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Abstract. We study standing periodic waves modeled by the nonlinear Schrödinger
equation with the intensity-dependent dispersion coefficient. Spatial periodic profiles are
smooth if the frequency of the standing waves is below the limiting frequency, for which
the profiles become peaked (piecewise continuously differentiable with a finite jump of
the first derivative). We prove that there exist two families of the periodic waves with
smooth profiles separated by a homoclinic orbit and the period function (the energy-to-
period mapping) is monotonically increasing for the family inside the homoclinic orbit
and decreasing for the family outside the homoclinic orbit. This property allows us to
derive a sharp criterion for the energetic stability of such standing periodic waves under
time evolution if the perturbations are periodic with the same period for both families
and, additionally, for the family outside the homoclinic orbit, spatially odd with respect
to the half-period. By numerically approximating the sharp stability criterion, we show
that both families are energetically stable for small frequencies but become unstable
when the frequency approaches the limiting frequency of the peaked waves.

1. Introduction

We consider the nonlinear Schrödinger (NLS) equation, where the dispersion coefficient
depends linearly on the wave intensity. This model in one spatial dimension can be written
in the normalized form:

iut + (1− |u|2)uxx + |u|2u = 0, (1.1)

where u = u(t, x) and u : R×R→ C. We assume that u(t, ·) is spatially periodic with the
period L for any t ∈ R. If the dispersion coefficient is constant, the model is equivalent
to the cubic focusing NLS equation, one of the fundamental models of nonlinear science
[10, 17]. We refer to (1.1) as the NLS–IDD equation.

1.1. Background and motivations. Mathematical models with the intensity-dependent
dispersion terms have been studied in the physics of the coherently prepared multistate
atoms [13], quantum well waveguides [19], fiber-optics communication systems [23], and
the quantum harmonic oscillators in the presence of nonlinear effective masses [4].

The NLS–IDD equation also arises as the continuum limit of the Salerno lattice model [33],

i∂τψn + (1− |ψn|2)(ψn+1 + ψn−1) + µ|ψn|2ψn = 0, (1.2)

where µ ∈ R is the coefficient of the onsite nonlinearity and ψn = ψn(τ) is the wave
function in (τ, n) ∈ R × Z. If µ = 2 + h2 and ψn(τ) = e2iτu(h2τ, hn) with a smooth
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u = u(t, x), then expanding in powers of the small stepsize h yields the NLS–IDD equation
(1.1) from the Salerno model (1.2) at order O(h2).

The mathematical analysis of model (1.1) without the local cubic term |u|2u was devel-
oped in [32], where it was shown that a continuous family of bright solitons exists among
the standing wave solutions. The spatial profiles of bright solitons have two logarithmic
singularities for the first derivative and the continuous parameter is given by the distance
between the two singularities. The energetic stability of the bright solitons was obtained
in [30] by using the variational characterization of the singular profiles as minimizers of the
mass subject to a fixed energy. Well-posedness of the model was not studied in [30, 32].

A similar model without the local cubic term |u|2u and with the inverted intensity–
dependent coefficient (1−|u|2)−1uxx was considered in [28], where a family of dark solitons
(traveling wave solutions) was shown to have smooth spatial profiles and the limiting black
solitons (standing wave solutions) were shown to be energetically stable as constrained
minimizers of the energy subject to fixed mass and momentum. Dark solitons in the
quasilinear NLS equations with nonconstant dispersion terms were considered in [20, 21,
22]. Both bright and dark solitons were also studied in the NLS equations with regularized
dispersion terms [1, 2, 29].

The NLS–IDD equation (1.1) was studied in [18], where the continuous family of bright
solitons is parameterized by the frequency of the standing wave solution u(t, x) = eiωtφ(x)
with the spatially decaying pofile φ. The profile φ smooth for 0 < ω < 1 and peaked
(piecewise continuously differentiable with a single jump of the first derivative) for ω = 1.
A sharp criterion for energetic stability of bright solitons with respect to the spatially
decaying perturbations in H1(R) was obtained in [18] from the variational characterization
of the smooth profiles as local minimizers of the energy subject to a fixed mass. The sharp
criterion is given by the monotone increase of the mass with respect to the frequency, the
latter condition is checked numerically.

Energetic stability is equivalent to the orbital stability if the local well-posedness of
the NLS-IDD equation (1.1) can be obtained in H1(R). However, the state-of-the-art in
the well-posedness of quasilinear NLS equations is not yet at the level of H1(R). Local
well-posedness of the models which include (1.1) was proven in Sobolev spaces of higher
regularity [15, 25, 31]. More recently, the local well-posedness of quasilinear NLS equations
was established in Hs(R) for s > 2 in [26] and for small data in Hs(R) for s > 1 in [14].
Local well-posedness of quasilinear NLS equations including the NLS–IDD equation (1.1)
was also extended to the periodic domain in Sobolev spaces of higher regularity [7, 8, 9].

The main purpose of this work is to study the energetic stability of standing periodic
waves with the smooth profiles with respect to periodic perturbations of the same period.
The periodic spatial domain is more practical for physical experiments modeled by the
NLS–IDD equation (1.1). The mathematical analysis of stability in the periodic setting
introduces additional challenges because the Morse index in the variational characteriza-
tion may exceed a single negative eigenvalue. We control the Morse index with a precise
analysis of the monotonicity of the period function (the energy-to-period mapping). Sim-
ilarly to the scopes of [18], we obtain a sharp criterion for the energetic stability of the
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smooth periodic waves as local minimizers of the energy in H1
per subject to fixed mass,

provided that the mass at the periodic wave profile is monotonically increasing with re-
spect to frequency ω for 0 < ω < 1. We compute the latter criterion numerically and
point out inaccuracies in the previous numerical approximations in [18] performed for the
case of bright solitons. These main results of our study are described next.

1.2. Main results. We denote the space of square integrable L-periodic functions by
L2
per. For s ≥ 0, the Sobolev space Hs

per is the set of periodic distributions such that

‖f‖Hs
per

:=

(
∞∑

k=−∞

(1 + |k|2)s|f̂(k)|2
)1/2

<∞,

where f̂ is the periodic Fourier transform of f (the Fourier series of f). The space Hs
per

is a Hilbert space with a natural inner product denoted by 〈·, ·〉Hs
per

. When s = 0, the

space Hs
per is isometrically isomorphic to the space L2

per, that is, L2
per = H0

per. The norm

and inner product in L2
per are denoted by ‖ · ‖L2

per
and 〈·, ·〉L2

per
.

The time-dependent NLS–IDD equation (1.1) admits the conserved energy H(u) and
mass Q(u) given by

H(u) =

∫
TL

(
|ux|2 + |u|2 + log(1− |u|2)

)
dx (1.3)

and

Q(u) = −
∫
TL

log(1− |u|2)dx, (1.4)

where
∫
TL

denotes the integral over the periodic domain TL with the spatial period L,
which is independent on the starting point of integration. The conserved quantities are
well defined in the set of functions

X =
{
u ∈ H1

per : ‖u‖L∞ < 1
}
.

The NLS–IDD equation (1.1) also admits the conserved momentum P (u) if u 6= 0, see
[18]. Since the momentum does not play any role in our study, we do not introduce it
here.

We consider standing waves of the form u(t, x) = eiωtφ(x), where ω is the wave fre-
quency. Substituting this ansatz into (1.1), we obtain

− (1− φ2)φ′′ + ωφ− φ3 = 0, (1.5)

which can be rewritten as Newton’s equation for a 1D particle in a potential energy V :

d2φ

dx2
=

(ω − φ2)

1− φ2
φ = −dV

dφ
, V (φ) =

1

2
(ω − φ2) +

1

2
(1− ω) log

1− ω
1− φ2

. (1.6)

The total energy E of Newton’s particle is conserved along every solution of (1.6):

E(φ, φ′) =
1

2
(φ′)2 + V (φ). (1.7)
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The variational characterization of the spatial profile φ is possible since the second-order
equation (1.6) is the Euler–Lagrange equation for the augmented energy functional

G(u) = H(u) + ωQ(u), (1.8)

defined from the conserved energy H(u) and mass Q(u) in (1.3) and (1.4).
The phase portrait in Figure 1.1 represents all bounded solutions of the system (1.6)

for 0 < ω < 1, see also [18]. There exist two families of periodic orbits with smooth
profiles separated by a pair of homoclinic orbits. One family is inside one of the two
homoclinic orbits with the left (negative) periodic orbits being symmetrically reflected
from the right (positive) periodic orbits due to the symmetry transformation: φ → −φ.
The other family is outside the two homoclinic orbits and symmetrically span all four
quadrants of the phase plane.
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Figure 1.1. The phase portrait of system (1.6) for ω = 0.5.

The following theorem summarizes the existence properties of the two families of the
periodic orbits.

Theorem 1.1. Fix the spatial period L > 0 for the periodic domain TL and define

ωL =
2π2

L2 + 2π2
, ΩL = −4π2

L2
.

For any ω ∈ (ωL, 1), there exists a periodic orbit of system (1.6) with the smooth profile
φ satisfying {

0 < φ(x) < 1, ∀ x ∈ TL,
φ(x− x0) = φ(x0 − x), x0 ∈ TL, ∀ x ∈ TL.

(1.9)

For any ω ∈ (ΩL, 1), there exists a periodic orbit of system (1.6) with the smooth profile
φ satisfying{

−1 < φ(x) < 1, ∀ x ∈ TL,
φ(x− x0) = −φ(x0 − x) = φ

(
L
2
− x+ x0

)
, x0 ∈ TL, ∀ x ∈ TL.

(1.10)
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For both families, x0 is an arbitrary translational parameter along the periodic orbit.

Remark 1.2. For simplicity of terminology, we call the family of periodic orbits inside
the homoclinic orbits satisfying (1.9) as the even waves and the family of periodic orbits
outside the homoclinic orbits satisfying (1.10) as the odd waves. Figure 1.1 shows a
former periodic orbit in blue and a latter periodic orbit in red together with its symmetric
reflection. The homoclinic orbits are shown by dashed black lines.

Each family of periodic orbits correspond to the energy level E(φ, φ′) = E given by the
first invariant (1.7). For ω ∈ (0, 1), the family of even waves satisfying (1.9) corresponds
to E ∈ (0, Eω) and the family of odd waves satisfying (1.10) corresponds to E ∈ (Eω,∞),
where

Eω = V (0) =
1

2
ω +

1

2
(1− ω) log(1− ω)

is the energy level corresponding to the homoclinic orbits for the saddle point (0, 0). If
ω ∈ (−∞, 0), the family of odd waves satisfying (1.10) correspond to E ∈ (Eω,∞), where
Eω = V (0) is the energy level corresponding to the center point (0, 0). For each energy
level E(φ, φ′) = E , we can define the period function T (E , ω) by

T (E , ω) =

∮
dφ√

2(E − V (φ))
, (1.11)

where
∮

corresponds to the line integral taken along the closed periodic orbit. Figure
1.2 shows the dependence of T (E , ω) versus E for fixed values of ω ∈ (0, 1), where the
divergence of T (E , ω) corresponds to the homoclinic orbit at E = Eω. The figure suggests
that, for ω ∈ (0, 1), the mapping E → T (E , ω) is monotonically increasing for the even
wave and is monotonically decreasing for the odd wave. These properties are formulated
in the following theorem.

Theorem 1.3. The period function T = T (E , ω) in (1.11) is a C1 function of E ∈
(0,∞)\Eω if ω ∈ (0, 1) and E ∈ (Eω,∞) if ω ∈ (−∞, 0). For any ω ∈ (0, 1), the mapping
(0, Eω) 3 E → T (E , ω) is monotonically increasing. For any ω ∈ (−∞, 1), the mapping
(Eω,∞) 3 E → T (E , ω) is monotonically decreasing.

Due to smoothness and monotonicity of the period function in Theorem 1.3, one can
uniquely define the energy level E = EL(ω) for any spatial period L > 0 in Theorem 1.1
from the root of T (EL(ω), ω) = L, where ω ∈ (ωL, 1) for the even wave and ω ∈ (ΩL, 1) for
the odd wave. Furthermore, the mappings (ωL, 1) 3 ω → EL(ω) and (ΩL, 1) 3 ω → EL(ω)
are C1. These smoothness properties play a central role in the energetic stability analysis
of the periodic waves.

The Hessian operator L = H ′′(φ) + ωQ′′(φ) of the augmented energy functional (1.8)
computed at the critical point with the profile φ is defined as

L =

 L+ 0

0 L−

 ,
L+ = −∂2x + 1 + (ω − 1) 1+φ2

(1−φ2)2 ,

L− = −∂2x + 1 + (ω − 1) 1
(1−φ2) ,

(1.12)
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Figure 1.2. The period function T (E , ω) versus E for fixed values of ω.

The dots denote the cutoff value of E satisfying T (E , ω) = π
√

2(1− ω)/ω
for ω = ωL. The vertical lines show divergence of T (E , ω) at E = Eω.

For simplicity of notations, we set

Hs
per := Hs

per ×Hs
per, L2

per := L2
per × L2

per,

endowed with their usual norms and scalar products. When necessary and since C can
be identified with R2, notations above can also be used for complex-valued functions in
the following sense: for f ∈ Hs

per we have f = f1 + if2 with f1, f2 ∈ Hs
per.

By studying the spectrum of L in L2
per, we obtain the sharp criterion for the energetic

stability of the periodic waves with the spatial profile φ stated in the following theorem.

Theorem 1.4. Fix the spatial period L > 0 as in Theorem 1.1 and set x0 = 0. The profile
φ ∈ H1

per is a C1 function of ω for the even wave in (ωL, 1) and for the odd wave in (ΩL, 1).
For any ω ∈ (ωL, 1), the even wave with the profile φ is a local minimizer of energy H(u)
for a fixed mass Q(u) in H1

per, which is degenerate only due to translational and rotational
symmetries, if and only if the mapping ω → Q(φ) is monotonically increasing. For any
ω ∈ (ΩL, 1), the odd wave with the profile φ is a local minimizer of energy H(u) for a
fixed mass Q(u) in Y ⊂ H1

per, where

Y =

{
u ∈ H1

per : u

(
L

2
− x
)

= −u
(
x− L

2

)
, ∀ x ∈ TL

}
, (1.13)

which is only degenerate by the rotational symmetry, if and only if the mapping ω → Q(φ)
is monotonically increasing.
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By using accurate numerical approximations based on the first invariant (1.7) and the
period function (1.11), we can compute solutions of the implicit equation T (EL(ω), ω) = L
for a fixed spatial period L > 0 and the approximations of the spatial profile φ of the
periodic wave.

Figure 1.3 shows the corresponding results for the even wave satisfying (1.9) with x0 = 0.
The left panel plots ẼL(ω) := EL(ω) − Eω versus ω in (ωL, 1) for L = 2π, 3π, 4π and the
right panel shows the spatial profile φ = φ(x) versus x for L = 4π and ω = 0.3, 0.6, 0.9.
Numerical inaccuracies in the computations occur near ω = 1 and the end points in the
numerical data on the left panel are shown by solid dots. The spatial profile of the even
periodic wave becomes peaked as ω → 1. Solving (1.5) for ω = 1 yields the peaked profile

ω = 1 : φ(x) =
cosh

(
L
2
− |x|

)
cosh

(
L
2

) , x ∈
[
−L

2
,
L

2

]
, (1.14)

which is shown on the right panel by dashed line. The corresponding energy level can be
computed as

EL(ω = 1) = − 1

2 cosh2
(
L
2

) , (1.15)

which is shown on the left panel by open dots. An interpolation between the right solid
dot and the open dot for (1.15) is shown by dotted line.
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Figure 1.3. Numerical approximations for the even waves satisfying (1.9)
with x0 = 0. Left: the dependence of ẼL versus ω for L = 2π, 3π, 4π. Right:
the spatial profile φ versus x for ω = 0.3, 0.6, 0.9 and L = 4π.

Figure 1.4 shows the corresponding results for the odd wave satisfying (1.10) with
x0 = 0 for ω ∈ (ΩL, 1) with ΩL < 0. We note the non-monotone dependence of ẼL(ω) :=
EL(ω)−Eω versus ω on the left panel, which is not an obstacle to our analysis. The spatial
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profile of the periodic wave becomes peaked as ω → 1. Solving (1.5) for ω = 1 yields the
odd spatial profile in the form:

ω = 1 : φ(x) =



−
sinh

(
L
2

+ x
)

sinh
(
L
4

) x ∈
[
−L

2
,−L

4

]
sinhx

sinh
(
L
4

) x ∈
[
−L

4
, L
4

]
sinh

(
L
2
− x
)

sinh
(
L
4

) x ∈
[
L
4
, L
2

]
, (1.16)

which is shown on the right panel by dashed line. The corresponding energy level can be
computed as

EL(ω = 1) =
1

2 sinh2
(
L
2

) , (1.17)

which is shown on the left panel by open dots. The end points in the numerical data on
the left panel are shown by solid dots. An interpolation between the right solid dot and
the open dot for (1.17) is shown by dotted line.
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Figure 1.4. Numerical approximations for the odd waves satisfying (1.10)
with x0 = 0. Left: the dependence of ẼL versus ω for L = 2π, 3π, 4π. Right:
the spatial profile φ versus x for ω = 0.3, 0.6, 0.9 and L = 4π.

By using the numerical approximation of the spatial profile φ, we can also compute
the mass Q(φ) for a fixed spatial period L > 0 and plot it versus ω to verify the sharp
criterion for the energetic stability of the periodic waves given by Theorem 1.4. Figure 1.5
plots Q(φ) versus ω for L = 2π, 3π, 4π. The dashed line shows the dependence of Q(φ)
in the limit L→∞, which corresponds to the solitary waves. The left panel presents the
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mapping ω → Q(φ) for the even wave satisfying (1.9) and the right panel presents the
same for the odd wave satisfying (1.10). The numerical inaccuracies occur near ω = 1 and
the end points of the numerical data are shown by solid dots. By using (1.14) and (1.16),
we are able to compute Q(φ) analytically at ω = 1 for the peaked waves, see (6.4) and
(6.6) below, and show the result in Figure 1.5 by open dots. An interpolation between
the right solid dot and the open dot is shown by dotted line.
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Figure 1.5. Dependence of Q(φ) versus ω for L = 2π, 3π, 4π and in the
limit L → ∞ (dashed line). Left panel: the even wave satisfying (1.9).
Right panel: the odd wave satisfying (1.10).

Based on the numerical approximations and the sharp criterion in Theorem 1.4, we
conclude from Figure 1.5 that both even and odd periodic waves are energetically stable
for smaller values of ω and energetically unstable for values of ω near ω = 1. To be
precise, we formulate the following conjecture.

Conjecture 1.5. There is ω∗ ∈ (ωL, 1) and Ω∗ ∈ (0, 1) such that the even wave satisfying
(1.9) is energetically stable for ω ∈ (ωL, ω∗) and unstable for ω ∈ (ω∗, 1), whereas the odd
wave satisfying (1.10) is energetically stable for ω ∈ (ΩL,Ω∗) and unstable for ω ∈ (Ω∗, 1).

Remark 1.6. The numerical data in Figures 1.2, 1.3, 1.4, and 1.5 are obtained with high
numerical accuracy, controlled within 10−8 error, since the numerical error only arises
in the computation of the period function T (E , ω) and the wave profile φ(x) from the
corresponding integrals. The dependence of Q(φ) versus ω in the limit L → ∞ shown in
Figure 1.5 contradicts the claim from [18, Figure 5] that the dependence is monotonically
increasing near ω = 0 and ω = 1 and decreasing for ω ∈ (ω1, ω2) for some 0 < ω1 < ω2 <
1. Although the numerical data on Q(φ) versus ω in [18] was consistent with the numerical
approximations of unstable eigenvalues in the spectral stability problem, see same Figure
5 in [18], we have found that the claim of stability of bright solitons near ω = 1 in [18] is
a numerical artefact. It is related with the center-difference approximations of the second-
order derivatives with a large stepsize, which were used in [18]. By reducing the stepsize
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or performing computations with adaptive methods directly from (1.7) and (1.11), we have
found that Q(φ) is monotonically decreasing in ω near ω = 1. Although our numerical
data has a tiny gap near ω = 1 due to the lack of numerical accuracy, comparison between
the last numerical data (solid right dots) and the analytically computed limiting value of
Q(φ) at ω = 1 (open dots) suggest the monotone decrease of Q(φ) near ω = 1.

1.3. Methodology and organization of the paper. The existence of periodic orbits
stated in Theorem 1.1 is obvious from the phase portrait shown in Figure 1.1. Neverthe-
less, we complement this dynamical system picture with the functional-analytic setup and
prove the existence of periodic orbits based on the implicit function theorem. The family
of even waves satisfying (1.9) with x0 = 0 is studied in a subspace of the Sobolev space
Hs

per, s ≥ 0 constituted by even periodic functions and denoted by Hs
per,e. The family

of odd waves satisfying (1.10) with x0 = 0 is studied in a subspace constituted by odd
periodic functions and denoted by Hs

per,o. These results are described in Section 2.
The monotonicity of the period function stated in Theorem 1.3 is proven with two

different methods for the even and odd waves. For the even wave, we use Chicone’s
theorem [5] and confirm the monotonicity criterion based on the explicit analysis of the
logarithmic and polynomial functions. For the odd wave, we estimate the period function
by using convexity of the integrand functions. These results are described in Section 3.

The energetic stability criterion stated in Theorem 1.4 is proven in two steps. As a
first step, we analyze the Morse and nullity indices of the Schrödinger operators L± :
H2

per ⊂ L2
per → L2

per given by (1.12), where the Morse index denoted by n(L±) is the
number of negative eigenvalues with the account of their multiplicities and the nullity
index denoted by z(L±) is the multiplicity of the zero eigenvalue. For the even wave, we
prove that n(L+) = z(L+) = z(L−) = 1 and n(L−) = 0. For the odd wave, we prove that
n(L+) = 2, n(L−) = z(L+) = z(L−) = 1. These results are described in Section 4.

As a second step, we analyze the Morse and nullity indices of the constrained operator
L+|{φ0}⊥ , where the constraint with φ0 ≡ φ

1−φ2 is due to the fixed mass Q restriction

[12]. We show that n(L+|{φ0}⊥) = 0 and z(L+|{φ0}⊥) = 1 for the even wave if and
only if the mapping ω → Q(φ) is monotonically increasing, which yields Theorem 1.4
for the even wave. We also show that n(L+|{φ0}⊥) = 1 and z(L+|{φ0}⊥) = 1 for the
odd wave if and only if the mapping ω → Q(φ) is monotonically increasing. This is
still inconclusive for the energetic stability of the odd wave. However, restricting H1

per

to the space Y of odd perturbations with respect to the half-period allows us to obtain
n(L+|{φ0}⊥∩Y) = n(L−|Y) = 0 and z(L+|{φ0}⊥∩Y) = z(L−|Y) = 1 if and only if the mapping
ω → Q(φ) is monotonically increasing, which yields Theorem 1.4 for the odd wave. These
results are described in Section 5. We note that the idea of restricting the space of periodic
functions to odd perturbations with respect to the half-period is proposed in [11] for the
stability analysis of odd waves in the cubic NLS equation.

Finally, the numerical methods used to compute the data in Figures 1.2, 1.3, 1.4, and
1.5 are described in Section 6. We also elaborate Remark 1.6 about the limit L → ∞
with more details.



STABILITY OF PERIODIC WAVES IN THE NLS-IDD MODEL 11

2. Existence of periodic waves

We prove Theorem 1.1 within a functional analysis framework. Section 2.1 defines the
basic facts used in the proofs. Sections 2.2 and 2.3 provide global continuations of the
even and odd waves for the fixed spatial period L > 0.

2.1. Preliminary facts. We first recall some facts regarding Fredholm operators on
a Banach space X. An unbounded operator S : D(S) ⊂ X → X is called a Fredholm
operator if Range(S) is closed and dim( Ker(S)) and dim(Coker(S)) are both finite, where
Coker(S) denotes the quotient space given by Coker(S) = X

/
Range(S) . The index of

an unbounded Fredholm operator S : D(S) ⊂ X → X is given by

ind(S) = dim( Ker(S))− dim(Coker(S)) ∈ Z.
A Fredholm operator is of index zero if ind(S) = 0.

The following lemma provides a result that is useful for our purposes since we obtain a
suitable relation between c(S) = dim(Coker(S)) and z(S) = dim( Ker(S)).

Lemma 2.1. Let H be a real Hilbert space and let K ⊂ H be a closed subspace. Then,
H /K ∼= K⊥.

Proof. Let us define T : H /K → K⊥ given by T (u) = u − PKu for any u ∈ H, where
PK is the orthogonal projection from H onto the closed subspace K. Since ||T (u)||H =
||u− PKu||, we obtain by the Pythagorean theorem

||u||2H = ||PKu||2H + ||u− PKu||2H = ||PKu||2H + ||T (u)||2H .
The equality implies ||T (u)||2H = ||u||2H − ||PKu||2H ≤ ||u||2H , and thus, T is a bounded
operator. T is a one-to-one operator since T (u) = 0 implies u = PKu and this fact
automatically implies u ∈ K. To show that T is onto, we consider v ∈ K⊥. By the
definition of orthogonal projection from H onto the closed subspace K, there exists u ∈ H
such that v = u− PKu, and T is onto as desired. �

Remark 2.2. If S : D(S) ⊂ H → H is an unbounded self-adjoint linear operator with a
closed range on a Hilbert space H, then we have by Lemma 2.1 that

H
/

Range(S) = H
/

Ker(S)⊥ ∼= Ker(S)⊥⊥ = Ker(S).

Therefore, if dim( Ker(S)) is finite, then S is always a Fredholm operator of index zero.

We conclude this section by stating a version of the implicit function theorem used in
our study, see [3, Theorem 8.3.1].

Theorem 2.3. Suppose that X and Y are Banach spaces, that F : X×R→ Y is of class
Ck, k ≥ 2, and that F(x0, λ0) = 0 ∈ Y for some (x0, λ0) ∈ X × R. Suppose also that

(1) ∂gF(g, λ) is a Fredholm operator of index zero when F(g, λ) = 0 for all (g, λ) ∈ U .
Here U ⊂ X × R denotes an open subset.

(2) For some (x0, λ0) ∈ X ×R, ker(Lλ0) is one dimensional, where Lλ0 = ∂gF(x0, λ0).
This means that ker(Lλ0) = {h ∈ X; h = sh0 for some s ∈ R}, h0 ∈ X\{0}.

(3) The transversality condition holds: ∂2λ,gF[(x0, λ0)](1, h0) /∈ Range(Lλ0).
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Then, there exists a0 > 0 and a branch of solutions {(χ(a),Λ(a)); a ∈ (−a0, a0)} ⊂ X×R,
such that Λ(0) = λ0 and χ(0) = x0. In addition, we have

• F(χ(a),Λ(a)) = 0 for all a ∈ (−a0, a0).
• a 7→ Λ(a) and a 7→ χ(a) are of class Ck−1 on (−a0, a0).
• there exists an open set U0 ⊂ X × R such that (x0, λ0) ∈ U0 and

{(g, λ) ∈ U0; F(g, λ) = 0, g 6= 0} = {(χ(a),Λ(a)); a ∈ (−a0, a0)}.
• If F is analytic, then χ and Λ are analytic functions on (−a0, a0).

2.2. Existence of (positive) even periodic waves. To prove the existence of even
periodic waves, we consider the subspace L2

per,e contained in L2
per, which consists of even

periodic functions, that is, functions in the Hilbert space

L2
per,e =

{
f ∈ L2

per : f(−x) = f(x) a.e. x ∈
[
−L

2
,
L

2

]}
,

where the spatial period L > 0 is fixed. The first result establishes a local bifurcation of
small (positive) even periodic waves from the (positive) constant solution φ =

√
ω of the

second-order equation (1.5).

Proposition 2.4. There exists a0 > 0 such that for all a ∈ (−a0, a0) there exists an even
periodic solution φ ∈ H2

per,e to the second-order equation (1.5) given by

φ(x) =
√
ω +

∞∑
n=1

φn(x)an, (2.1)

where {φn}n∈N are uniquely determined in H2
per,e. The frequency ω of the L-periodic wave

is given by

ω = ωL +
∞∑
n=1

ω2na
2n, (2.2)

where ωL = 2π2

L2+2π2 and {ω2n}n∈N are uniquely determined constants. Furthermore, we
have ω > ωL for small a 6= 0.

Proof. We outline the steps used to prove the existence of small–amplitude periodic waves
using Theorem 2.3. Let F : H2

per,e × R→ L2
per,e be the smooth map defined by

F(g, λ) = −(1− g2)g′′ + λg − g3.
We see that F(g, λ) = 0 if and only if g ∈ H2

per,e satisfies (1.5) with corresponding frequency
λ = ω ∈ R. Let λ0 > 0 be fixed. The Fréchet derivative of the function F with respect to
the first variable at (

√
λ0, λ0) is given by

DgF(
√
λ0, λ0)f = −(1− λ0)f ′′ − 2λ0f.

The nontrivial kernel of DgF(
√
λ0, λ0) is determined by functions h ∈ H2

per,e such that

ĥ(n)

(
(1− λ0)

(
2πn

L

)2

− 2λ0

)
= 0, n ∈ N\{0},
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where ĥ(n) is the n-th coefficient of the Fourier series of h ∈ L2
per. We see thatDgF(

√
λ0, λ0)

has nontrivial kernel if, and only if, λ0 =
( 2πn
L )

2

2+( 2πn
L )

2 > 0 for some n ∈ N\{0}. In this case,

we have

KerDgF(
√
λ0, λ0) = Span(ϕ̃n), ϕ̃n(x) = cos

(
2πn

L
x

)
, n ∈ N\{0}.

In addition, since DgF(
√
λ0, λ0) is a self-adjoint operator defined in L2

per,e with domain

H2
per,e, the transversality condition is also satisfied:

cos

(
2πn

L
x

)
/∈ KerDgF(

√
λ0, λ0)

⊥ = RangeDgF(
√
λ0, λ0).

To obtain periodic solutions with minimal spatial period L > 0, we must consider
n = 1. Thus, we have λ0 = 2π2

L2+2π2 = ωL and define the set S given by

S = {(g, λ) ∈ U ; F(g, λ) = 0},
where

U =
{

(g, λ) ∈ H2
per,e × (λ0, 1) ; 0 < g < 1

}
.

Let (g, λ) ∈ S be a solution of the equation F(g, λ) = 0. First, we prove that the linear
operator

DgF (g, λ) = −(1− g2)∂2x + λ− 3g2 + 2gg′′

is a Fredholm operator of index zero. In fact, in order to simplify the notation, let us
denote

Q = DgF (g, λ) and P = (1− g2)−1Q.
First, P is clearly a self-adjoint operator. Thus, σ(P ) = σdisc(P ) ∪ σess(P ), where σ(P )
denotes the spectrum of P , and σdisc(P ) and σess(P ) denote, respectively, the discrete
and essential spectra of P . Since H2

per,e is compactly embedded in L2
per,e, the operator

P has compact resolvent. Consequently, σess(P ) = ∅, and σ(P ) = σdisc(P ) consists of
isolated eigenvalues with finite algebraic multiplicities (see e.g., [16, Section III.6]). Since
(g, λ) ∈ S, we see that 0 is an eigenvalue for P associated with the eigenfunction g′ and
z(P ) is finite. A basis for the subspace Ker(P ) can be taken as {v1, · · · , vn}.

On one hand, by Remark 2.2 we have

L2
per,e

/
Range(Q) ∼= Range(Q)⊥ = Ker(Q∗) = Ker(P (1− g2)).

Since {v1(1− g2)−1, · · · , vn(1− g2)−1} is a basis for the subspace Ker(Q∗), it follows that
z(P ) = z(Q∗), and z(Q∗) is finite. On the other hand, we have Ker(P ) = Ker(Q), so
that z(Q∗) = z(P ) = z(Q) and the index of the Fredholm operator Q is zero as desired.

Thus, by defining λ0 = ωL ∈ (0, 1), the local bifurcation theory established in The-
orem 2.3 guarantees the existence of an open interval I ⊂ (0, 1) near ωL, an open ball
B(
√
ωL, r) ⊂ H2

per,e, around the equilibrium solution
√
ωL, for some r > 0 and a smooth

mapping
ω ∈ I 7→ φ ∈ B(

√
ωL, r) ⊂ H2

per,e, (2.3)
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such that F(φ, ω) = 0 for all ω ∈ I and φ ∈ B(
√
ωL, r).

Next, we determine the first terms in the expansions (2.1) and (2.2). To simplify the
notation, let us define s =

√
ωL. The Taylor expansion of the square-root function at ωL

yields
√
ω = s+

ω2

2s
a2 +O(a4).

The correction terms ω2 and {φ1, φ2, φ3} are uniquely determined by the following recur-
rence relations

O(a) : −(1− s2)φ′′1 − 2s2φ1 = 0,
O(a2) : −(1− s2)φ′′2 − 2s2φ2 + 2sφ1φ

′′
1 − 3sφ2

1 = 0,
O(a3) : −(1− s2)φ′′3 − 2s2φ3 + ω2(φ

′′
1 − 2φ1) + 2s(φ1φ

′′
2 + φ2φ

′′
1)

−6sφ1φ2 − φ3
1 + φ2

1φ
′′
1 = 0.

(2.4)

We see that φ1(x) = cos(kx) satisfies the equation containing the term O(a) for k = 2π
L

since ωL = 2π2

L2+2π2 . Solving the inhomogeneous equation for O(a2), we obtain

φ2(x) =
s2 + 3

12s(1− s2)
(cos(2kx)− 3).

We need to find the constant ω2 in the third equation of (2.4). The inhomogeneous
equation at O(a3) admits a solution φ3 ∈ H2

per,e if, and only if, the right-hand side is
orthogonal to φ1, which selects uniquely the correction

ω2 =
s4 + 6s2 − 9

6(s2 − 1)
=

9− 6ωL − ω2
L

6(1− ωL)
.

Since ω2 > 0, the solution (2.1) with (2.2) exists for ω > ωL near ωL. This finishes the
proof of the proposition. �

Remark 2.5. The bifurcating solution obtained in Proposition 2.4 is unique in H2
per,e, up

to the parametrization provided by the bifurcation parameter. This uniqueness is ensured
since the Lyapunov–Schmidt reduction requires the application of the implicit function
theorem. In the case of a one-dimensional kernel, the bifurcation occurs along a single
branch of solutions. The implicit function theorem then guarantees the existence of a
unique smooth curve of solutions that bifurcates from the constant solution.

The next result establishes a global continuation of (positive) even periodic waves from
the local bifurcating solution obtained in Proposition 2.4.

Proposition 2.6. The local solution obtained in Proposition 2.4 is global, that is, φ exists
for all ω ∈ (ωL, 1). In addition, the pair (φ, ω) ∈ H2

per,e×(ωL, 1) is continuous with respect
to the parameter ω ∈ (ωL, 1) and it satisfies (1.5).

Proof. To extend the local curve in (2.3) to a global curve, we need to prove that every
bounded and closed subset R ⊂ S is a compact set contained in H2

per,e × (ωL, 1). To
this end, we want to prove that R is sequentially compact, that is, if {(φm, ωm)}m∈N is a
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sequence in R, there exists a subsequence of {(φm, ωm)}m∈N that converges to a point in
R. Up to a subsequence, we obtain

ωm → ω in [ωL, 1] , (2.5)

and

φm ⇀ φ in H2
per,e, (2.6)

as m → +∞. Next, {φm} is a bounded sequence in H2
per,e and it satisfies 0 < φm < 1.

Since the embedding H2
per,e ↪→ H1

per,e is compact and H1
per,e is a Banach algebra, we obtain

φ3
m → φ3 in H1

per,e as m → +∞. In particular, we have φ2
m → φ2 in H1

per,e ↪→ Cper,e and
by (2.6), we obtain

(1− φ2
m)φ′′m ⇀ (1− φ2)φ′′ in L2

per,e, (2.7)

as m→ +∞. Since in particular φ3
m → φ3 in L2

per,e as m→ +∞, we obtain by (2.5) and

(2.7) that the pair (φ, ω) ∈ H2
per,e × [ωL, 1] satisfies

− (1− φ2)φ′′ + ωφ− φ3 = 0. (2.8)

We see from (2.8) that ω < 1, since smooth periodic solutions to this equation do not exist
when ω = 1. Moreover, if ω = ωL, the constant solution φ =

√
ωL is the only solution

to (2.8). Thus ω ∈ (ωL, 1) as requested and we have φ > 0. On the other hand, if there
exists t0 ∈ [0, L] such that limt→t0 φ(t) = 1, then ω = 1, which is a contradiction, since
in this case there are no periodic solutions of (2.8). Therefore, we obtain 0 < φ < 1 as
requested.

Finally, by (2.2) the frequency ω of the periodic wave is not constant. By applying [3,
Theorem 9.1.1] we can extend globally the local bifurcation curve given in (2.3). More
precisely, there is a continuous mapping

ω ∈ (ωL, 1) 7→ φ ∈ H2
per,e,

where φ solves equation (2.8). �

Remark 2.7. Since φ is continuous, satisfies 0 < φ < 1, and there is no t± ∈ [0, L]
such that limt→t− φ(t) = 0 and limt→t+ φ(t) = 1, we obtain that there exist m and M that
depend on ω ∈ (ωL, 1) such that 0 < m < M < 1 and m < φ(x) ≤M for every x ∈ [0, L].
In fact, since φ is continuous on the compact set [0, L], we have

m = min
[0,L]

φ(x), M = max
[0,L]

φ(x).

Propositions 2.4 and 2.6, as well as Remark 2.7, justify the existence result stated in
Theorem 1.1 for the even wave satisfying (1.9) with x0 = 0.

2.3. Existence of odd periodic waves. To prove the existence of odd periodic waves,
we consider the subspace L2

per,o contained in L2
per, which consists of odd periodic functions,

that is,

L2
per,o =

{
f ∈ L2

per : f(−x) = −f(x) a.e. x ∈
[
−L

2
,
L

2

]}
,
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where the spatial period L > 0 is fixed. The first result gives a local bifurcation of small
odd periodic waves from the zero solution φ = 0 of the second-order equation (1.5).

Proposition 2.8. There exists a0 > 0 such that for all a ∈ (−a0, a0) there exists an odd
periodic solution φ ∈ H2

per,o to the second-order equation (1.5) given by

φ(x) =
∞∑
n=1

φ2n−1(x)a2n−1, (2.9)

where {φn}n∈N are uniquely determined functions in L2
per,o. The frequency ω of the L-

periodic wave is given by

ω = ΩL +
∞∑
n=1

ω2na
2n, (2.10)

where ΩL = −4π2

L2 and {ω2n}n∈N are uniquely determined constants. Furthermore, we have
ω > ΩL for small a 6= 0.

Proof. The proof is similar to that of Proposition 2.4 and therefore, we only outline the
main steps. Indeed, let G : H2

per,o × R→ L2
per,o be the smooth map defined by

G(g, λ) = −(1− g2)g′′ + λg − g3.
We see that G(g, λ) = 0 if, and only if, g ∈ H2

per,o satisfies (1.5) with corresponding
frequency λ = ω ∈ R. Let λ0 ∈ R be fixed. The Fréchet derivative of the function G with
respect to the first variable at (0, λ0) is then given by

DgG(0, λ0)f = −f ′′ + λ0f.

The nontrivial kernel of DgG(0, λ0) is determined by functions h ∈ H2
per,o such that

ĥ(n)

(
−
(

2πn

L

)2

+ λ0

)
= 0, n ∈ N\{0}.

SinceDgG(0, λ0) has nontrivial kernel if and only if λ0 = −
(
2πn
L

)2
< 0 for some n ∈ N\{0},

we have

KerDgG(0, λ0) = [ϕ̃n], ϕ̃n(x) = sin

(
2πn

L
x

)
, n ∈ N\{0}.

To obtain periodic solutions with the minimal spatial period L > 0, we must consider
n = 1. Thus, we have λ0 = −4π2

L2 = ΩL.
The remainder of the proof is identical to the one in Proposition 2.4 but in order to

complete the proof, we shall compute the first terms in the expansions (2.9) and (2.10).
Indeed, for k = 2π

L
the corrections terms ω2 and {φ1, φ3} are uniquely determined by the

following recurrence relations{
O(a) : −φ′′1 − k2φ1 = 0,
O(a3) : −φ′′3 − k2φ3 + ω2φ1 + φ2

1φ
′′
1 − φ3

1 = 0.
(2.11)

We see that φ1(x) = sin(kx) satisfies the equation containing the term O(a). To find
the constant ω2 in the second equation of (2.11), we use the fact that the inhomogeneous
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equation at O(a3) admits a solution φ3 ∈ H2
per,o if, and only if, the right-hand side is

orthogonal to φ1, which selects uniquely the correction

ω2 =
3

4
(1 + k2).

Since ω2 > 0, the solution (2.9) with (2.10) exists for ω > ΩL near ΩL. Finally, we solve
the inhomogeneous equation for O(a3) and obtain

φ3(x) = −1 + k2

32k2
sin(3kx).

This finishes the proof of the proposition. �

Remark 2.9. Using analogous computations as in Proposition 2.6, we can establish that
the local solution obtained in Proposition 2.8 is global, that is, φ exists for all ω ∈ (ΩL, 1).
In addition, the pair (φ, ω) ∈ H2

per,o × (ΩL, 1) is continuous with respect to the parameter
ω ∈ (ΩL, 1) and it satisfies (1.5). Furthermore, there exists M that depends on ω ∈ (ΩL, 1)
such that −1 < −M < 0 < M < 1 and

M = max
[0,L]

φ(x) = −min
[0,L]

φ(x).

Proposition 2.8 and Remark 2.9 justify the existence result stated in Theorem 1.1 for
the odd wave satisfying (1.10) with x0 = 0.

3. Monotonicity of the period function

We prove Theorem 1.3 by analysing the period function T = T (E , ω) introduced in
(1.11). The period function is associated with the periodic orbits on the phase plane for
the system of ordinary differential equations

φ′ = ξ,

ξ′ = ωφ
1−φ2 −

φ3

1−φ2 .
(3.1)

It follows from the theory of ordinary differential equations that the solution φ depends
smoothly on the parameter E = E(φ, φ′), where the energy function is

E(φ, φ′) =
1

2
(φ′)2 + V (φ), V (φ) =

1

2
(ω − φ2) +

1

2
(1− ω) log

1− ω
1− φ2

. (3.2)

For ω ∈ (0, 1), the even wave satisfying (1.9) corresponds to E ∈ (0, Eω) and the odd
wave satisfying (1.10) corresponds to E ∈ (Eω,∞), where Eω = E(0, 0) corresponds to the
energy level of the pair of homoclinic orbits from the saddle point (0, 0) which surround
the center points (±

√
ω, 0). We note that

V (±
√
ω) = 0 and lim

φ→±1
V (φ) = +∞.

Furthermore, V (φ) ≥ 0 for all φ ∈ [−1, 1] and V ′(φ) > 0 for all φ ∈ (
√
ω, 1).

Section 3.1 gives the proof of ∂ET (E , ω) > 0, E ∈ (0, Eω) for the periodic orbits inside
the homoclinic orbit (the even waves). Section 3.2 gives the proof of ∂ET (E , ω) < 0,
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E ∈ (Eω,∞) for the periodic orbits outside the pair of homoclinic orbits (the odd waves).
The latter result also holds for ω ∈ (−∞, 0) and E ∈ (Eω,∞), for which Eω = E(0, 0)
corresponds to the energy level of the center point (0, 0).

3.1. Monotonicity for even periodic waves. By the main theorem in [5], the period
function T (E , ω) is monotonically increasing in E in (0, Eω) if I ′′(φ) > 0 for φ ∈ (0, 1),
where

I(φ) =
V (φ)

[V ′(φ)]2
. (3.3)

Note that the theorem in [5] can be applied because V (
√
ω) = 0 is properly normalized

at the center point (
√
ω, 0). Computing

V ′(φ) = −φ(ω − φ2)

1− φ2
, V ′′(φ) = −ω + (ω − 3)φ2 + φ4

(1− φ2)2
, V ′′′(φ) =

2(1− ω)φ(φ2 + 3)

(1− φ2)3
,

we obtain from (3.3) that

I ′′(φ) =
6V (V ′′)2 − 2V V ′V ′′′ − 3(V ′)2V ′′

(V ′)4
=:

P (φ)

(V ′(φ))4(1− φ2)4
, (3.4)

where

P (φ) = 3φ2(ω − φ2)2A(φ) +
[
3A(φ)2 + 2(1− ω)φ2(3 + φ2)(ω − φ2)

]
B(φ),

with

A(φ) := ω + (ω − 3)φ2 + φ4, B(φ) := ω − φ2 + (1− ω) log
1− ω
1− φ2

.

Since P depends on φ2, we introduce t = φ2 and redefine P , A, and B as functions of t:

P (t) = 3t(ω − t)2A(t) +
[
3A(t)2 + 2(1− ω)t(3 + t)(ω − t)

]
B(t), t ∈ [0, 1), (3.5)

with

A(t) = ω + (ω − 3)t+ t2, B(t) = ω − t+ (1− ω) log
1− ω
1− t

. (3.6)

Figure 3.1 shows the dependence of P versus t for ω = 0.5. The plot suggests that

• P (t) has a quadruple zero at t = ω,
• P (t) > 0 for t ∈ (0, ω) ∪ (ω, 1).

These facts are proven rigorously in Lemmas 3.1 and 3.3 below.

Lemma 3.1. The function P given by (3.5) and (3.6) is real analytic on (0, 1) and it
admits a zero of the quadruple order at t = ω, such that

P ′(ω) = P ′′(ω) = P ′′′(ω) = 0, P (4)(ω) =
4(9− 6ω − ω2)

1− ω
> 0. (3.7)

Consequently, there exists δ > 0 such that P (t) > 0 for t ∈ [ω − δ, ω + δ]\{ω}.
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Figure 3.1. The dependence of P versus t given by (3.5) for ω = 0.5.

Proof. The function P (t) is real analytic on (0, 1), because the logarithmic function in B
is analytic for t < 1 and other functions are polynomials in t. The Taylor series of P at
t = ω can be written as

P (t) =
∞∑
n=0

P (n)(ω)

n!
(t− ω)n.

We have B(ω) = 0, and

B′(t) = −ω − t
1− t

, B′′(t) =
1− ω

(1− t)2
, (3.8)

which implies

B(t) =
(t− ω)2

2(1− ω)
+

(t− ω)3

3(1− ω)2
+

(t− ω)4

4(1− ω)3
+O((t− ω)5). (3.9)

Furthermore, we define

G(t) := 3A(t)2 + 2(1− ω)t(3 + t)(ω − t) (3.10)

and expand

G(t) = 3ω2 − 12ωt+ (21− 4ω + ω2)t2 − (20− 8ω)t3 + 3t4

= 12ω2(1− ω)2 + 2ω(1− ω)(15− 19ω)(t− ω)

+ (1− ω)(21− 43ω)(t− ω)2 +O((t− ω)3). (3.11)
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Similarly, we expand

3tA(t) = 3t(ω + (ω − 3)t+ t2)

= −6ω2(1− ω)− 15ω(1− ω)(t− ω)− (9− 12ω)(t− ω)2 +O((t− ω)3). (3.12)

Substituting (3.9) into (3.5) yields

P (t) = (t− ω)2
[
3tA(t) +G(t)

(
1

2(1− ω)
+

(t− ω)

3(1− ω)2
+

(t− ω)2

4(1− ω)3
+O((t− ω)3)

)]
.

By using (3.11) and (3.12), we compute coefficients of powers (t− ω) in P (t):

(t− ω)2 : − 6ω2(1− ω) +
12ω2(1− ω)2

2(1− ω)
= 0,

(t− ω)3 : − 15ω(1− ω) +
2ω(1− ω)(15− 19ω)

2(1− ω)
+

12ω2(1− ω)2

3(1− ω)2
= 0,

(t− ω)4 : − (9− 12ω) +
(1− ω)(21− 43ω)

2(1− ω)
+

2ω(1− ω)(15− 19ω)

3(1− ω)2
+

12ω2(1− ω)2

4(1− ω)3

=
9− 6ω − ω2

6(1− ω)
,

This yields (3.7).
The remainder of P (t) can be written in the integral form:

P (t) =
1

3!
(t− ω)4

∫ 1

0

(1− s)3P (4)(ω + s(t− ω)) ds.

and there exists δ′ > 0, such that P (4)(t) is continuous on t ∈ (ω − δ′, ω + δ′). By taking
ε = 1

2
P (4)(ω) and δ < δ′, there is a local strictly positive estimation

P (t) ≥ 1

48
P (4)(ω)(t− ω)4 > 0, t ∈ [ω − δ, ω) ∪ (ω, ω + δ],

which yields the assertion on positivity of P (t) near t = ω. �

To estimate the global behavior of the function P (t) for t ∈ (0, 1), we use the following
bounds on the function B(t) obtained from (3.8).

Lemma 3.2. The function B defined in (3.6) can be estimated as

(ω − t)2

2(1− t)
≤ B(t) ≤ (ω − t)2

2(1− ω)
, t ∈ (0, ω), (3.13)

and

B(t) ≤ (ω − t)2

2(1− t)
, t ∈ (ω, 1). (3.14)

Proof. It follows from (3.8) that B can be written in the integral form:

B(t) =

∫ ω

t

ω − s
1− s

ds, t ∈ (0, 1).



STABILITY OF PERIODIC WAVES IN THE NLS-IDD MODEL 21

For t ∈ (0, ω), let 0 < t ≤ s ≤ ω, so that 1
1−t ≤

1
1−s ≤

1
1−ω . Then, we have

B(t) ≤ 1

1− ω

∫ ω

t

(ω − s) ds =
(ω − t)2

2(1− ω)

and

B(t) ≥ 1

1− t

∫ ω

t

(ω − s) ds =
(ω − t)2

2(1− t)
.

This yields (3.13). Similarly, for t ∈ (ω, 1), let ω ≤ s ≤ t < 1, so that 1
1−t ≥

1
1−s . Then,

we have

B(t) ≤ 1

1− t

∫ ω

t

(ω − s) ds =
(ω − t)2

2(1− t)
.

This yields (3.14). �

We use Lemma 3.2 to extend Lemma 3.1 and to guarantee that P (t) is positive for
every t ∈ (0, 1). This is obtained by controlling the derivative of P in t separately for
t ∈ (0, ω) and t ∈ (ω, 1).

Lemma 3.3. The function P is monotonically decreasing on (0, ω) and increasing on
(ω, 1).

Proof. To show that P ′(t) < 0 for t ∈ (0, ω) and P ′(t) > 0 for t ∈ (ω, 1), we use (3.5)
rewritten as

P (t) = Q(t) +B(t)G(t),

where Q(t) := 3t(ω − t)2A(t) with A and B defined in (3.6) and G defined in (3.10). By
using (3.8) for B′(t), as well as

Q′(t) = 3(t− ω)
[
5t3 + (ω − 12)t2 + ω(9− 2ω)t− ω2

]
,

G′(t) = 2
[
6t3 + 6(2ω − 5)t2 + (ω2 − 4ω + 21)t− 6ω

]
,

we obtain

P ′(t) = Q′(t) +B′(t)G(t) +B(t)G′(t)

=

[
B(t)− (ω − t)2

2(1− t)

]
G′(t) +

(ω − t)2

1− t

[
1

2
G′(t) +

1− t
(ω − t)2

(Q′(t) +B′(t)G(t))

]
=

[
B(t)− (ω − t)2

2(1− t)

]
G′(t)− (ω − t)3

1− t
[
6 + (1− ω)t− 6t2

]
, (3.15)

where the last identity is derived directly from

1− t
(ω − t)2

(Q′(t) +B′(t)G(t))

=
1

t− ω
[
3(1− t)

[
5t3 + (ω − 12)t2 + ω(9− 2ω)t− ω2

]
+G(t)

]
=

1

t− ω
[
−12t4 + (31 + 5ω)t3 + (7ω2 − 28ω − 15)t2 + 3ω(5− ω)t

]
= −12t3 + (31− 7ω)t2 + 3(ω − 5)t
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and

1

2
G′(t) +

1− t
(ω − t)2

(Q′(t) +B′(t)G(t)) = −6t3 + (5ω + 1)t2 + (ω2 − ω + 6)t− 6ω

= (ω − t)
[
6t2 + (ω − 1)t− 6

]
.

For t ∈ (0, ω), we use the estimate (3.13) and obtain

0 ≤ B(t)− (ω − t)2

2(1− t)
≤ (ω − t)2

2(1− ω)
− (ω − t)2

2(1− t)
=

(ω − t)3

2(1− t)(1− ω)
. (3.16)

Since

6 + (1− ω)t− 6t2 ≥ min{6, 1− ω} > 0, t ∈ [0, 1],

for every ω ∈ (0, 1), it follows from (3.15) and the lower bound in (3.16) that P ′(t) < 0
for t ∈ (0, ω) if G′(t) < 0. On the other hand, if G′(t) > 0, then we use the upper bound
in (3.16) and obtain

P ′(t) ≤ (ω − t)3

(1− t)(1− ω)

[
1

2
G′(t)− (1− ω)(6 + t− ωt− 6t2)

]
=

2(ω − t)3

(1− t)(1− ω)

[
3t3 + 3(ω − 4)t2 + (10− ω)t− 3

]
.

We show that the last expression in the brackets is negative, which yields P ′(t) < 0 for
t ∈ (0, ω) if G′(t) > 0. Indeed, we have

3t3 + 3(ω − 4)t2 + (10− ω)t− 3 = 3(t− 1)3 − (1− ω)t(3t− 1)

which implies

3(t− 1)3 − (1− ω)t(3t− 1) ≤ 3(t− 1)3 < 0,
1

3
≤ t < 1

and

3(t− 1)3 − (1− ω)t(3t− 1) = (t− 1)

[
3(t− 1)2 +

1− ω
1− t

t(3t− 1)

]
< 0, 0 < t ≤ 1

3
,

since 1−ω
1−t < 1 for t ∈ (0, ω) and

3(t− 1)2 +
1− ω
1− t

t(3t− 1) ≥ 3(t− 1)2 + t(3t− 1) = 3− 7t+ 6t2 ≥ 4

3
, 0 ≤ t ≤ 1

3
.

For t ∈ (ω, 1), we use again that

1

2
G′(t)− (1− ω)(6 + (1− ω)t− 6t2) = 2

[
3(t− 1)3 − (1− ω)t(3t− 1)

]
< 0,

which yields
G′(t)

6 + (1− ω)t− 6t2
< 2(1− ω).
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By using (3.14), we know that B(t) − (ω−t)2
2(1−t) ≤ 0, so that we can estimate (3.15) for

t ∈ (ω, 1) as follows:

P ′(t) = (6 + (1− ω)t− 6t2)

{[
B(t)− (ω − t)2

2(1− t)

]
G′(t)

6 + (1− ω)t− 6t2
− (ω − t)3

1− t

}
> (6 + (1− ω)t− 6t2)

{
2(1− ω)

[
B(t)− (ω − t)2

2(1− t)

]
− (ω − t)3

1− t

}
= (6 + (1− ω)t− 6t2)

{
2(1− ω)B(t)− (t− ω)2

}
.

By using the definition of B in (3.6) and the variable x := t−ω
1−ω ∈ (0, 1), we get Taylor

series expansion

2(1− ω)B(t)− (t− ω)2 = 2(1− ω)2 log
1− ω
1− t

− 2(1− ω)(t− ω)− (t− ω)2

= 2(1− ω)2
[
− log(1− x)− x− 1

2
x2
]

= 2(1− ω)2
∞∑
n=3

xn

n
,

which is strictly positive for x ∈ (0, 1). Hence, P ′(t) > 0 for t ∈ (ω, 1). �

The period function T (E , ω) given by (1.11) can be rewritten for the even periodic
waves explicitly by

Teven(E , ω) = 2

∫ M

m

dφ√
2E + (1− ω) log(1− φ2)− (1− ω) log(1− ω) + φ2 − ω

, (3.17)

where
m := min

x∈[−L
2
,L
2
]
φ(x) ∈ (0,

√
ω) and M := max

x∈[−L
2
,L
2
]
φ(x) ∈ (

√
ω, 1)

are given by roots of V (φ) = E for E ∈ (0, Eω), see Remark 2.7. By using Lemma 3.3, we
prove monotonicity of the period function in E stated in Theorem 1.3.

Proposition 3.4. For every ω ∈ (0, 1), the period function Teven(E , ω) given by (3.17) is
monotonically increasing in E ∈ (0, Eω) such that

lim
E→0

Teven(E , ω) = 2π

√
1− ω

2ω
, lim

E→Eω
Teven(E , ω) = +∞,

Proof. Lemma 3.3 implies that P (t) > 0 for t ∈ (0, 1)\{ω}, which yields I ′′(φ) > 0 for
φ ∈ (0, 1) by (3.4). Since V (φ) ≥ 0 and V (

√
ω) = 0, we can apply the main theorem from

[5] by using the translated coordinate ϕ = φ−
√
ω. Since I ′′(φ) > 0, the main theorem of

[5] states that the period function Teven(E , ω) is monotonically increasing in E ∈ (0, Eω)
for every ω ∈ (0, 1). The limit for Teven(E , ω) as E → 0 follows from the linearization of
the center point (

√
ω, 0). The divergence of Teven(E , ω) as E → Eω follows from the infinite

period of the homoclinic orbit to the saddle equilibrium point (0, 0). �
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3.2. Monotonicity for odd periodic waves. The period function T (E , ω) given by
(1.11) can be rewritten for the odd periodic waves explicitly by

Todd(E , ω) = 4

∫ M

0

dφ√
2E + (1− ω) log(1− φ2)− (1− ω) log(1− ω) + φ2 − ω

, (3.18)

where

M := − min
x∈[−L

2
,L
2
]
φ(x) ∈ (0,

√
ω) = max

x∈[−L
2
,L
2
]
φ(x) ∈ (

√
ω, 1)

is a positive root of V (φ) = E for E ∈ (Eω,∞), see Remark 2.9. The proof of monotonicity
of the period function in E is easier for the odd periodic waves. The following proposition
justifies the result stated in Theorem 1.3.

Proposition 3.5. For every ω ∈ (0, 1), the period function Todd(E , ω) given by (3.18) is
monotonically decreasing in E ∈ (Eω,∞) such that

lim
E→Eω

Todd(E , ω) = +∞, lim
E→∞

Todd(E , ω) = 0.

Proof. Using the same transformation t = φ2 as in Section 3.1, we redefine V (φ) in (3.2)
as

W (t) :=
1

2
(ω − t) +

1

2
(1− ω) log

1− ω
1− t

, t ∈ (0, 1).

Similarly, we redefine M ∈ (
√
ω, 1) as q := M2 ∈ (ω, 1). Since E = V (M) = W (q), we

use the change of variables t = φ2 for t ∈ (0, q) and t = qu for u ∈ (0, 1) and rewrite the
integral (3.18) in the equivalent form:

Todd(E , ω) = 4

∫ M

0

dφ√
2[V (M)− V (φ)]

=
√

2

∫ q

0

dt√
t[W (q)−W (t)]

=

∫ 1

0

√
2q√

u[W (q)−W (qu)]
du.

Since V ′(φ) > 0 for φ ∈ (
√
ω, 1), we have W ′(q) > 0. The chain rule

∂Todd
∂E

=
∂Todd
∂q

(
∂E
∂q

)−1
=

1

W ′(q)

∂Todd
∂q

implies that for a fixed ω ∈ (0, 1), monotonicity of Todd(E , ω) in E and q coincide. Although
the integral for Todd(E , ω) is weakly singular at u = 0 and u = 1, the derivative of
Todd(E , ω) in q yields also weakly singular integrals and, hence, it can be computed by
pointwise differentiation as in

∂Todd
∂q

=
1√
2q

∫ 1

0

du√
u[W (q)−W (qu)]

−
√

2q

2

∫ 1

0

W ′(q)− uW ′(qu)√
u[W (q)−W (qu)]3

du,
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where the second integral remains weakly singular at u = 1 since W (q)−W (uq) = O(1−u)
and W ′(q)− uW ′(qu) = O(1− u) as u→ 1. The function W (t) is strictly convex since

W ′(t) =
t− ω

2(1− t)
W ′′(t) =

1− ω
2(1− t)2

> 0.

If F (t) := tW ′(t) −W (t), then F ′(t) = tW ′′(t) > 0 for t ∈ (0, 1), so that F (q) > F (qu)
for every u ∈ (0, 1). This implies for u ∈ (0, 1) that

qW ′(q)−W (q) > quW ′(qu)−W (qu), ⇒ W (q)−W (qu) < q[W ′(q)− uW ′(qu)].

Since
√
u[W (q)−W (qu)] > 0 for u ∈ (0, 1), it follows that

1
√
q

1√
u[W (q)−W (qu)]

<
√
q

W ′(q)− uW ′(qu)
√
u [W (q)−W (qu)]3/2

, u ∈ (0, 1),

which proves that
∂Todd
∂q

< 0, q ∈ (ω, 1),

This yields the desired monotonicity in E by the chain rule. The divergence of Todd(E , ω)
as E → Eω follows from the infinite period of the homoclinic orbit to the saddle equilibrium
point (0, 0). The zero limit of Todd(E , ω) as E → ∞ follows from (3.18) by the dominated
convergence theorem since M ∈ (

√
ω, 1) is finite. �

Remark 3.6. The result of Proposition 3.5 is true for ω ∈ (−∞, 0) with the only change

lim
E→Eω

Todd(E , ω) =
2π√
|ω|

.

which is computed from the linearization of the center point (0, 0) for ω ∈ (−∞, 0). All
other computations are identical to the proof of Proposition 3.5.

4. Spectral analysis near the periodic waves

Consider the Hessian operator L = H ′′(φ) + ωQ′′(φ) defined in (1.12) as an operator
on L2

per with the domain in H2
per. Since L is a diagonal composition of the Schrödinger

operators L+ and L− in L2
per with the domain in H2

per, the spectrum of L is a superposition
of the spectra of L+ and L−. According to [24], the spectrum of either L+ or L− consists
of an unbounded sequence of real eigenvalues

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 ... < λ2n−1 ≤ λ2n · · · ,

where equality means that λ2n−1 = λ2n is a double eigenvalue. By [6, Theorem 3.1.2(ii)],
if ϕ is an eigenfunction associated to the eigenvalue λ2n−1 or λ2n, then ϕ has exactly 2n
zeroes on the periodic domain.

To characterize the Morse index of L± denoted by n(L±) and the nullity index of L±
denoted by z(L±), we use the following theorem, see [27, Theorem 3.1].
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Theorem 4.1. Let M = −∂2x +Q(x) be a linear Schrödinger operator with the even, L-
periodic, bounded potential Q and let {ϕ1, ϕ2} be linearly independent solutions ofMϕ = 0
satisfying {

ϕ1(0) = 1,
ϕ′1(0) = 0,

and

{
ϕ2(0) = 0,
ϕ′2(0) = 1.

(4.1)

Assume that there exists θ ∈ R such that

ϕ1(x+ L) = ϕ1(x) + θϕ2(x), and ϕ2(x+ L) = ϕ2(x), (4.2)

and that the L-periodic eigenfunction ϕ2 has two zeros on the periodic domain. The zero
eigenvalue of M in L2

per is simple if θ 6= 0 and double if θ = 0. It is the second eigenvalue
of M if θ ≥ 0 and the third eigenvalue of M if θ < 0.

Remark 4.2. Since the linear operator L+ is related to the linearization of the second-
order equation (1.6) on the periodic orbit with the profile φ, the two solutions in Theorem
4.1 are constructed from the first invariant (1.7) and the parameter θ can be computed
from the derivative of the period function T (E , ω) with respect to E. See [12, Section 3.2].

4.1. Spectral analysis of even periodic waves. We proceed separately with the anal-
ysis of the Schrödinger operators L+ and L− defined in (1.12) and computed at the even
waves of Theorem 1.1 with the profile φ satisfying (1.9).

Proposition 4.3. n(L+) = z(L+) = 1, that is, 0 is a simple eigenvalue of L+ associated
with the eigenfunction φ′, and there is only one negative eigenvalue, which is simple. In
addition, the remainder of the spectrum of L+ in L2

per consists of a discrete set of positive
eigenvalues with finite multiplicities.

Proof. On comparison with M in Theorem 4.1, we have

Q = 1 + (ω − 1)
1 + φ2

(1− φ2)2
, (4.3)

where 0 < φ < 1 is the spatial profile of the L-periodic orbit in Theorem 1.1 satisfying
(1.9) with x0 = 0 and ω ∈ (ωL, 1). Hence, Q is even, L-periodic, and bounded.

Consider the family of periodic orbits of the second-order equation (1.6) associated
with the period function T (E , ω) for the energy level E = E(φ, φ′) given by the first
invariant (1.7) with E ∈ (0, Eω). Due to monotonicity of the mapping E → T (E , ω) for
fixed ω ∈ (0, 1) in Theorem 1.3, there exists a unique E = EL(ω) of T (EL(ω), ω) = L for a
fixed spatial period L > 0 and ω ∈ (ωL, 1). We further define φL(ω) ∈ (0, 1) as a root of
V (φ) = E for E = EL(ω). Two roots exist for the maximum and minimum of the spatial
profile φ, see Remark 2.7. Since

V ′(φ) = −φ(ω − φ2)

1− φ2
,

we have V ′(φL(ω)) 6= 0 for either choice for φL(ω). Equations (1.6) and (1.7) imply that

φ′′(0) = −V ′(φL(ω)) and
∂φ(0)

∂E

∣∣∣∣
E=EL(ω)

=
1

V ′(φL(ω))
, (4.4)
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where the family of periodic orbits parameterized by E is restricted to even functions by
using the translational invariance of the second-order equation (1.6).

Since L+ is a linearized operator for (1.6), we obtain two linearly independent solutions
of L+ϕ = 0 in Theorem 4.1 by using

ϕ1(x) =
∂φ(x)

∂E

∣∣∣∣
E=EL(ω)

V ′(φL(ω)), ϕ2(x) = − φ′(x)

V ′(φL(ω))
. (4.5)

Since φ is even, we obtain (4.1) from (4.4). The second solution ϕ2 is L-periodic and has
two zeros on the periodic domain according to the assumption of Theorem 4.1. Computing
the first solution ϕ1 after the period L, we obtain

ϕ1(L) =
∂φ(L)

∂E

∣∣∣∣
E=EL(ω)

V ′(φL(ω)) and ϕ′1(L) =
∂φ′(L)

∂E

∣∣∣∣
E=EL(ω)

V ′(φL(ω)) =: θ.

Since φ(T (E , ω)) = φ(0) and φ′(T (E , ω)) = 0, taking derivative of these equations in E at
the energy level E = EL(ω) implies that ϕ1(L) = 1 and

θ = −∂T
∂E

∣∣∣∣
E=EL(ω)

φ′′(0)V ′(φL(ω)) =
∂T

∂E

∣∣∣∣
E=EL(ω)

[V ′(φL(ω))]
2
,

where we have used (4.4) again. The L-periodicity of Q implies that ϕ1 satisfies (4.2)
with the sign of θ given by the sign of the derivative of the mapping E → T (E , ω) at
E = EL(ω). Since θ > 0 by Proposition 3.4, Theorem 4.1 proves the assertion. �

Remark 4.4. Let L > 0 be fixed. Using the implicit function theorem and the fact
that Ker(L+) = Span(φ′) with φ′ being odd, it is possible to prove that the mapping
ω 7→ φ ∈ H2

per,e is C1 for every ω ∈ (ωL, 1). In addition, differentiating (1.6) with respect
to ω yields the derivative equation:

L+
dφ

dω
= − φ

1− φ2
. (4.6)

This improves Proposition 2.6, where the mapping ω 7→ φ ∈ H2
per,e is only stated to be

continuous for every ω ∈ (ωL, 1).

Proposition 4.5. n(L−) = 0 and z(L−) = 1, that is, 0 is a simple eigenvalue of L−
associated with the eigenfunction φ and the remainder of the spectrum of L− in L2

per

consists of a discrete set of positive eigenvalues with finite multiplicities.

Proof. Since 0 < φ < 1 we obtain from the definition of L− that

L− = −∂2x +
ω − φ2

1− φ2
.

Since φ is positive and satisfies (1.5), we obtain that L−φ = 0. By standard Floquet
theory in [24], we deduce that zero is the first eigenvalue of L− which is simple. Again,
the last part of the proposition is obtained from the fact that L− is a self-adjoint operator
and the compact embedding H2

per ↪→ L2
per. �

Propositions 4.3 and 4.5 imply the following result for the case of even periodic waves.
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Corollary 4.6. The Hessian operator L defined by (1.12) in L2
per with domain H2

per has
one negative eigenvalue which is simple. Zero is a double eigenvalue with associated
eigenfunctions (φ′, 0) and (0, φ). In addition, the remainder of the spectrum consists of a
discrete set of positive eigenvalues with finite multiplicities.

4.2. Spectral analysis of odd periodic waves. We proceed separately with the anal-
ysis of the Schrödinger operators L+ and L− defined in (1.12) and computed at the odd
waves of Theorem 1.1 with the profile φ satisfying (1.10).

Proposition 4.7. n(L+) = 2 and z(L+) = 1, that is, 0 is a simple eigenvalue of L+

associated with the eigenfunction φ′, and there are two negative simple eigenvalues. The
remainder of the spectrum of L+ in L2

per consists of a discrete set of positive eigenvalues
with finite multiplicities.

Proof. We can prove the assertion in two different ways.
Proof I. The potential Q in the linear operator M of Theorem 4.1 is defined by the

same expression (4.3), where −1 < φ < 1 is the spatial profile of the L-periodic orbit in
Theorem 1.1 satisfying (1.10) with x0 = 0 and ω ∈ (ΩL, 1). Hence, Q is even, L-periodic,
and bounded. Since φ is even with respect to x = L

4
due to the second property in (1.10),

Q has the minimum period L
2

and it is also even with respect to x = L
4
. Therefore, we can

repeat the proof of Proposition 4.3 and introduce the family of odd periodic orbits for the
energy level E = E(φ, φ′) with E ∈ (Eω,∞). Again, due to monotonicity of the mapping
E → T (E , ω) for fixed ω ∈ (−∞, 1) in Theorem 1.3, there exists a unique E = EL(ω) of
T (EL(ω), ω) = L for a fixed spatial period L > 0 and ω ∈ (ΩL, 1). We further define
φL(ω) ∈ (0, 1) as a unique root of V (φ) = E for E = EL(ω), see Remark 2.9, with the
same property (4.4) and the same definition (4.5) of two solutions of L+ϕ = 0.

To satisfy the initial data in (4.1) for the two solutions, we can use the translational
invariance of the second-order equation (1.6) and translate the family of odd periodic
orbits to the family of even periodic orbits by

φ(x)→ φ

(
x− 1

4
T (E , ω)

)
. (4.7)

Then, assumptions of Theorem 4.1 are satisfied and the second solution ϕ2 is L-periodic
and has two zeros on the periodic domain, whereas the first solution ϕ1 satisfies (4.2) with
the same definition of θ:

θ =
∂T

∂E

∣∣∣∣
E=EL(ω)

[V ′(φL(ω))]
2
.

Since θ < 0 by Proposition 3.5, Theorem 4.1 proves the assertion for every ω ∈ (ΩL, 1).
Proof II. We define the restrictions of L+ to the odd and even subspaces L2

per,o ⊂ L2
per

and L2
per,e ⊂ L2

per and denote them by L+,o and L+,e, respectively. Since φ is odd, φ′ is an
element of Ker(L+,e) but is not an element of Ker(L+,o). Using (1.6), we have for any
ω ∈ (ΩL, 1),

(L+,oφ, φ)L2
per

= 2(ω − 1)

∫ L

0

φ4

(1− φ2)2
dx < 0.
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This implies by Courant’s minimax characterization of eigenvalues of the self-adjoint
operator L+,o that n(L+,o) ≥ 1.

By Krein-Rutman’s Theorem, the first eigenvalue of L+ is simple and it is associated
to a sign-definite eigenfunction which needs to be even. Since 0 is an eigenvalue of L+,e

associated with the sign-varying eigenfunction φ′, this implies that n(L+,e) ≥ 1. Thus,
we have n(L+) = n(L+,o) + n(L+,e) ≥ 2, but since φ′ has only two zeros on the periodic
domain, the zero eigenvalue is nothing but the third eigenvalue of L+ by Theorem 4.1
which further implies the assertion for every ω ∈ (ΩL, 1). �

Remark 4.8. Let L > 0 be fixed. Using the implicit function theorem and the fact that
Ker(L+) = Span(φ′) with φ′ being even, it is possible to prove again that the mapping
ω 7→ φ ∈ H2

per,o is C1 for every ω ∈ (ΩL, 1) with the same derivative equation (4.6).

Proposition 4.9. n(L−) = 1 and z(L−) = 1, that is, 0 is a simple eigenvalue of L−
associated with the eigenfunction φ, and there is only one negative eigenvalue, which is
simple. The remainder of the spectrum of L− in L2

per consists of a discrete set of positive
eigenvalues with finite multiplicities.

Proof. On comparison with M in Theorem 4.1, we have

Q = 1 +
ω − 1

1− φ2
, (4.8)

where −1 < φ < 1 for every ω ∈ (ΩL, 1). Similarly to Proof I of Proposition 4.7, the
L-periodic and bounded Q in (4.8) is even with respect to both x = 0 and x = L

4
and has

the minimal period L
2
. After the translation (4.7) with E = EL(ω), the lowest eigenvalue

of L+ in L2
per,o is at 0, associated with the translated eigenfunction

φ′(x)→ φ′
(
x− L

4

)
,

which is now odd. It follows from the relation between L− and L+:

L− = L+ +
2(1− ω)φ2

(1− φ2)2
, ω < 1,

that the lowest eigenvalue of L− in L2
per,o is greater than the lowest eigenvalue of L+ in

L2
per,o. Therefore, L− is strictly positive in L2

per,o.

To study eigenvalues of L− in L2
per,e after the translation (4.7) with E = EL(ω), we note

that L− has the zero eigenvalue in L2
per,e associated with the translated eigenfunction

φ(x)→ φ

(
x− L

4

)
,

which is now even. Since this eigenfunction for the zero eigenvalue of L− in L2
per,e has two

zeros on the periodic domain, there exists a negative eigenvalue of L− in L2
per,e and by

Theorem 4.1, 0 is the second simple eigenvalue of L− in L2
per,e. Combining with positivity

of L− in L2
per,o, we have the assertion. �
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Propositions 4.7 and 4.9 imply the following result for the case of odd periodic waves.

Corollary 4.10. The Hessian operator L defined by (1.12) in L2
per with domain H2

per

has three negative eigenvalues, which are semi-simple. Zero is a double eigenvalue with
associated eigenfunctions (φ′, 0) and (0, φ). In addition, the remainder of the spectrum
consists of a discrete set of positive eigenvalues with finite multiplicities.

5. Constrained energy minimization of periodic waves

For the wave profile φ ∈ H1
per given by either even or odd periodic wave in Theorem

1.1, we can define the energy H(φ) and mass Q(φ) computed from (1.3) and (1.4). We
recall from Remarks 4.4 and 4.8 that the mapping ω → φ ∈ H1

per is C1 for either even or

odd periodic wave. Since φ ∈ H1
per is a critical point of the augmented energy functional

G(u) given by (1.8), we have

d

dω
G(φ) =

d

dω
H(φ) + ω

d

dω
Q(φ) +Q(φ) = Q(φ),

which implies that the mapping ω → G(φ) is C2 and

d2

dω2
G(φ) =

d

dω
Q(φ) = 2〈 φ

1− φ2
,
dφ

dω
〉L2

per
.

By Corollaries 4.6 and 4.10, the Morse index for the Hessian operator L = H ′′(φ)+ωQ′′(φ)
given by (1.12) is nonzero so that φ ∈ H1

per is a saddle point of G(u). We further clarify

if φ ∈ H1
per is a local minimizer of energy H(u) under the constraint of fixed mass Q(u),

which is degenerate only due to symmetries.
The NLS–IDD equation (1.1) can be formulated as a Hamiltonian system in the co-

ordinate u = p + iq with (p, q) ∈ H1
per. The two basic symmetries of the NLS–IDD

equation (1.1) are the translation and rotation symmetries. If u = u(t, x) is a solution,
so are e−iθu(t, x) and u(x− ξ, t) for any θ, ξ ∈ R. Considering u = p+ iq, this yields the
invariance under the two transformations given by

S1(θ)

(
p
q

)
:=

(
cos θ − sin θ
sin θ cos θ

)(
p
q

)
(5.1)

and

S2(ξ)

(
p
q

)
:=

(
p(· − ξ, ·)
q(· − ξ, ·)

)
. (5.2)

A standing wave solution of the form u(t, x) = eiωtφ(x) is given by

S1(ωt)

(
φ(x)

0

)
=

(
cos(ωt)
sin(ωt)

)
φ(x).

The actions S1 and S2 in (5.1) and (5.2) define unitary groups in H1
per with infinitesimal

generators given by

S ′1(0) :=

(
0 −1
1 0

)
and S ′2(0) =

(
1 0
0 1

)
∂x.
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Separating the variables for the perturbation as

u(t, x) = eiωt (φ(x) + p(x, t) + iq(x, t))

we obtain the two-dimensional kernel of the Hessian operator (1.12) spanned by the two
symmetry transformations:

S ′1(0)

(
φ
0

)
=

(
0
φ

)
and S ′2(0)

(
φ
0

)
=

(
φ′

0

)
.

These symmetry modes agree with the eigenfunctions in Ker(L) given by Corollaries 4.6
and 4.10.

If we consider variation of energy H(u) under fixed mass Q(u), then we define the linear
constraint on the real part of the perturbation:

〈φ0, p〉L2
per

= 0, φ0 ≡
φ

1− φ2
. (5.3)

The Morse index of L+ acting on p changes under the constraint and we study how it
changes separately for the even and odd periodic waves.

5.1. Constrained energy minimization of even periodic solutions. Under the con-
straint (5.3), we define the Morse and nullity indices of the constrained operator L+|{φ0}⊥
and denote them by n(L+|{φ0}⊥) and z(L+|{φ0}⊥).

Proposition 5.1. n(L+|{φ0}⊥) = 0 and z(L+|{φ0}⊥) = 1 if and only if the mapping
ω → Q(φ) is monotonically increasing at ω ∈ (ωL, 1).

Proof. Since 〈φ0, φ
′〉L2

per
= 0, we have φ′ ∈ Ker(L+|{φ0}⊥) by Proposition 4.3. It follows

by [12, Theorem 2.7] that

n(L+|{φ0}⊥) = n(L+)− 1 = 0, z(L+|{φ0}⊥) = z(L+) = 1

if and only if

〈L−1+ φ0, φ0〉L2
per
< 0,

where equation (4.6) implies that

〈L−1+ φ0, φ0〉L2
per

= −〈φ0,
dφ

dω
〉L2

per
= −1

2

d

dω
Q(φ) = −1

2

d2

dω2
G(φ).

This completes the proof of the assertion. �

Propositions 4.5 and 5.1 imply the following result, which yields the assertion of The-
orem 1.4 for even periodic waves.

Corollary 5.2. The Hessian operator L defined by (1.12) in L2
per with domain H2

per under
the constraint (5.3) is non-negative and admits a double zero eigenvalue with associated
eigenfunctions (φ′, 0) and (0, φ) if and only if the mapping ω → Q(φ) is monotonically
increasing at ω ∈ (ωL, 1).
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5.2. Constrained energy minimization of odd periodic solutions. We recall the
definition (1.13) for Y ⊂ H1

per spanned by functions which are odd with respect to the
half-period. We define the Morse and nullity indices of the constrained operator L−|Y and
denote them by n(L−|Y) and z(L−|Y). Under the additional constraint (5.3), we define
the Morse and nullity indices of the constrained operator L+|{φ0}⊥∩Y and denote them by
n(L+|{φ0}⊥∩Y) and z(L+|{φ0}⊥∩Y).

Proposition 5.3. n(L+|{φ0}⊥∩Y) = z(L+|{φ0}⊥∩Y) = 0 if and only if the mapping ω →
Q(φ) is monotonically increasing at ω ∈ (ΩL, 1). Furthermore, n(L−|Y) = 0 and z(L−|Y) =
1.

Proof. Since φ′ /∈ Y and φ ∈ Y , we have φ′ /∈ Ker(L+|Y) and φ ∈ Ker(L−|Y) so that
z(L+|Y) = 0 and z(L−|Y) = 1. Since the eigenfunctions of L+ and L− for the smallest
(negative) eigenvalue are even with respect to the half-period, we also have n(L+|Y) = 1
and n(L−|Y) = 0. In addition, we have φ0 ∈ Y . It follows by [12, Theorem 2.7] that

n(L+|{φ0∩Y}⊥) = n(L+|Y)− 1 = 0, z(L+|{φ0∩Y}⊥) = z(L+|Y) = 0

if and only if
〈L−1+ φ0, φ0〉L2

per
< 0,

where equation (4.6) implies again that

〈L−1+ φ0, φ0〉L2
per

= −〈φ0,
dφ

dω
〉L2

per
= −1

2

d

dω
Q(φ) = −1

2

d2

dω2
G(φ).

This completes the proof of the assertion. �

Proposition 5.3 implies the following result, which yields the assertion of Theorem 1.4
for odd periodic waves.

Corollary 5.4. The Hessian operator L defined by (1.12) in L2
per with domain H2

per ∩ Y
under the constraint (5.3) is non-negative and admits a simple zero eigenvalue with the
associated eigenfunction (0, φ) if and only if the mapping ω → Q(φ) is monotonically
increasing at ω ∈ (ΩL, 1).

6. Numerical approximations

Given a fixed ω ∈ (0, 1), the energy level of homoclinic orbit Eω ∈ (0,∞) is computed,
and then the period function T (E , ω) for the even and odd periodic waves is approximated
separately by using (3.17) and (3.18), respectively. The period function is plotted on
Figure 1.2.

For the even waves, since the period function diverges as E → E−ω , the grid on (0, Eω) are
defined in two regions (Eω − 10−3, Eω) with 2000 equally spaced grid points and (0, Eω −
10−3) with 300 equally spaced grid points. For the odd waves, the grids are defined
analogously as on (Eω, Eω + 10−2) with 100 grid points and (Eω + 10−2, 0.5) with 300
grid points. We evaluate the integrals with the absolute and relative tolerances given by
εabs = 10−10 and εrel = 10−8 respectively. Selected values ω = 0.3, 0.5, 0.7, 0.9 are plotted

in Figure 1.2 with T = 2π
√

1−ω
2ω

at E = 0 represented by solid dots.
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Once the period function T (E , ω) is computed, we fix the spatial period L > 0 and find
the uniquely defined energy level EL(ω) from a root of T (EL(ω), ω) = L. This is possible
due to monotonicity of the period function with respect to E in Theorem 1.3. We use
Newton’s root-finding method for a grid {ωj}Mj=1 of values of ω in either (ωL, 1) or (ΩL, 1),

see Theorems 1.1 and 1.3. We thus obtain the values {Ej}Mj=1 for EL(ωj), which are plotted

on the left panels of Figures 1.3 and 1.4 relative to Eω, for ẼL(ω) = EL(ω) − Eω. Thus,
the solid dots for ω = ωL correspond to ẼL(ω) = −Eω in Figure 1.3 and the solid dots for
ω = ΩL correspond to ẼL(ω) = 0 on Figure 1.4.

Numerical inaccuracies occur in the computations of EL(ω) near ω = 1 due to the wave
profiles becoming steep, and this is independent of the grid {ωj}Mj=1. The solid dots on the
left panels of Figures 1.3 and 1.4 show the end points for which the accuracy is verified
within 10−8 computational error. The limiting values of EL(ω) at ω = 1 obtained from
(1.15) and (1.17) are shown by open dots on the left panels of Figures 1.3 and 1.4. An
interpolation is performed between the last numerical data for EL(ω) and the value of
EL(ω = 1) and it is shown by the dotted line on the left panels of Figures 1.3 and 1.4.

For the computed set {(Ei, ωi)}Mi=1, the profile φ = φ(x) of the even periodic wave
satisfying (1.9) with x0 = 0 is obtained by numerical integration of

x = Feven(φ) =

∫ M

φ

dφ√
2EL(ω)− (ω − φ2)− (1− ω) log 1−ω

1−φ2

, φ ∈ [m,M ], (6.1)

where m and M are obtained from two positive roots of V (φ) = EL(ω) for ω ∈ (ωL, 1)
and EL(ω) ∈ (0, Eω), see Remark 2.7. The solution profile is defined implicitly as x =
Feven(φ) ∈

[
0, L

2

]
with φ(0) = M and φ

(
L
2

)
= m. It is extended from

[
0, L

2

]
to
[
−L

2
, 0
]

by
using the even reflection: φ(−x) = φ(x). This yields the wave profiles on the right panel
of Figure 1.3. The dashed line shows the peaked profile at ω = 1 given analytically by
(1.14).

For the computed set {(Ei, ωi)}Mi=1, the profile φ = φ(x) of the odd periodic wave
satisfying (1.10) with x0 = 0 is obtained by numerical integration of

x = Fodd(φ) = −
∫ φ

0

dφ√
2EL(ω)− (ω − φ2)− (1− ω) log 1−ω

1−φ2

, φ ∈ [0,M ], (6.2)

where M is obtained from the only positive root of V (φ) = EL(ω) for ω ∈ (ΩL, 1) and
EL(ω) ∈ (Eω,∞), see Remark 2.9. The solution profile is defined implicitly as x =
Fodd(φ) ∈

[
0, L

4

]
with φ(0) = 0 and φ

(
L
4

)
= M . It is extended from

[
0, L

4

]
to
[
−L

2
, 0
]

by using the symmetries of the odd periodic wave: φ(−x) = −φ(x) = −φ
(
L
2
− x
)
. This

yields the wave profiles on the right panel of Figure 1.4. The dashed line shows the peaked
profile at ω = 1 given analytically by (1.16).
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We compute the mass Q(φ) shown in Figure 1.5 versus ω by using the integration in
the φ variable. For the even periodic wave, we use

Q(φ) = −2

∫ L/2

0

log(1−φ2) dx = 2

∫ M

φ

log(1− φ2)√
2EL(ω)− (ω − φ2)− (1− ω) log 1−ω

1−φ2

dφ. (6.3)

Computing the integral numerically for {(Ei, ωi)}Mi=1 yields the left panel of Figure 1.5.
The numerical data are again missing near ω = 1 and the last available data is shown
by the solid dots, for which the accuracy of 10−8 is guaranteed. The open dots show the
limiting values of Q(φ) at ω = 1, which can be computed analytically as

ω = 1 : Q(φ) = 2L log

[
2 cosh

(
L

2

)]
− L2 +

π2

6
− Li2(e

−2L), (6.4)

where Li2 denotes the dilogarithm function

Li2(z) := −
∫ z

0

ln(1− u)

u
du.

Interpolation between the last available data (right solid dots) and the limiting value of
Q(φ) at ω = 1 (open dots) is shown by the dotted line on Figure 1.5.

The dashed line on the left panel of Figure 1.5 shows the limiting value of Q(φ) versus
ω in the soliton case with L =∞, for which the integral for Q(φ) is still computed on the
compact interval. The dependence of Q(φ) versus ω is similar to the periodic case L <∞
and displays a single maximum before the peak for which

ω = 1, L =∞ : Q(φ) =
π2

6
.

For the odd periodic wave, we use

Q(φ) = −4

∫ L/4

0

log(1− φ2) dx = 4

∫ φ

0

log(1− φ2)√
2EL(ω)− (ω − φ2)− (1− ω) log 1−ω

1−φ2

dφ. (6.5)

Computing the integral numerically for {(Ei, ωi)}Mi=1 yields the right panel of Figure 1.5.
The limiting value of Q(φ) at ω = 1 is computed analytically as

ω = 1 : Q(φ) = 2L log

[
2 sinh

(
L

4

)]
− L2

2
+
π2

3
− 2Li2(e

−L). (6.6)

We note that

ω = 1, L =∞ : Q(φ) =
π2

3
which is double compared to the case of the even periodic wave. This corresponds to the
fact that the odd periodic wave represents two solitons on a single period for large L.

Table 1 represents the numerical values of Q(φ) used in Figure 1.5 for ω = 1. These
numerical values are computed from (6.4) and (6.6).

Finally, we expand Remark 1.6 to discuss the three-branched behavior of Q(φ) versus
ω in the soliton limit L = ∞ observed in [18] and disputed in Figure 1.5. We cannot
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L Q (even, ω = 1) Q (odd, ω = 1)
2π 1.66837567259328 2.73100651970082
3π 1.64645514903036 3.11961052401896
4π 1.64502171315626 3.24288332619890

Table 1. The numerical values of Q(φ) used in Figure 1.5 for ω = 1.

reproduce the three-branched behavior by using (6.3) and (6.5). Even if we take fewer
number of grid points, we would evaluate Q(φ) with a lower accuracy but still observe
the two-branched behavior of Q(φ) versus ω in Figure 1.5.

The reason for the three-branched behavior of Q(φ) observed in [18] is due to the finite-
difference approximation applied to the differential equation (1.5) and to the Hessian
operator L in (1.12) with the uniform grid of x values. The larger grid spacing leads
to inaccurate computations of φ near the maximum φ(0) = M and results in highly
inaccurate computations of Q(φ).

We fix ω ∈ (0, 1) and consider the differential equation (1.5) on the truncated interval
[−L,L] with L = 20. Since the bright solitons decay exponentially to zero at infinity, we
can use the Dirichlet boundary conditions φ(±L) = 0. We replace [−L,L] by the uniform
grid of N points {xi}Ni=1 with the spacing ∆x = 2L

N−1 and compute approximations for

the solution profile {φi}Ni=1 with φ1 = φN = 0. The second derivative can be constructed
using the central difference method as {(D2φ)j}N−1j=2 given by

(D2φ)j =
φj−1 − 2φj + φj+1

(∆x)2
, j = 2, . . . N − 1.

The residual of the differential equation (1.5) is defined by

Rj = (1− φ2
j)(D

2φ)j − (ω − φ2
j)φj, j = 2, . . . N − 1,

and we introduce the mapping T : RN−2 → RN−2 such that T (φ) = R. The first derivative
of the mapping is given by the Jacobian matrix J = ∇T ∈ RN−2×N−2 with the nonzero
elements given by

Jj,j±1 =
1− φ2

j

(∆x)2
, Jj,j = −

2(1− φ2
j)

(∆x)2
− 2φj(D

2φ)j − ω + 3φ2
j , 2 ≤ j ≤ N − 2.

To minimize the residual Φ(φ) = 1
2
‖T (φ)‖2, we implement the linear Newton’s method

in the iterations {φ(k)}∞k=0 defined by J(φ(k+1)− φ(k)) = −T (φ(k)) starting with a suitable
initial guess

φ
(0)
j = min{0.9,

√
2ω}sech(

√
ωxj), j = 2, . . . N − 1.

To avoid overshoot, we perform backtrack line search by starting from a = 1 and reducing
to find a ∈ (0, 1] that satisfies the decreasing condition

Φ(φ(k) + aψ(k)) ≤ Φ(φ(k))(1− ca), where ψ(k) = −J−1T (φ(k)),
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for a small c = 10−4. When this is achieved, we accept and update the next iteration as
φ(k+1) = φ(k)+aψ(k), after which we compute J (k+1), T (φ(k+1)), and ψ(k+1). The algorithm
is terminated when the convergence condition ‖T (φ(k+1))‖/

√
N − 2 ≤ εtol with a small

tolerance εtol = 10−8. This iterative method yields the solution profile {(xj, φj)}Nj=1, from
which we compute the mass integral Q(φ) by using the trapezoidal method.

Figure 6.1 shows the plot of Q(φ) versus ω for two spacings ∆x = 0.1 and ∆x = 0.2,
compared to the dependence computed from (6.3) in the limit L→∞ (dashed line). The
latter dependence is interpreted as the limit ∆x→ 0 in the finite-difference method. The
finite-difference approximation with ∆x > 0 for the differential equation (1.5) leads to the
three-branched behavior reported in [18]. We computed the mass integral for the values
of ω in [0.005, 0.93] on an equally spaced grid of 100 points. Since the numerical data are
not accurate near ω = 1, we perform the quadratic extrapolation to extend the values of
the mass integral from the last numerical data at ω = 0.93 into the interval [0.93, 1].

Thus, we conclude that the three-branched behavior of Q(φ) versus ω is a numerical
artefact of the finite-difference method.

!
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Figure 6.1. The dependence of the mass integral Q(φ) computed by the
finite-difference method versus ω for ∆x = 0.1, 0.2. The dashed line shows
the same dependence computed by using (6.3) for L→∞.
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