtain
99(L)

/ / a¢/(L> !
pr(l) = —=— Vigr(w)) and  ¢y(L) = Vi(¢r(w)) =: 6.
I le—e,w) 1 8 leeeyw)
Since ¢(T(E,w)) = ¢(0) and ¢'(T'(€,w)) = 0, taking derivative of these equations in £ at
the energy level £ = £ (w) implies that ¢;(L) =1 and

_aT /! / 8T , 9
- O V = — V ’
€ g:&(w)aﬁ OV (drw)) = 52 HL(W)[ (pr(w))]

where we have used (4.4)) again. The L-periodicity of @) implies that ¢, satisfies (4.2)
with the sign of 6 given by the sign of the derivative of the mapping &€ — T(E,w) at
€ =& (w). Since 0 > 0 by Proposition , Theorem proves the assertion. |

Remark 4.4. Let L > 0 be fized. Using the implicit function theorem and the fact
that Ker(L,) = Span(¢’) with ¢ being odd, it is possible to prove that the mapping

9:

w—¢eH,  is C' for every w € (wg,1). In addition, differentiating @) with respect
to w yields the derwative equation:

d¢ ¢

= _ ' 4.6

ere 1S only stated to be

This improves Proposition where the mapping w — ¢ € Hg
continuous for every w € (wr, 1).

Proposition 4.5. n(£_) = 0 and z(L_) = 1, that is, 0 is a simple eigenvalue of L_
associated with the eigenfunction ¢ and the remainder of the spectrum of L_ in le)er
consists of a discrete set of positive eigenvalues with finite multiplicities.

Proof. Since 0 < ¢ < 1 we obtain from the definition of £_ that

w— ¢?

L= -0 .
Since ¢ is positive and satisfies (1.5), we obtain that £_¢ = 0. By standard Floquet
theory in [24], we deduce that zero is the first eigenvalue of £_ which is simple. Again,
the last part of the proposition is obtained from the fact that £_ is a self-adjoint operator
and the compact embedding H? =« L? |

per per:

Propositions [£.3] and [£.5] imply the following result for the case of even periodic waves.
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Corollary 4.6. The Hessian operator L defined by mn Lger with domain Hf)er has
one negative eirgenvalue which is simple. Zero is a double eigenvalue with associated
eigenfunctions (¢',0) and (0,¢). In addition, the remainder of the spectrum consists of a

discrete set of positive eigenvalues with finite multiplicities.

4.2. Spectral analysis of odd periodic waves. We proceed separately with the anal-
ysis of the Schrodinger operators £, and £_ defined in (1.12)) and computed at the odd

waves of Theorem with the profile ¢ satisfying ((1.10]).

Proposition 4.7. n(L,) = 2 and z(L,) = 1, that is, 0 is a simple eigenvalue of L
associated with the eigenfunction ¢, and there are two negative simple eigenvalues. The
remainder of the spectrum of L, in L%er consists of a discrete set of positive eigenvalues
with finite multiplicities.

Proof. We can prove the assertion in two different ways.

Proof I. The potential ) in the linear operator M of Theorem is defined by the
same expression , where —1 < ¢ < 1 is the spatial profile of the L-periodic orbit in
Theorem satisfying with 2o = 0 and w € (Qy,1). Hence, @ is even, L-periodic,
and bounded. Since ¢ is even with respect to x = % due to the second property in (|1.10)),
(@ has the minimum period % and it is also even with respect to x = %. Therefore, we can
repeat the proof of Proposition [4.3[ and introduce the family of odd periodic orbits for the
energy level £ = E(¢,¢') with € € (&,,00). Again, due to monotonicity of the mapping
& — T(€,w) for fixed w € (—00,1) in Theorem [1.3] there exists a unique & = &, (w) of
T(€L(w),w) = L for a fixed spatial period L > 0 and w € (Qg,1). We further define
¢r(w) € (0,1) as a unique root of V(¢) = & for £ = & (w), see Remark 2.9] with the
same property and the same definition of two solutions of L, = 0.

To satisfy the initial data in for the two solutions, we can use the translational
invariance of the second-order equation and translate the family of odd periodic
orbits to the family of even periodic orbits by

o) = ¢ (m - iT(é’,w)) . (4.7)

Then, assumptions of Theorem are satisfied and the second solution s is L-periodic
and has two zeros on the periodic domain, whereas the first solution ¢, satisfies with
the same definition of 6: o7
=5 V' (¢r(w))]”.
E=EL(w)
Since 6 < 0 by Proposition , Theorem proves the assertion for every w € (Qg,1).
Proof II. We define the restrictions of £, to the odd and even subspaces L2, C L2,

and L2, , C L?,, and denote them by £, , and L ., respectively. Since ¢ is odd, ¢’ is an

per,e per

element of Ker(L; ) but is not an element of Ker(L,,). Using (1.6), we have for any
w € (QL, 1),

6

L 4
(L1002, = 2(w— 1) /0 (1_¢—¢2)2d1 <0.
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This implies by Courant’s minimax characterization of eigenvalues of the self-adjoint
operator L, that n(L£;,) > 1.

By Krein-Rutman’s Theorem, the first eigenvalue of £, is simple and it is associated
to a sign-definite eigenfunction which needs to be even. Since 0 is an eigenvalue of £ .
associated with the sign-varying eigenfunction ¢’, this implies that n(£;.) > 1. Thus,
we have n(L;) = n(Ly,) +n(Lye) > 2, but since ¢’ has only two zeros on the periodic
domain, the zero eigenvalue is nothing but the third eigenvalue of £, by Theorem
which further implies the assertion for every w € (£, 1). |

Remark 4.8. Let L > 0 be fixed. Using the implicit function theorem and the fact that
Ker(L,) = Span(¢’) with ¢' being even, it is possible to prove again that the mapping
W Qe Hg is C for every w € (Q,1) with the same derivative equation

er,o

Proposition 4.9. n(L_) =1 and z(L_) = 1, that is, 0 is a simple eigenvalue of L_
associated with the eigenfunction ¢, and there is only one negative eigenvalue, which is
simple. The remainder of the spectrum of L_ in Lf)er consists of a discrete set of positive
ergenvalues with finite multiplicities.

Proof. On comparison with M in Theorem we have
w—1
=14 — 4.8
where —1 < ¢ < 1 for every w € (Q,1). Similarly to Proof I of Proposition the
L-periodic and bounded () in 1) is even with respect to both x = 0 and z = % and has
the minimal period £. After the translation (4.7) with £ = £,(w), the lowest eigenvalue
of £, in L?_  is at 0, associated with the translated eigenfunction

o) (2-7).

which is now odd. It follows from the relation between £_ and L,:

2(1 — w)¢?
L_ = £+ + m, w <1,
that the lowest eigenvalue of £_ in L2, , is greater than the lowest eigenvalue of £, in
Lger’o. Therefore, £_ is strictly positive in Lger’o.

To study eigenvalues of £_ in L? . after the translation 1} with £ = £ (w), we note

per,e
that £_ has the zero eigenvalue in L?_ _ associated with the translated eigenfunction
L

o) >0 (o= 5),

which is now even. Since this eigenfunction for the zero eigenvalue of £_ in L2 ., has two

zeros on the periodic domain, there exists a negative eigenvalue of £_ in LIQ)ere and by

Theorem 0 is the second simple eigenvalue of £_ in L? Combining with positivity

per,e*
of L_in L we have the assertion. [ |

per,o’
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Propositions [£.7] and [£.9] imply the following result for the case of odd periodic waves.
Corollary 4.10. The Hessian operator L defined by m ]Lf, with domain H?

er per
has three negative eigenvalues, which are semi-simple. Zero is a double eigenvalue with
associated eigenfunctions (¢',0) and (0,¢). In addition, the remainder of the spectrum

consists of a discrete set of positive eigenvalues with finite multiplicities.

5. CONSTRAINED ENERGY MINIMIZATION OF PERIODIC WAVES

For the wave profile ¢ € H per given by either even or odd perlodlc wave in Theorem
we can define the energy H(¢) and mass Q(¢) cornputed from and (L.4). We
recall from Remarks and . 8/ that the mapping w — ¢ € H_, is C’1 for either even or

per
odd periodic wave. Smce ¢ € Hp, ! _is a critical point of the augmented energy functional

G(u) given by (L.8), we have

d d d
£ 6(6) = L H(9) + v 0(60) + Q) = Q6.
which implies that the mapping w — G(¢) is C* and
d? d ¢ do

17 00) = 500 =25 g1

By Corollaries[4.6|and [4.10], the Morse index for the Hessian operator £ = H" (¢)+wQ" (o)
given by @D is nonzero so that ¢ € H per is a saddle point of G(u). We further clarify
if $ € H),, is a local minimizer of energy H(u) under the constraint of fixed mass Q(u),
which is degenerate only due to symmetries.

The NLS-IDD equation (|1.1) can be formulated as a Hamiltonian system in the co-
ordinate u = p + iq with (p,q) € H;er The two basic symmetries of the NLS-IDD
equation are the translation and rotation symmetries. If u = wu(t, z) is a solution,
so are e Yu(t, z) and u(x — £, t) for any 0,¢ € R. Considering u = p + iq, this yields the
invariance under the two transformations given by

s ()= (oo i )(4) )
sxa(g):z(pﬁiég)- (5.2)

A standing wave solution of the form u(t,x) = e“'¢(x) is given by
o(x) cos(wt)
Sl(wt) ( 0 = sm(wt) ¢(I)
The actions S; and Ss in |) and 1' define unitary groups in Hll)er with infinitesimal
generators given by

S;(O);z((l) _01) and  S5(0) = (é ?)a

and
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Separating the variables for the perturbation as

u(t, ) =€ (¢(z) + p(z, 1) + ig(x, 1))

we obtain the two-dimensional kernel of the Hessian operator (|1.12)) spanned by the two
symmetry transformations:

s()-(1) = 0 (2)-(2)

These symmetry modes agree with the eigenfunctions in Ker(£) given by Corollaries
and [£.10]

If we consider variation of energy H (u) under fixed mass Q(u), then we define the linear
constraint on the real part of the perturbation:

¢

(90.P)rz,, =0, ¢o= T (5.3)

The Morse index of £, acting on p changes under the constraint and we study how it
changes separately for the even and odd periodic waves.

5.1. Constrained energy minimization of even periodic solutions. Under the con-
straint (5.3), we define the Morse and nullity indices of the constrained operator L |41
and denote them by n(Ly|r4,3+) and 2(Ly|(g12)-

Proposition 5.1. n(Li|gn2) = 0 and 2(Lylrs31) = 1 if and only if the mapping
w — Q(¢) is monotonically increasing at w € (wr, 1).

Proof. Since (¢, ¢) 2, = 0, we have ¢' € Ker(L, |(4,3+) by Proposition 4.3 It follows

by [12, Theorem 2.7] that
n(£+’{¢O}L) = n(£+> —1= 0, Z(‘£+‘{¢O}l) = Z(£+) =1

if and only if
<£;1¢07 qu)L2 < 07

per

where equation (4.6)) implies that

do 1d 1 d?
—1 _ y — - -
<£+ ¢07¢0>L123er - <¢07 dw>Lper 2de(¢) 2du}2G(¢)
This completes the proof of the assertion. |

Propositions and imply the following result, which yields the assertion of The-
orem [1.4] for even periodic waves.

Corollary 5.2. The Hessian operator L defined by in 12 with domain H? . under

per per
the constraint 15 non-negative and admits a double zero eigenvalue with associated
eigenfunctions (¢',0) and (0, @) if and only if the mapping w — Q(¢p) is monotonically
increasing at w € (wr, 1).
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5.2. Constrained energy minimization of odd periodic solutions. We recall the
definition |D for Y C H!_ spanned by functions which are odd with respect to the

per
half-period. We define the Morse and nullity indices of the constrained operator £_|y and
denote them by n(L_|y) and z(L£_|y). Under the additional constraint (5.3)), we define

the Morse and nullity indices of the constrained operator £ |4,}1ny and denote them by
n(Llggorrry) and z(Lifiggpeny)-

Proposition 5.3. n(L, |(s11ny) = 2(Lylp03iny) = 0 if and only if the mapping w —
Q(¢) is monotonically increasing at w € (2, 1). Furthermore, n(L_|y) = 0 and z(L_|y) =
1.

Proof. Since ¢’ ¢ Y and ¢ € Y, we have ¢’ ¢ Ker(L,|y) and ¢ € Ker(L_|y) so that
2(L4]y) = 0 and 2(L_|y) = 1. Since the eigenfunctions of £, and £_ for the smallest
(negative) eigenvalue are even with respect to the half-period, we also have n(L4|y) =1
and n(L_|y) = 0. In addition, we have ¢y € . It follows by [I2] Theorem 2.7] that

n(Lylgoryyt) =n(Lyly) =1=0, 2(Lyligeryyr) = 2(Lyly) =0
if and only if

<£—T—1¢07 ¢0>L}%er < 07
where equation (4.6]) implies again that

do 1d 1 d?

-1 —_ — _— = — = — = -

<£+ ¢07¢0>Lger - <¢07 dw>L%’“ 2d¢dQ<¢) 2dw2G(¢)

This completes the proof of the assertion. |

Proposition [5.3| implies the following result, which yields the assertion of Theorem
for odd periodic waves.

Corollary 5.4. The Hessian operator L defined by in ]Ll%er with domain Hf)er ny
under the constraint 1s non-negative and admits a simple zero eigenvalue with the
associated eigenfunction (0,¢) if and only if the mapping w — Q(¢p) is monotonically

increasing at w € (Qr,1).
6. NUMERICAL APPROXIMATIONS

Given a fixed w € (0,1), the energy level of homoclinic orbit &, € (0, 00) is computed,
and then the period function T'(€,w) for the even and odd periodic waves is approximated
separately by using and , respectively. The period function is plotted on
Figure [I.2]

For the even waves, since the period function diverges as € — &£, the grid on (0, &,) are
defined in two regions (&, — 1073, &,) with 2000 equally spaced grid points and (0, &, —
1073) with 300 equally spaced grid points. For the odd waves, the grids are defined
analogously as on (&,,&, + 107?) with 100 grid points and (&, + 1072,0.5) with 300
grid points. We evaluate the integrals with the absolute and relative tolerances given by
€abs = 10719 and e, = 1078 respectively. Selected values w = 0.3,0.5,0.7,0.9 are plotted

in Figure H with 7" = 274/ 12_—ww at & = 0 represented by solid dots.
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Once the period function T'(€,w) is computed, we fix the spatial period L > 0 and find
the uniquely defined energy level £ (w) from a root of T'(Er(w),w) = L. This is possible
due to monotonicity of the period function with respect to € in Theorem [I.3, We use
Newton’s root-finding method for a grid {w;}Z, of values of w in either (wg,1) or (2, 1),
see Theorems|l.1{and We thus obtain the values {&;}}Z, for £, (w;), which are plotted

on the left panels of Figures and relative to &, for £(w) = Er(w) — &,. Thus,
the solid dots for w = wy, correspond to £ (w) = —&, in Figure and the solid dots for
w = Q, correspond to £ (w) = 0 on Figure

Numerical inaccuracies occur in the computations of £, (w) near w = 1 due to the wave
profiles becoming steep, and this is independent of the grid {w; }Jj‘il The solid dots on the
left panels of Figures[1.3] and show the end points for which the accuracy is verified
within 107 computational error. The limiting values of £7(w) at w = 1 obtained from

(1.15) and ([1.17]) are shown by open dots on the left panels of Figures and [1.4 An

interpolation is performed between the last numerical data for £, (w) and the value of
Er(w=1) and it is shown by the dotted line on the left panels of Figures and

For the computed set {(&;,w;)}},, the profile ¢ = ¢(z) of the even periodic wave
satisfying with xg = 0 is obtained by numerical integration of

Feven(¢) = )
/¢ \/sz(w) —(w—¢?) — (1 — w)log 1=

1—¢2

Tr =

¢ € [m, M], (6.1)

where m and M are obtained from two positive roots of V(¢) = E,(w) for w € (wr,1)
and &1 (w) € (0,&,), see Remark 2.7 The solution profile is defined implicitly as z =
Feven(9) € [0, £] with ¢(0) = M and ¢ (£) = m. It is extended from [0, £] to [-£,0] by
using the even reflection: ¢(—z) = ¢(x). This yields the wave profiles on the right panel
of Figure [1.3] The dashed line shows the peaked profile at w = 1 given analytically by
(1.14).

For the computed set {(&;,w;)}X,, the profile ¢ = ¢(z) of the odd periodic wave
satisfying with xg = 0 is obtained by numerical integration of

@ do
(¢) = - )
/0 \/sz(w) —(w—¢?) — (1 —w)log 1=%

T = Foga ¢ € [O, M], (62)

1

where M is obtained from the only positive root of V(¢) = £L(w) for w € (2, 1) and
Er(w) € (&,,0), see Remark The solution profile is defined implicitly as * =
Foaa(®) € [0,£] with ¢(0) = 0 and ¢ (£) = M. It is extended from [0, %] to [—£,0]
by using the symmetries of the odd periodic wave: ¢(—z) = —¢(z) = —¢ (¥ — x). This
yields the wave profiles on the right panel of Figure[I.4] The dashed line shows the peaked

profile at w = 1 given analytically by (1.16]).
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We compute the mass (¢) shown in Figure versus w by using the integration in
the ¢ variable. For the even periodic wave, we use

L2 -
Q(g) = —2 /0 log(1—6?) d = 2 log(1 - ¢?)

/ \/2& (w— ¢2) — (1 — w)log =2

1—¢2

Computing the integral numerically for {(&;,w;)}¥; yields the left panel of Figure [1.5]
The numerical data are again missing near w = 1 and the last available data is shown
by the solid dots, for which the accuracy of 107® is guaranteed. The open dots show the
limiting values of Q(¢) at w = 1, which can be computed analytically as

2

w=1: Q(¢)=2Llog {2 cosh (g)} —- L+ % — Lig(e™25), (6.4)

where Liy denotes the dilogarithm function

Liy(2) := —/OZ Mdu.

u

do. (6.3)

Interpolation between the last available data (right solid dots) and the limiting value of
Q(¢) at w =1 (open dots) is shown by the dotted line on Figure [1.5]

The dashed line on the left panel of Figure |1.5[shows the limiting value of Q(¢) versus
w in the soliton case with L = oo, for which the integral for Q(¢) is still computed on the
compact interval. The dependence of Q)(¢) versus w is similar to the periodic case L < oo
and displays a single maximum before the peak for which

T
w=1 L=o00: Q(gb):€.
For the odd periodic wave, we use
L/4 1 1 — 2
Q¢) = —4/ log(1 — ¢?) do = 4/ og(l = &) —do. (6.5)
0 \/QEL —(w—¢?%) — (1 —w)log 1__(;2

Computing the integral numerically for {(&;, w;)}, yields the right panel of Figure .
The limiting value of Q(¢) at w = 1 is computed analytically as

w=1: Q(¢)=2Llog [2 sinh (%)} — %2 + %2 — 2Liy(e™5). (6.6)
We note that
2
w=1 L=oo: Q(Cb):?

which is double compared to the case of the even periodic wave. This corresponds to the
fact that the odd periodic wave represents two solitons on a single period for large L.
Table [1| represents the numerical values of Q(¢) used in Figure for w = 1. These
numerical values are computed from and .
Finally, we expand Remark to discuss the three-branched behavior of Q(¢) versus
w in the soliton limit L = oo observed in [I8] and disputed in Figure [I.5] We cannot
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L| Q(even,w=1) | @ (odd, w=1)

27 | 1.66837567259328 | 2.73100651970082
3m | 1.64645514903036 | 3.11961052401896
4 1 1.64502171315626 | 3.24288332619890

TABLE 1. The numerical values of Q(¢) used in Figure for w = 1.

reproduce the three-branched behavior by using and . Even if we take fewer
number of grid points, we would evaluate Q(¢) with a lower accuracy but still observe
the two-branched behavior of Q(¢) versus w in Figure [1.5]

The reason for the three-branched behavior of Q(¢) observed in [I8] is due to the finite-
difference approximation applied to the differential equation and to the Hessian
operator £ in (|1.12)) with the uniform grid of = values. The larger grid spacing leads
to inaccurate computations of ¢ near the maximum ¢(0) = M and results in highly
inaccurate computations of Q(¢).

We fix w € (0,1) and consider the differential equation on the truncated interval
[—L, L] with L = 20. Since the bright solitons decay exponentially to zero at infinity, we
can use the Dirichlet boundary conditions ¢(+L) = 0. We replace [—L, L] by the uniform
grid of N points {z;}Y, with the spacing Az = ]\?—fl and compute approximations for
the solution profile {¢;}}¥, with ¢; = ¢y = 0. The second derivative can be constructed
using the central difference method as {(D?@); jy:—21 given by

b1 — 20+ 0,
(D2¢>j: = (ij)Q J+17

The residual of the differential equation (|1.5)) is defined by
Rj=(1-¢)(D*); — (w—07)¢;, j=2,...N—1,

and we introduce the mapping 7' : R¥~2 — RV~2 such that T'(¢) = R. The first derivative
of the mapping is given by the Jacobian matrix J = VT € R¥N=2*¥-2 with the nonzero
elements given by

N —1.

J=2

PRI

—1 _ ng- 2(1 _ ¢2) 2 2 .
Jj 1 = (M);, Jjj :_(A—x);—wj(z) $); —w+3¢7, 2<j<N-2.
To minimize the residual ®(¢) = 3||7(¢)||>, we implement the linear Newton’s method

in the iterations {¢p®}2° defined by J(¢*+D — ¢} = —T(¢®) starting with a suitable
initial guess

¢\” = min{0.9, V2w}sech(vwz;), j=2,...N 1.

To avoid overshoot, we perform backtrack line search by starting from ¢ = 1 and reducing
to find a € (0, 1] that satisfies the decreasing condition

®(¢" + ayp™) < B(6™)(1 - ca), where p® = —J7T(6®),
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for a small ¢ = 10~*. When this is achieved, we accept and update the next iteration as
pFH1) = ¢*) 1 ap®) | after which we compute JE T(¢*+D) and ¢)*+1. The algorithm
is terminated when the convergence condition ||T(¢**1)||/v/N —2 < ¢, with a small
tolerance i) = 107®. This iterative method yields the solution profile {(z;, ¢;)}_,, from
which we compute the mass integral Q(¢) by using the trapezoidal method.

Figure shows the plot of Q(¢) versus w for two spacings Az = 0.1 and Az = 0.2,
compared to the dependence computed from in the limit L — oo (dashed line). The
latter dependence is interpreted as the limit Ax — 0 in the finite-difference method. The
finite-difference approximation with Az > 0 for the differential equation leads to the
three-branched behavior reported in [I§]. We computed the mass integral for the values
of w in [0.005,0.93] on an equally spaced grid of 100 points. Since the numerical data are
not accurate near w = 1, we perform the quadratic extrapolation to extend the values of
the mass integral from the last numerical data at w = 0.93 into the interval [0.93, 1].

Thus, we conclude that the three-branched behavior of Q(¢) versus w is a numerical
artefact of the finite-difference method.

3.5 ‘
Ax = 0.2
Az = 0.1
3+ -_— e Az — 0 7
2.5 - Oy ~
-~ N
” d S
2+ / N\ . J
< 7’ ~
/ h
1.5+ / .
/
4 -
/
0.5 |/ .
/
0 . . . .
0.2 0.4 0.6 0.8 1
w

FIGURE 6.1. The dependence of the mass integral Q)(¢) computed by the
finite-difference method versus w for Az = 0.1,0.2. The dashed line shows
the same dependence computed by using (6.3)) for L — oco.
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