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Abstract

Inspired by the envelope approximation commonly applied to semiconductor heterostruc-
tures, an analytical approach to study photonic crystal waveguides is presented. By treating
the waveguide core as a slowly-varying perturbation in the cladding photonic crystal, mul-
tiple scales analysis is used to derive an envelope equation which solves for the propagation
constants and frequencies of the guided modes. The envelope approximation is completely
general for sufficiently weak perturbations and applies to photonic crystal waveguides of
any dimensionality.

The multiple scales approach is verified through comparisons between the envelope ap-
proximation and results from full numerical simulations. Heterostructure slab waveguides
in three dimensional photonic crystal and a slab waveguide with a homogeneous dielectric
core surrounded by photonic crystal cladding are studied. The mode shapes are in excel-
lent agreement with simulations. The computed waveguide dispersion relations agree with
simulated results to 1%.

The implications and limitations of the envelope approximation are discussed and quan-
tified by examining the validity of the underlying assumptions in the multiple scales frame-
work. Accurate dispersion relations can be obtained with the envelope approximation even
when the assumptions are not completely valid.

With the aim of enabling efficient forward-engineering of photonic crystal waveguides,
the envelope approximation eliminates the need for computationally intensive simulations
and provides a physically intuitive picture to the understanding of waveguiding phenomena
in photonic crystals.
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Chapter 1

Introduction

Heralded as the “semiconductors of light,” photonic crystals have captured the imagina-

tion of theorists and experimentalists alike since they were first proposed by John and

Yablonovitch independently in 1987 [1, 2]. Photonic crystals have refractive indices that

vary periodically in at least two dimensions [3].

We motivate the work presented in this thesis with an overview of the theory of and

current state of research in photonic crystals. The purpose and impact of this work are

highlighted in the context of the development in photonic crystal research.

1.1 Basic Theory of Photonic Crystals

Photonic crystals are periodic dielectric structures. Much like a one dimensional grating,

the periodicity of the dielectric constant in a photonic crystal leads to strong resonant

scattering for particular wavelengths of light. The complete inhibition of light propagation

in all directions over a specific frequency range is made possible in photonic crystals through

a suitable choice of lattice geometries and compositional dielectric materials. Photonic

crystals that exhibit this property are termed “photonic bandgap (PBG) materials”.

To understand light propagation in photonic crystals and PBGs, we turn to the funda-

mental laws that govern electromagnetic waves – Maxwell’s equations. In a non-magnetic
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medium, where the relative permeability is 1, the equations

∇× 1

n2(r)
∇×H(r) =

ω2

c2
H(r) (1.1)

∇×∇× E(r) = n2(r)
ω2

c2
E(r) (1.2)

describe the propagation of a monochromatic wave. The first equation is a vectorial eigen-

value problem, with ω2

c2
as the eigenvalue and H(r) as the eigenvector. Moreover, the oper-

ator for the magnetic field, ∇× 1
n2(r)
∇×, is a Hermitian operator, and the magnetic field

eigenvectors are orthogonal [4]. Equation (1.1) is the master equation in electromagnetics

just as the Schrodinger equation is the master equation in quantum mechanics. Realizing

the analogy between quantum mechanics and electromagnetics is extraordinarily powerful,

for it not only enables the analysis of electromagnetic problems to access the vast arsenal

of tools developed in quantum mechanics, but also illustrates more clearly the parallels

and differences between the flow of electrons in semiconductors and light propagation in

photonic crystals.

Equation (1.2) has the disadvantage that the operator 1
n2(r)
∇×∇× is non-Hermitian,

though we employ it as the governing equation in this work [4]. We choose to work with

the electric field equation because the analysis is less complicated, and it yields sufficiently

good results. For the lower bands, the electric field eigenvectors are almost orthogonal;

hence, the electric field operator can be regarded as almost Hermitian, simplifying our

derivations significantly.

The solutions of the wave equations (1.1) and (1.2) in periodic media are Bloch modes.

We may express a periodic variation in the index of refraction as

n2(r) = n2(r + R), (1.3)
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where R is a translation vector. The electric field modes in such a medium take the form

E(r) = u(r) exp(ik · r), (1.4)

where u(r) = u(r + R) is called a Bloch function. Inside the photonic bandgap, no photon

modes exist; therefore, light with a frequency inside the photonic bandgap is localized and

spontaneous emission is inhibited [1, 2]. In this sense, the photonic bandgap is “emptier

than vacuum” [5]. A light wave is evanescent inside the bandgap, and the wavevector k is

imaginary. We may express the wave as

E(r) = u(r) exp(−κ̃ · r), (1.5)

where κ̃ is the decay constant and 1/|κ̃| is the characteristic decay length.

The formation of a photonic bandgap is analogous to the formation of a stopband in a

quarter-wave stack. A photonic bandgap emerges from the resonant scatterings from the

constituent dielectric materials in a unit cell and the macroscopic arrangement of these

microscopic units [3]. To distinguish between the two scattering mechanisms, we may

consider the conventional quarter-wave stack which consists of alternating dielectric layers

each having a thickness equal to a quarter of a wavelength. While the quarter wavelength

thickness condition ensures maximum reflection from a single layer, a stopband arises from

the resonant Bragg scattering from the linear periodic arrangement of the layers. To form

a photonic bandgap, the microscopic resonances from the individual dielectric scatterers,

such as the rods or spheres located at each lattice point of the photonic crystal, should

be commensurate with the macroscopic resonances from their periodic arrangement [3].

Achieving a complete bandgap requires choosing the appropriate lattice, indices of refrac-

tion, and geometries of the constituent dielectric microstructures [3]. In general, materials

with high dielectric constants (e.g. semiconductors – Si, GaAs, InP) are required for a

bandgap at optical frequencies [3].
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Figure 1.1: Waveguide in a two dimensional photonic crystal [6].

1.2 Fabrication of Photonic Crystals

Breakthroughs in the fabrication, characterization, and modelling of photonic crystals have

led to the realizations of a number of photonic crystal structures. Two dimensional pho-

tonic crystals are usually fabricated with high resolution electron beam lithography [6].

Commonly, arrays of holes are etched into slabs of semiconductors (figure 1.1). Another

type of two dimensional photonic crystal is the holey fibre, consisting of arrays of glass

fibres (figure 1.2) [7]. However, two dimensional photonic crystals can only have a bandgap

in the plane of periodicity. For a complete bandgap in all directions, three dimensional

photonic crystals are needed.

Three dimensional photonic crystals present a greater fabrication challenge. Yablonovitch

demonstrated experimentally the existence of a bandgap in microwave frequencies using an

inverse diamond structure in a ceramic material (figure 1.3) [8, 9]. This geometry is now

known as “Yablonovite.” However, the Yablonovite structure could not be readily scaled

to optical wavelengths. Another geometry, the wood-pile structure, exploits well-developed

semiconductor growth technology and could possess a bandgap near the optical telecom-

munication wavelength of 1.55µm (figure 1.4) [10]. Two years ago, John et al. capitalized

on the self-assembly of opal spheres, showing an inverse face-centred-cubic structure in

silicon exhibits a complete bandgap at 1.55µm (figure 1.5) [11]. Self-assembly approaches
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Figure 1.2: Holey fibre. Light can be guided in the extra hole at the centre of the fibre [7].

represent an extensive area of research as achieving long range order remains a critical

challenge [12, 13, 14]. Techniques that combine the top-down approach of lithography with

the bottom-up approach of self-assembly to enhance ordering of colloidal particles into

photonic crystal structures have been demonstrated [15, 16]. Recently, Toader and John

proposed a square tetragonal spiral structure which promises to have a large bandgap at

1.55µm (figure 1.6) [17]. Such a structure has been fabricated using glancing angle depo-

sition (GLAD) of silicon though no optical measurements on these photonic crystals are

available yet [18].

1.3 Photonic Crystal Waveguides

While the abrupt discontinuity in the density of photon states near a photonic bandgap

enables the study of numerous interesting physical phenomena, with engineering practical

applications in mind, we focus on the research of functional passive photonic crystal devices,

in particular, the photonic crystal waveguide [19].

Waveguides in two dimensional (2D) photonic crystals are well studied. The simplest

case begins with a straight slab air waveguide introduced through an air line defect in
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Figure 1.3: Yablonovite. This structure is made by drilling holes into a ceramic material
and exhibits a bandgap at microwave frequencies [9].

Figure 1.4: Wood-pile photonic crystal [10].
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Figure 1.5: Inverse opal photonic crystal [11].

Figure 1.6: Square tetragonal spiral structure photonic crystal [17].
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Figure 1.7: Simulation of a waveguide bend in 2D photonic crystal. Photonic crystal
waveguides promise to have low losses around sharp bends [4].

2D photonic crystal [4, 20]. More sophisticated variations thereof include the holey fibre,

slab dielectric waveguides, and waveguides in photonic crystal slabs, which are finite 2D

crystals with index confinement in the third dimension [6, 7, 21, 22]. Investigation into

2D waveguides has mostly been theoretical in nature, focussed on numerical modelling

or novel mathematical formalisms such as Wannier function expansions and analytical

solutions [23, 24, 25]. These approaches are now used to tackle more application-based

problems, such as single- versus multi-mode design and the existence of non-propagating

bound states in waveguide bulges [26, 27].

A promised advantage of photonic crystal waveguides over their conventional dielectric

counterparts is their ability to confine light even at sharp bends (figure 1.7). Work on

bent waveguides has been mostly restricted to 2D crystal structures due to the computa-

tional requirements for three dimensional (3D) structures. Most efforts in the theoretical

development of bent waveguides have concentrated on numerical methods, and analyti-

cal approaches have not been extensively explored [28]. Numerical modelling has been

undertaken to study the propagation characteristics at the bends. Greater than 95% trans-
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mission around 90 degree bends is predicted [29, 20]. Experiments using microwaves on 90

degree bends verified the aforementioned high transmission efficiency for 2D square lattice

of rods and showed a 68% transmission for 3D metallic wood-pile structures [20, 30]. At

optical wavelengths, further characterization of bent waveguides awaits, though light has

been observed to propagate around 60 degree and 90 degree bends [6, 31].

1.4 Photonic Crystal Heterostructures

In the previous section, we discussed a photonic crystal waveguide in the form of line or pla-

nar defects in a bulk photonic crystal. Alternatively, we may introduce a waveguide in the

form of a photonic crystal heterostructure. Analogous to semiconductor heterostructures,

photonic crystal heterostructures are juxtapositions of different types of photonic crystals.

A heterostructure may consist of photonic crystals with different lattice structures, lattice

parameters, or indices of refraction.

Photonic crystal heterostructures introduce additional degrees of freedom with which

we may tune the properties of photonic crystal devices. In the direction perpendicular

to the heterostructure profile, interesting physical phenomena can be studied, and novel

devices, such as junctions, filters, and superlattices, may be engineered [32, 33]. In the

direction parallel to the heterostructure, the system acts as a waveguide. The photonic

heterostructure waveguide is the springboard for the work presented in this thesis.

1.5 Motivation for the Envelope Approximation

Photonic crystals may prove to be crucial ingredients in integrated optics as they enable

the design of highly efficient passive and active devices on the same material platform.

This thesis develops a formalism for studying photonic crystal waveguides. Just as wires

are the pathways for electrons in an electronic chip, photonic crystal waveguides may pave

the route for future optical integration.
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A key challenge in engineering photonic crystal waveguides is the lack of forward-

engineering tools. While these structures can be examined using highly developed sim-

ulation techniques, such as plane wave expansion or finite difference time domain methods,

such simulations are computationally intensive and cannot by themselves instil a physically

intuitive understanding of photonic crystal waveguiding phenomena. Recently, Albert et

al. proposed a Wannier function expansion approach in the tight-binding approximation to

treat point and line defects in two dimensional photonic crystals [23, 24]. Complementing

the search for analytical and semi-analytical methods to explain photonic crystal waveg-

uiding, we shall consider waveguides arising from weak perturbations in the bulk photonic

crystal and develop an envelope approximation to photonic crystal waveguiding.

1.6 Looking Ahead

Photonic crystals are a novel class of materials that are not only engendering research in

fundamental physics, but may also play an important role in optical integration. A major

challenge in designing photonic crystal devices is the current dearth of forward-engineering

tools. This thesis will show an envelope approximation which addresses the need for an

efficient tool and transparent formalism in understanding photonic crystal waveguiding.
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Chapter 2

Multiple Scales Analysis

In this chapter, we embark on the derivation of the envelope equation for a photonic crystal

heterostructure waveguide. We have previously derived envelope functions through Bloch

mode expansions [34]. However, the multiple scales analysis [35] builds on our previous

work by providing a transparent and systematic approach in solving the heterostructure

waveguide. Our new derivation is a more mathematically rigourous asymptotic expansion.

We expect this new analysis can be more easily adaptable to the study of other more com-

plex photonic crystal structures. We will derive a general equation for a channel waveguide

in 3D photonic crystal. We shall see our envelope equation is completely analogous to the

semiconductor heterostructure envelope equation.

2.1 The Envelope Equation

In the multiple scales method, we separate the photonic crystal heterostructure system into

two spatial length scales: the fast-varying scale due to the lattice periodicity of the bulk

photonic crystal and the slowly-varying scale due to an index perturbation. We begin with

the wave equation

∇2E−∇(∇ · E) = −ω2
nn

2(r)E, (2.1)
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z

.   .   ..   .   .

Figure 2.1: Photonic crystal heterostructure channel waveguide. The darker spheres have
a different index of refraction from the white spheres. The arrow indicates the direction of
wave propagation in the waveguide.

where the speed of light, c, is normalized to 1, and the subscript n labels the eigenfrequency.

We introduce a slowly-varying modulation to the dielectric constant. We adopt the co-

ordinates shown in figure 2.1. In Cartesian co-ordinates, the index of refraction is expressed

as

n2(x, y, z) = n2
0(x, y, z)

[
1 + µ2∆(X,Z)

]
, (2.2)

where µ is the perturbation parameter and ∆(X,Z) is the normalized perturbation. X

and Z are the slow variables such that

X = µx Z = µz. (2.3)

Furthermore, we assume that the correction to the eigenvalue, ω2
n, is

ω
′2
n = ω2

n + µ2Ω + µ4Ω(2) + . . . (2.4)

In (2.2) and (2.4), we set the lowest order perturbation to be of O(µ2). Although this

choice seems arbitrary at the moment, we shall see that this is necessary for the different
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length scales to be compatible in the final equation.

In the spirit of perturbation theory, we assume the solution to the wave equation to be

E = e0 + µe1 + µ2e2 + . . . , (2.5)

where ei represent the different orders of the expansion. In the multiple scales analysis,

we assume that the solution will take the form of a Bloch mode modulated by an envelope

function. Hence, we expect the zeroth order term to take the form

e0 = A(X,Z)φ̃nk, (2.6)

where A(X,Z) is the envelope function and φ̃nk is an electric field eigenmode:

φ̃nk = exp(ik · r)|unk〉, (2.7)

where the subscripts k and n label the wavevector and band number respectively. We

have also adopted the Dirac notation, treating unk(r) as a state function, |unk〉. Since the

system is perturbed only in the x and z directions, the envelope should only be a function

of these two directions. Analogous to the analysis by de Sterke and Sipe [36], our ansatz

for the higher order terms is

e1 =
∑
l 6=n

Blk(X,Z)φ̃lk

e2 =
∑
m6=n

Cmk(X,Z)φ̃mk, (2.8)

where each order is represented by a sum over the other electric field Bloch modes at

the wavevector corresponding to φ̃nk, with each Bloch mode modulated by an arbitrary

envelope function, Blk(X,Z) and Cmk(X,Z).

We now proceed to substitute (2.5) into the wave equation to obtain several conditions
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on the envelope equation. In the multiple scales method, we treat the slow and fast variables

independently. For example, when differentiating, we would write

∂A

∂x
= µ

∂A(X,Z)

∂X
. (2.9)

Therefore, to O(1), we simply have the unperturbed equation. To the next order, O(µ),

we find

[
∂A

∂Z

(
−2

∂ux
∂z
− i2kzux + ikxuz +

∂uz
∂x

)
+
∂A

∂X

(
ikzuz +

∂uz
∂z

+ ikxux +
∂uy
∂y

)]
x̂+[

∂A

∂X

(
−2

∂uy
∂x
− 2ikxuy + ikyux +

∂ux
∂y

)
+
∂A

∂Z

(
−2

∂uy
∂z
− 2ikzuy + ikyuz +

∂uz
∂y

)]
ŷ +[

∂A

∂Z

(
ikyuy +

∂uy
∂y

+ ikxux +
∂ux
∂x

)
+
∂A

∂X

(
−2

∂uz
∂x
− i2kxuz + ikzux +

∂ux
∂z

)]
ẑ +∑

l 6=n

BlkH0|unk〉 = 0, (2.10)

where the action of H0|unk〉 is defined in (A.10). Projecting (2.10) to 1
V
〈unk| and invoking

relations (A.23-A.25) yields

(
∂A

∂Z

)(
∂ω2

n

∂kz

)
+

(
∂A

∂X

)(
∂ω2

n

∂kx

)
= 0. (2.11)

Since this equality must hold true everywhere and A(X,Z) is not constant in all space

(otherwise, we will not have an envelope), we require

∂ω2
n

∂kz
=
∂ω2

n

∂kx
= 0. (2.12)

Equation (2.12) stipulates that we must expand about a band extremum in the direc-

tions perpendicular to the propagation direction. This condition confirms our intuition

about the group velocity of the propagating mode: the components of the group velocity

along the transverse directions of the heterostructure profile are zero. The electromagnetic

energy of a propagating mode flows parallel to the heterostructure in the direction of the
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waveguide core.

From (2.10) we can gain further knowledge about the other envelope functions Blk.

Projecting (2.10) to 1
V
〈ulk| and grouping the like terms result in an equation for Blk:

Blk =
1

V

∂A
∂X
〈ulk|W̃x|unk〉+ ∂A

∂Z
〈ulk|W̃z|unk〉

ω2
l − ω2

n

, (2.13)

where W̃x and W̃z are defined in (A.12 - A.14). These envelope functions will be important

in simplifying the final envelope equation.

We shall now tackle the O(µ2) terms. When we gather all the O(µ2) terms, we find

(
∂2A

∂Z2
|ux

nk〉+ n2ΩA|ux
nk〉+ ω2

n∆n2A|ux
nk〉
)
x̂+(

∂2A

∂X2
|uy

nk〉+
∂2A

∂Z2
|uy

nk〉+ n2ΩA|uy
nk〉+ ω2

n∆n2A|uy
nk〉
)
ŷ +(

∂2A

∂X2
|uz

nk〉+ n2ΩA|uz
nk〉+ ω2

n∆n2A|uz
nk〉
)
ẑ +∑

l 6=n

(
∂Blk

∂X
W̃x|ulk〉+

∂Blk

∂Z
W̃z|ulk〉

)
+
∑
m6=n

CmH0|umk〉 = 0, (2.14)

where the |ux
nk〉, |u

y
nk〉, and |uz

nk〉 are the x̂, ŷ, and ẑ components of unk〉 respectively. If

we project (2.14) to 1
V
〈unk| and we substitute Blk from (2.13, we obtain

∂2A

∂X2

(
〈unk|unk〉 − 〈ux

nk|ux
nk〉+

∑
l 6=n

|〈unk|W̃x|ulk〉|2

ω2
l − ω2

n

)
+

∂2A

∂Z2

(
〈unk|unk〉 − 〈uz

nk|uz
nk〉+

∑
l 6=n

|〈unk|W̃z|ulk〉|2

ω2
l − ω2

n

)
+ ΩA+ ω2

n∆A = 0. (2.15)

We can further simplify the equation using our relations for the band curvatures. Invoking

(A.30) and (A.32), we finally arrive at our envelope equation:

1

2mx

∂2A

∂X2
+

1

2mz

∂2A

∂Z2
+ ΩA+ ω2

n∆(X,Z)A = 0, (2.16)
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where in analogy to the effective mass in semiconductor physics, we define

1

mx

=
∂2ω2

n

∂k2
x

1

mz

=
∂2ω2

n

∂k2
z

. (2.17)

Equation (2.16) is completely analogous to the envelope equation for semiconductor

heterostructures. It also bears resemblance to the time-independent Schrodinger equation.

Just like any other partial differential equation, solving (2.16) requires knowledge of the

boundary conditions at the interfaces. Solving the envelope equation for a heterostructure

waveguide mode is much simpler than solving the full set of Maxwell’s equations.

Now we understand why the perturbation to the frequency and dielectric constants are

second order (equations 2.2 and 2.4). If they were not of even order, the length scales of

the envelope function would not have been µx and µz, since the solution to (2.16) would

contain a mixture of scales. We observe that all the terms in (2.16) belong to the same

length scales, namely X and Z. Selecting the appropriate scales and correctly identifying

the perturbation orders are essential in applying the multiple scales method.

2.2 Looking Ahead

In this chapter, we have used multiple scales analysis to derive an envelope equation ap-

plicable to 3D photonic crystals with a 2D heterostructure profile. We have expanded the

wave equation using our ansatz for the mode shape, frequency correction, and index per-

turbation and found an expression for the leading order envelope. The envelope equation

is a simple partial differential equation which can be readily solved given the boundary

conditions. Our multiple scales method should also work for 3D heterostructure profiles or

photonic crystal heterostructure resonators.
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Chapter 3

Exploring the Envelope Equation

Not only does the envelope equation simplify the analysis for photonic crystal heterostruc-

ture waveguides, it also reveals physical insights into waveguiding phenomena. In this

chapter, we will explore the envelope equation to find the conditions for waveguiding and

single- or multi-modedness.

3.1 Waveguiding

To solve the two dimensional envelope equation (2.16), we use the technique of separation

of variables. We assume A(X,Z) can be written as

A(X,Z) = Ψ(X)Φ(Z). (3.1)

We substitute A(X,Z) into the envelope equation to obtain

1

2mx

Ψ”

Ψ
+

1

2mz

Φ”

Φ
= −(Ω + ω2

n∆). (3.2)

If we can separate the X and Z dependences such that

Ω + ω2
n∆ = Ξx + Ξz, (3.3)
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then Ψ and Φ will satisfy

1

2mx

Ψ” = −ΞxΨ, (3.4)

1

2mz

Φ” = −ΞzΦ. (3.5)

For a simple perturbation where the core is described by a constant ∆, centered at the

origin, and is 2H wide in X and 2L wide in Z, the solutions of the equations have the form

Ψ(X) =

 F cos(KxX) +G sin(KxX) |X| < H

Je±γxX |X| > H

Φ(Z) =

 M cos(KzZ) +N sin(KzZ) |Z| < L

Pe±γzZ |Z| > L.
(3.6)

The photonic crystal heterostructure envelope modes are completely analogous to dielectric

waveguide modes. The effective mass terms homogenize the photonic crystals and act as

an effective index for the photons. We have not discussed how to determine Ξx and Ξz.

In general, much like the channel dielectric waveguide problem, we would employ the

effective index method to obtain analytical solutions [37]. However, for the special case

of a waveguide with a square cross-section in a cubic lattice, we expect that Ξx = Ξz due

to symmetry considerations. Since the system is invariant under a π/2 rotation, the band

curvatures along x and z should be equal. Therefore, the correction to the eigenfrequency is

evenly split between the two directions. The square waveguide in a cubic lattice simplifies

to a superposition of two identical slab waveguides in the x and z directions.

To elucidate the waveguiding mechanism, we consider a slab waveguide for which ana-

lytical solutions can be readily obtained. The heterostructure profile is along z (figure 3.1).

Thus, the envelope equation is

1

2mz

∂2A

∂Z2
+ ΩA+ ω2

n∆(Z)A = 0. (3.7)
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Figure 3.1: Photonic crystal heterostructure slab waveguide. The darker spheres have a
different index of refraction from the white spheres. The arrow indicates the direction of
wave propagation in the waveguide.

We must expand about a band extremum, where

∂ω2
n

∂kz
= 0. (3.8)

For a guide of width 2L along Z, the solutions of the envelope equation are

A(Z) =

 B cos(KZ) + C sin(KZ) |Z| < L

De±γZ |Z| > L.
(3.9)

From these equations, we can determine the condition for waveguiding. For a confined

mode, we expect that the mode will decay in the cladding so the curvature of the mode

shape is positive. In the core, the mode shape must reach a maximum so the curvature

is at some point negative. Assuming that A is positive, the conditions on the curvatures

necessitate that Ω and mz be oppositely signed. This implies ∆ and mz must be of the

same sign. Therefore, for real valued γ and K, we can adopt the convention that

2mz(∆ω
2
n + Ω) > 0, (3.10)

so

γ =
√
−2mzΩ
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Figure 3.2: Schematic of core and cladding bands for εcore > εclad.

K =
√

2mz(∆ω2
n + Ω). (3.11)

We conclude that waveguiding occurs when the perturbation in the dielectric function

has the same sign as the curvature of the band in the direction perpendicular to the waveg-

uide. We further observe that the guiding frequency will be shifted from the unperturbed

frequency by an amount oppositely signed from the dielectric function perturbation.

Figure 3.2 illustrates why this is physically correct. Increasing or decreasing the di-

electric constant of a material shifts the dispersion relationship oppositely. For example, a

wave of a certain frequency will propagate with a shorter wavevector (longer wavelength)

in a material with higher dielectric constant. Furthermore, we recall that waveguiding only

occurs when the group velocity in the direction perpendicular to the guide is zero (i.e.

∂ω2
n

∂kz
= 0). The band curvature essentially dictates that in the vicinity of this Brillouin

zone edge, the frequency allowed in the core is not allowed in the cladding. Therefore,

the envelope approximation confirms our intuition about the conditions for waveguiding:

a guided wave propagates straight down the core with a frequency allowed in the core but

not in the cladding.
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3.2 Single- and Multi-Modedness

Since the envelope equation is completely analogous to elementary dielectric waveguide

theory, we can readily obtain the single-mode condition. For a slab waveguide, we follow

the identical procedure in conventional waveguide analysis [38]. Let us define

u = KL v = γL. (3.12)

By enforcing continuity of the envelope and its derivative across the heterostructure inter-

faces, we obtain the following relationships:

u tanu = v for even modes

u tan(u− π/2) = v for odd modes. (3.13)

Furthermore,

u2 + v2 = 2mz∆ω
2
nL

2. (3.14)

The solutions to u and v, and thus K and γ, are given by the intersections of the curves

defined by (3.13) and the circle (3.14). We observe there is always an even mode since the

u tanu = v crosses the origin. Therefore, the single-mode condition requires the radius of

the circle be less than π/2, the onset of the odd mode:

0 < |∆| <
∣∣∣∣ π2

8mzω2
nL

2

∣∣∣∣ . (3.15)

As expected, the wider the waveguide, the weaker must the perturbation be to ensure

single-modedness. The band curvature has effectively homogenized the photonic crystal

such that mzω
2
n replaces the wavelength and index dependences in the case of conventional

dielectric slab waveguide composed of homogeneous materials.

To show the equivalence, we first recall the single-mode condition for a dielectric slab
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waveguide: (
n2

2 − n2
1

)
<

λ2

16L2
, (3.16)

where n2 and n1 are the refractive indices of the core and cladding respectively, and 2L

is the width of the waveguide. If the difference between n2 and n1 is small, then we can

rewrite (3.16) as

∆ <
λ2

32n̄L2
=

π2

8n̄ω2L2
, (3.17)

where ∆ = n2 − n1, n̄ = n2+n1

2
, and we have normalized c to unity. Comparing this result

with (3.15), we see that n̄ has been replaced with mz. The band curvature acts as the

reciprocal of a homogenized index for photonic crystal heterostructure waveguides.

3.3 Looking Ahead

The ability to predict the waveguide characteristics and understand the physics underlying

the waveguiding phenomena is crucial to the design of photonic crystal waveguides. In this

chapter, we have shown how the envelope approximation provides these two ingredients

for photonic crystal heterostructure waveguide engineering. We have found the guiding

condition and the single-mode condition for a photonic crystal slab waveguide. Through

our analysis, we have obtained physical insights into the slope and curvature of a band in

the transverse direction. The next step in our investigation is to demonstrate the utility

and verify the validity of the envelope approximation by comparing our results with those

from the numerical methods commonly employed today.
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Chapter 4

Numerical Results:

Heterostructure Waveguides

To demonstrate the validity of our envelope approximation, we compare our theoretical

results with full numerical simulations of a slab photonic crystal heterostructure waveguide.

We use MIT Photonic Bands (MPB) software to obtain the band curvatures of the bulk

photonic crystal and to find the propagating modes in the heterostructure. We compare the

mode shapes and frequencies in waveguides where the average index of the core is greater

than that of cladding as well as the converse case.

4.1 MIT Photonic Bands

MPB is a frequency domain eigenvalue solver for photonic crystals [39]. It is capable of

computing the bandstructure, electric and magnetic fields, and the electric and magnetic

energy densities of an arbitrary photonic crystal. However, the programme assumes a

simulation space of an infinitely periodic repetition of a user specified unit cell. Hence,

MPB cannot directly solve a sole photonic crystal waveguide where the cladding layers

essentially extend infinitely on either side of the core region.

Although this is a serious limitation of MPB, we use this simulator due to the lack
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of effective alternatives. An alternative to MPB’s frequency domain approach is a finite

difference time domain (FDTD) simulation. In FDTD analysis, Maxwell’s equations are

discretized in time and space and time-stepped to simulate the propagation of the electric

and magnetic fields [40]. The simulation space can be arbitrarily defined, and may offer

a better representation of the structure we intend to simulate. However, with FDTD

simulations, we would not be able to discern a guided mode from the cladding modes since

a full bandgap is not necessary for waveguiding in the envelope approximation. FDTD

computations are most applicable to finding waveguide modes inside a photonic crystal

bandgap. The main advantage of MPB is its capability to generate field intensities at all

frequencies within the simulation domain, so we may easily find guided modes from the

field patterns.

4.2 Description of Simulation

We use MPB to simulate a slab heterostructure waveguide in three dimensional photonic

crystal. The photonic crystal is a cubic lattice of spheres with a radius of 1
2
a, where a

is the lattice parameter. We specify our unit cell to consist of a 5 cell wide core and 15

cell wide cladding. We find the 15 cell wide cladding to be sufficiently long to minimize

coupling among the adjacent waveguides imposed by the simulator while remaining within

our computational capabilities. For the spatial resolution, we choose a grid size of 16 ×

16× 16, such that each cell has 4096 grid points.

To run the simulation, we set y to be the propagation direction and vary ky in the simu-

lator for a given kx and kz. kz is a band extremum imposed by the envelope approximation.

We fix kx to be 0 in our simulations. The complete dispersion relation of a slab photonic

crystal waveguide is a surface, where the propagation frequency is a function of the two

propagation vectors, kx and ky. Hence, we currently study a particular slice of the surface

with kx = 0. Since the unit cell consists of 20 cells in total (5 core and 15 cladding cells),

we specify that up to 50 bands be computed for each simulation.
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To compare the envelope approximation with the simulated results, we first discriminate

the guided modes from the simulation output. We examine the electric field energy densities

for all the bands at each wavevector: the energy of a guided wave is concentrated near the

core region and evanesces in the cladding. After selecting a guided mode, the envelope

function is fitted to a component of the electric field for comparison of the mode shape. We

also compare the propagation frequencies predicted by the envelope approximation with

those corresponding to the simulation.

4.3 Mode Shapes and Dispersion Relations

Due to the symmetry of the bulk photonic crystal (the cubic lattice of spheres), its first

two bands are degenerate. The two degenerate bands correspond to quasi-TE and quasi-

TM polarizations, since in the bulk photonic crystal, an electric field polarized along x

is equivalent to being polarized along z. We have not accounted for degeneracies in our

multiple scales derivation. We shall assume that the envelope functions and predicted

dispersion relations are doubly degenerate so both degenerate Bloch modes have the same

envelope. This approximation is valid for weak perturbations which do not cause significant

splitting of the degenerate eigenstates even if such splitting is present.

The first heterostructure waveguide we examine has a core with an average index higher

than that of the cladding. The cladding consists of spheres with a dielectric constant of

10 set in air. We notate the dielectric constants corresponding to the core by εclad = 10,1.

We consider a ∆ of 10%, such that εcore = 11,1.1. Since ∆ is positive, mz must also be

positive. We recall that we must expand about a band extremum or Brillouin zone edge in

the transverse direction. From a numerical simulation, we find that mz > 0 at kz = 0.

We generally obtain good agreement between the mode shapes predicted by the enve-

lope approximation and the simulated result. Figure 4.1 shows some representative mode

profiles. The envelope function does not match well with the mode profile at ky = π/a.

The reason for the discrepancy is a breakdown of the envelope approximation, which will be
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discussed in chapter 7. Figures 4.2 and 4.3 are the dispersion relations for the waveguide.

We observe two distinct guided modes at each wavevector. The exception at ky = 0.2π/a

maybe due to the frequency resolution of the simulation software. By checking the field

components of the guided modes, we find that the first guided mode is TE-like, with an

electric field strongly polarized along x, while the second mode is TM-like, with electric

fields strongly polarized along y and z. These two modes are close in frequency and do

indeed share a similar envelope. The mode frequencies agree to about 1%.

The second heterostructure waveguide we study switches the core and cladding photonic

crystals from the above system, so εclad = 11,1.1 and εcore = 10,1. Consequently, ∆ =

−9.09%. For a negative mz, we find kz = π/a. The envelope approximation again agrees

well with the simulation results. Figure 4.4 shows the mode shapes, and figure 4.5 shows

the dispersion relation. For this simulation, we do not observe the quasi-TM mode. The

frequency resolution of MPB is most likely the reason for the discrepancy; the quasi-TE

and quasi-TM frequencies are probably too close to be resolved. Again, our predicted mode

frequencies agree with the simulated result to about 1%.

4.4 Looking Ahead

In this chapter, we have compared the envelope approximation with full numerical sim-

ulations using MIT Photonic Bands software. We examine two cases: (1) εclad = 10, 1,

εcore = 11, 1.1, and (2) εclad = 11, 1.1, εcore = 10, 1. Although there are degeneracies in

the unperturbed bulk photonic crystal, we assume that the perturbation is weak so any

splitting of the degenerate states is minimal. We demonstrate the validity of the envelope

approximation as our theoretical results show excellent agreement with the simulation; the

mode shapes agree well and the mode frequencies agree to about 1%.

While the study of heterostructure waveguide with a refractive index variation has

been fruitful, we seek to extend the envelope approximation to solve more general classes

of heterostructures composed of photonic crystals with dissimilar lattice structures. In the
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Figure 4.1: Comparison of the envelope approximation and numerical simulation results
at various propagation wavevectors, ky. a is the lattice constant. εcore = 11, 1.1 and
εclad = 10, 1.
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Figure 4.2: Dispersion relation of TE-like modes for the heterostructure waveguide with
εcore = 11, 1.1 and εclad = 10, 1.
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Figure 4.3: Dispersion relation of TM-like modes for the heterostructure waveguide with
εcore = 11, 1.1 and εclad = 10, 1.
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Figure 4.4: Comparison of the envelope approximation and numerical simulation results
at various propagation wavevectors, ky. a is the lattice constant. εcore = 10, 1 and εclad =
11, 1.1.
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Figure 4.5: Dispersion relation for the heterostructure waveguide with εcore = 10, 1 and
εclad = 11, 1.1.
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next chapter, we consider a particular case of such a heterostructure, where the waveguide

core consists of a homogeneous dielectric material. The uniform dielectric can be regarded

as a crystalline structure with an infinitely small lattice constant.
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Chapter 5

Waveguides with Homogeneous Cores

To date, fabricated photonic crystal waveguides are not usually heterostructures with an

index modulation as we have discussed so far. Rather, they often consist of a homogeneous

dielectric or air core surrounded by a photonic crystal cladding (figures 1.1 and 1.2) [6,

41, 42, 43]. Theoretical work using the tight-binding approximation and coupled mode

theory to analyze the conventional photonic crystal waveguides is an active area of research

[23, 24, 44]. In this chapter, we will discuss how the envelope approximation complements

these approaches in understanding photonic crystal waveguiding.

5.1 Applying the Envelope Approximation

Although the core and the cladding no longer share the same crystalline structure, we begin

by assuming that for a guided mode there still exists a set of envelopes that modulates the

electric and magnetic fields. For a waveguide with a sufficiently wide homogeneous core, we

expect that in a region far away from the core, the envelope will modulate the unperturbed

Bloch mode, and in a region near the centre of the core, the envelope will not be modulating

any fast variations. For a homogeneous material, the electric field eigenmodes are simply

plane waves and thus are associated with constant Bloch functions. Instead of specifying

∆ as in (2.2), we assume we can solve the multiple scales problem in the core and cladding
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separately. Consequently, we no longer have an effective mass term, mz or mx, which is

characteristic of only a single type of bulk constituent. We now require a different effective

mass term for the cladding and the core.

For a channel waveguide surrounded by photonic crystals, we have two equations that

describe the envelope function. The set of equations is

1

2mx1

∂2A

∂X2
+

1

2mz1

∂2A

∂Z2
+ Ω1 = 0 in the cladding

1

2mx2

∂2A

∂X2
+

1

2mz2

∂2A

∂Z2
+ Ω2 = 0 in the core, (5.1)

where the subscripts 1 and 2 denote the quantities associated with the cladding and core re-

spectively, and all the other terms are identically defined in chapter 2. For a slab waveguide

parallel to the x− y plane, the envelope function is the solution to

1

2mz1

∂2A

∂Z2
+ Ω1 = 0 in the cladding

1

2mz2

∂2A

∂Z2
+ Ω2 = 0 in the core. (5.2)

Although the boundary conditions at the interfaces between crystals with dissimilar lattices

remain a subject of contention, we shall assume that the envelope and its derivative are

continuous across the boundaries [45]. By enforcing the boundary conditions, we can solve

for the envelope function, A(Z).

5.2 Implications and Limitations

By extending the multiple scales derivation, we gain valuable insights into the utility and

limitations of the envelope approximation. Our new approach involves solving for the

envelope in the core and cladding separately. To test this new approach, we first consider

whether it solves the heterostructure waveguide equally well as our previous analysis. We

find the new theoretical dispersion relations (figure 5.1) and mode shapes are in good
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Figure 5.1: Dispersion relations for a heterostructure waveguide with εcore = 10, 1 and
εclad = 11, 1.1. One of the dispersion relations is calculated using a single band curvature
as in our previous analysis. Another one is calculated using different curvatures for the
core and cladding photonic crystals.

agreement with the previous results.

In a waveguide with a homogeneous core, our envelope equations show regimes where

our approximations are no longer valid. The dispersion relation for a homogeneous dielectric

is

ω =
k

n
, (5.3)

where k =
√
k2
x + k2

y + k2
z and c is normalized to 1. Thus, we can easily show

∂ω2

∂kz
= 2

kz
n2
, (5.4)
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and

∂2ω2

∂k2
z

=
2

n2
. (5.5)

Our condition that ∂ω2

∂kz
= 0 necessitates that we expand about kz = 0. Moreover, the band

curvature is constant and positive. Therefore, in our envelope approximation, there will

only be guided waves when the band corresponding to the photonic crystal is at a higher

frequency than the core band or when the equivalent index of the photonic crystal in the

direction of propagation is lower than the index of the core.

But what is the equivalent index? In the last section, we found that the “transverse

index,” n̄, is directly related to 1/∂
2ω2

∂k2
z

. However, this relation is not exactly applicable

here since the core and cladding materials are different. In our previous analysis of the

heterostructure, the single band curvature term homogenizes the photonic crystal “back-

ground,” so that we isolate the effect of the index perturbation. To compound the confusion,

this equivalent index need not be identical to the result from the common empirical formula

for photonic crystals:

εeff − εfill
εeff + 2εfill

= β
εsphere − εfill
εsphere + 2εfill

, (5.6)

where εeff is the effective dielectric constant, εfill is the dielectric constant of the filling

material in the photonic crystal, εsphere is the dielectric constant of the photonic crystal

spheres, and β is the volume fill fraction [46].

The answer lies in the shape of the photonic crystal dispersion relation which is related

to the dielectric constants, fill fraction, band slope and band curvature. It does not usually

have an analytical expression and is computed by solving Maxwell’s equations numerically.

As long as the photonic crystal band of interest is higher in frequency than the core band,

our envelope approximation will predict guided modes.

Lastly, we note that the mode frequency is still expressed as a perturbed quantity of

the bulk and cladding materials. Therefore, the core dispersion relation should not deviate

too much from that of the cladding. This necessitates that the index of the homogeneous

material be similar to the equivalent index of the cladding photonic crystal. The condition
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also implies that there is minimum interband mixing. If the homogeneous core is a signifi-

cant perturbation, we would not be able to assume the modulation of a single Bloch mode

by the envelope and our envelope approximation would fail.

Some limitations to the envelope approximation are now obvious. The envelope ap-

proximation does not apply to conventional PBG guiding, wherein the frequency of the

propagating wave is in the PBG of the cladding photonic crystal but is allowed in the core

region. In such a system, the slowly-varying envelope approximation may be invalid, and

the index of the core can be lower than that of the cladding. This type of waveguides is

best analyzed in the tight-binding approximation [23, 24]. For perturbations that introduce

interband or mode mixing, coupled-mode analysis will likely be the most useful [44]. The

envelope approximation holds best for weak perturbations with geometric configurations

and index contrasts that introduce minimal contributions from other bands.

5.3 Looking Ahead

In this section, we have applied the envelope equation to a photonic crystal waveguide with

a homogeneous core. Rather than specifying a fractional index modulation ∆, we solve the

envelope equation in the core and cladding separately using a different effective mass, mz,

in each region. We find the envelope approximation is best suited to weak perturbations

and does not necessarily apply to PBG guiding. Analogous to the terminology in solid

state physics and in contrast to the tight-binding approximation of Albert et al., the en-

velope approximation is like the “nearly-free photon” approximation for photonic crystal

waveguides [23, 24].

Full numerical simulations will verify the validity of solving the envelope equation piece-

wise in the photonic crystal waveguide. A more in depth examination of our assumptions

in the multiple scales derivation will also clarify the applicability of the envelope approxi-

mation in arbitrary photonic crystal waveguides.
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Chapter 6

Numerical Results:

Waveguides with Homogeneous Cores

To test our envelope approximation, we compare our predicted results with full numeri-

cal simulations. Much like our previous study of the heterostructure waveguides, we use

MIT Photonic Bands software for our simulations. Keeping an experimental outlook and

complementing concurrent work on colloidal polymeric photonic crystals we select the re-

fractive index of our photonic crystal to match that of para-methoxymethylamphetamine

(PMMA) [16].

6.1 Description of Simulation

Similar to the heterostructure waveguides we examined earlier, we study a slab waveguide

with a homogeneous dielectric core (figure 6.1). We define a basic unit cell consisting of

a 5 cell wide core and 15 cell wide cladding. The cladding is a cubic lattice of spheres

in air with radius of a
2
, where a is the lattice parameter, and a dielectric constant of 2.25

(εclad = 2.25, 1). The dielectric constant of the homogeneous core is 2 (εcore = 2). The

spatial resolution is set to a grid size of 16 × 16 × 16. We use the same approach to find

guided modes and fit envelope functions as in the heterostructure case. Fifty bands are
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z

Figure 6.1: Slab waveguide with homogeneous dielectric core. The index of the core is
higher than the equivalent index of the cladding. The arrow indicates the direction of wave
propagation.

simulated at each wavevector.

6.2 Mode Shapes and Dispersion Relations

For our choice of refractive indices, we generally find good agreement between the enve-

lope approximation and simulated results, except for extra modes arising from additional

degeneracies at ky = π
a
. Figures 6.2 and 6.3 show some representative mode profiles, and

figures 6.4 and 6.5 show the dispersion relations for the quasi-TE and quasi-TM polariza-

tions. We see that for almost all the propagation constants, an odd mode exists. This is

not too surprising intuitively, as the perturbation in this system is more substantial than

the heterostructure.

At ky = π
a
, several extra modes emerge; these modes do not have counterparts at other

propagation vectors. The modes may be caused by the more complicated degeneracies

introduced by the homogeneous core. Since a homogeneous material has a continuous

dispersion relation, if we neglect polarization dependences and force the dispersion relation

to fold back at a Brillouin zone edge, we expect the dispersion relation to be at least

doubly degenerate at the zone boundary. Therefore, a cladding mode can be associated

with any linear combination of the degenerate core modes. Hence, one envelope function

may correspond to at least 4 guided modes as a TE/TM degeneracy is associated with the
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Figure 6.2: Comparison of the envelope approximation and numerical simulation results at
ky = π/a for the even modes. a is the lattice constant. εcore = 2 and εclad = 2.25, 1. The
first even mode shows better agreement between simulation and theory.
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Figure 6.3: Comparison of the envelope approximation and numerical simulation results at
ky = π/a. a is the lattice constant. εcore = 2 and εclad = 2.25, 1. The first odd mode shows
better agreement.
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Figure 6.4: Dispersion relation of quasi-TE modes.
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Figure 6.5: Dispersion relation of quasi-TM modes.
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photonic crystal as well. Indeed, the simulations show there are 4 even and 4 odd modes at

ky = π
a
. The envelope functions do not fit these extra modes very well (figures 6.2 and 6.3).

In chapter 7, we will see that the simulated fields for these modes show low correlation with

our assumed form of the mode solution. An examination of the field components reveals

these extra modes also have TE-like and TM-like properties.

With the exception of the extra modes, the propagation frequencies from the envelope

approximation agree with simulated results to 0.5%. Although we have been able to explain

qualitatively the features of the dispersion relations within the envelope picture, in the next

chapter, we will quantify the validity of our assumptions and the envelope approximation.

6.3 Looking Ahead

We have extended the envelope approximation to the analysis of a photonic crystal waveg-

uide with a homogeneous dielectric core. We have studied a slab waveguide with εcore = 2

surrounded by a cladding of PMMA spheres arranged in a cubic lattice. The mode shapes

are generally in excellent agreement, and the mode frequencies agree to within 0.5%. We

have not accounted for degeneracy and polarization in the envelope approximation, and

we see hints that these effects may lead to a less accurate description of the propagating

modes within the envelope formalism. Quantifying the accuracy of the assumptions we

have made in the envelope approximation will more clearly define the parameter space

where our approach holds best.

44



Chapter 7

Discussion and Conclusion

We have applied the envelope approximation to the study of photonic crystal waveguides

with cores composed of photonic crystals as well as a simple dielectric medium. Implicit in

our analysis is the consistency of our envelope approximation – a slowly-varying envelope

modulates a Bloch mode. We have also neglected the effects of degeneracies, assuming that

the envelope functions can themselves be degenerate. But how accurate are our assertions?

How well founded is our envelope conception of waveguide modes? In answering these

questions, we gain insights into our envelope approximation that reveal possible avenues

for future work.

7.1 Accuracy of the Envelope Assumptions

We quantify the accuracy of our assumption that the envelope modulates a single Bloch

mode by defining a correlation function between the waveguide mode and a Bloch mode of

the bulk photonic crystal. We seek to determine the correlation between the electric field

in each cell of the waveguide structure with Bloch modes of the constituent material, so

we may examine how well our envelope approximation holds over the waveguide structure.
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We define the correlation function as

χn,m(z) = |〈unk|Ψmk〉| , (7.1)

where we have used the Dirac notation for inner products. χn,m(z) is the correlation

function which varies along the transverse direction of the waveguide, |unk〉 is an electric

field Bloch mode, and |Ψmk〉 is the normalized electric field of a cell in the waveguide. We

normalize the electric field in each cell of the waveguide in a similar fashion as the Bloch

modes:

〈Ψmk|n2|Ψmk〉cell = 1. (7.2)

Using the electric fields from the MPB simulations, we compute the correlation func-

tions between all the waveguide modes and the first few bands of the constituent photonic

crystal. Figure 7.1 shows χn,m as a function of position across the heterostructure waveg-

uide with a lower index in the cladding than the core at ky = π
a
. χ1,1 is almost equal to

1 over the entire cross-section of the waveguide. The total inner product over the first

few bands slightly exceeds unity, which is likely an artifact of the numerical results from

the simulations. Nonetheless, the inner product illustrates that only a single Bloch mode

is being modulated is an excellent approximation. Therefore, the agreement between the

theoretical and computed mode shapes and frequencies is justified.

Although we have just shown a high correlation value leads to good agreement between

the envelope approximation and numerical simulation, this is not always the case. For the

heterostructure waveguide with a core index higher than cladding index, χ1,1 is about 0.7

(figure 7.2). Although the 70% correlation does not lead to a well-fitting mode envelope

(figure 4.1), it is sufficient to obtain agreement in the mode frequency to within 1% (figures

4.2 and 4.3) .

Similar results are obtained for the waveguide with a homogeneous core. For most

guided modes, the χ values vary drastically along z, and the maximum of χ1,1 is approx-
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imately 0.7 (figure 7.3). For the extra mode due to the additional degeneracy associated

with ky = π
a

(section 6.2), there is significant interband mixing in the cladding region close

to the waveguide core. The interband mixing may be due to the degeneracy of the ho-

mogeneous dielectric core, coupling among adjacent waveguides in the simulation space,

and numerical errors in the simulator. Regardless of the cause of the low correlation, in

theory, the envelope approximation should not hold for these modes. However, though the

envelope may not fit the field profiles perfectly (figures 6.2 and 6.3), we have managed to

account for existence of these modes within our envelope formalism, and our computed

mode frequencies agree with the simulated results to better than 2%.

The envelope approximation is robust, as it does not require our assumptions to be

absolutely valid to produce acceptably accurate dispersion relations and mode shapes.

Our analysis shows good agreement is achieved for χn,m & 0.7. This flexibility implies the

envelope approximation may be applicable to the study of a wide range of complex photonic

crystal structures which may not satisfy the a priori envelope assumptions exactly.

7.2 Future Work

In addition to the photonic crystal waveguides discussed herein, a myriad of opportunities

remain. Although our envelope equation is derived for and fully applicable to a channel

waveguide, we have not verified our result with numerical simulations due to the lack of

an effective computational tool. A simulation technique that solves the three dimensional

photonic crystal waveguide will best complement this work. Moreover, to model more

realistic three dimensional photonic crystals, such as a face-centred-cubic structure, we may

consider adapting our equations to non-orthogonal co-ordinates. In cylindrical co-ordinates,

we may derive envelope equations describing wave propagation in curved waveguides.

Furthermore, we can examine photonic crystal resonators using our multiple scales for-

malism. The resonators may function as filter-type devices. A series of coupled resonators

can act as a waveguide, and our analysis will complement the burgeoning work on coupled
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Figure 7.4: The lateral portion of the bent is a coupled resonant optical waveguide [47].
The periodic cavities act as a waveguide.

resonant optical waveguides (CROWs) (figure 7.4) [47, 48]. CROWs show promise in en-

hancing nonlinear optical effects as the group velocity of a propagating pulse is slowed down

in the vicinity of a resonator [48]. Our derivation may be able to incorporate nonlinear

interactions since the multiple scales formalism has already been used to study nonlinear

photonic crystals [49].

Last but not the least, a physical realization of a photonic crystal heterostructure waveg-

uide and experiments to test our envelope approximation will complete our investigation

into photonic crystal heterostructure waveguides. The ultimate aim of the envelope ap-

proximation is to facilitate the practical engineering of photonic crystal devices.

7.3 Conclusion

In this thesis, we employ multiple scales analysis to study photonic crystal waveguides.

By treating the waveguide core as a slowly-varying perturbation in the cladding photonic

crystal, we solve for the propagation constants and frequencies of the waveguide modes.

To the leading order, we assume a waveguide mode is a fast oscillating, unperturbed Bloch

mode modulated by an envelope which varies on the length scale of the perturbation.

Our envelope equation is a partial differential equation analogous to the time-independent
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Schrodinger equation. For engineering design applications, we find the single-mode condi-

tion for a slab photonic crystal heterostructure waveguide. We discover the band curvatures

in the directions perpendicular to the waveguide act as average homogenized refractive in-

dices which account for the photonic crystal.

We demonstrate the validity of our multiple scales method by examining slab waveguides

in three dimensional photonic crystals with cores consisting of photonic crystals and a

homogeneous dielectric medium. To compare our results with full numerical simulations,

we use MIT Photonic Bands software to simulate the waveguides. The mode shapes are in

good agreement with simulations, and our computed waveguide dispersion relation agrees

with simulated results to about 1%.

We explore the limitations and possible extensions of the envelope approximation. The

assumptions on which the envelope approximation formalism is founded need not be com-

pletely true to obtain accurate results. While fields of the waveguide modes are affected by

band degeneracies and subjected to polarization dependences, the envelope approximation

supersedes these “microscopic” field properties by describing the modulating functions that

encapsulate the general properties of the waveguide modes.

The envelope approximation is an efficient design tool for photonic crystal waveguides,

eliminating the computational complexities associated with fully numerical simulations. It

also provides a physically intuitive picture to understanding photonic crystal waveguides.

The multiple scales method and envelope approximation enhance our mode envelope con-

ception of photonic crystal waveguiding.
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Appendix A

Photonic Crystal k · p Theory

Completing the multiple scales expansion requires some results from a k · p theory for

photonic crystals. Although more complete and rigourous research on photonic crystal

k · p theory has been undertaken to study nonlinearity in photonic crystals, such work

cannot be simply or easily applied to our envelope approximation [49, 50]. We shall derive

an alternate formulation of the photonic crystal k · p theory that will not only serve our

multiple scales expansion but also show the regimes where our envelope approximation will

be most applicable.

A.1 Operators and Perturbation Ansatz

We begin with the vector wave equation

∇×∇× E =
ω2
n

c2
n2(r)E, (A.1)

which can be expressed as

∇2E−∇(∇ · E) = −ω2
nn

2(r)E, (A.2)
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where we have normalized c = 1, and the subscript n labels the eigenfrequency. In a

periodic medium, the solutions to the wave equation are

Enk(r) = unk(r) exp(ik · r), (A.3)

where the subscripts n, k label the band and wavevector corresponding to a Bloch mode of

the electric field, u(r). From equation (A.3), we can see that the field operator is of the

Sturm-Liouville type, though the eigenvalue, ω2
n, is multiplied by n2. Hence, the electric

field Bloch modes will satisfy the orthonormality relation

1

V
〈umk′|n2|unk〉 = δm,nδk′,k, (A.4)

where we have adopted the Dirac notation, and V is the volume of the cell which fixes the

normalization of the Bloch modes. In the derivation that follows, we will use the Dirac

notation, treating a Bloch mode, unk, as a state function, |unk〉.

Now we consider a perturbation in the wavevector to a particular electric field mode,

so the new electric field takes the form

E′nk′ = exp(ik′ · r)|unk′〉, (A.5)

where

k′ = k0 + µκ̃. (A.6)

µ is the small perturbation parameter, and κ̃ is the perturbation wavevector.

Following perturbation analysis, we assume the new Bloch mode will take the form

|unk′〉 = |unk〉+ µ|unk
(1)〉+ µ2|unk

(2)〉+ . . . , (A.7)

where the superscripts denote the orders of the Bloch mode correction. We also assume
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the eigenvalue correction is represented by

ω′2n = ω2
n + µλ(1) + µ2λ(2) + . . . , (A.8)

where λ(n) gives the nth order correction to the eigenvalue.

We substitute our perturbed Bloch mode into the wave equation, and we find

(H0 + µW)|unk′〉 = −ω′2n n2|uk′〉, (A.9)

where H0 acts as the unperturbed field operator analogous to a free Hamiltonian in quan-

tum mechanics, while W is the normalized perturbation operator. However, these operators

are complicated by the fact that they are vectorial. By expanding the wave equation in

Cartesian co-ordinates, we can define three components (x̂, ŷ, ẑ) to each vector operator.

The action of each component of the vector operator on each component of a Bloch mode

(ux, uy, uz) follows explicitly. For example, the ŷ component of H0 is

H0y|unk〉 =
∂2uy
∂x2

+
∂2uy
∂z2

+ 2ikx
∂uy
∂x

+ 2ikz
∂uy
∂z
− k2

xuy − k2
zuy + kxkyux −

ikx
∂ux
∂y

+ kzkyuz − ikz
∂uz
∂y
− iky

∂ux
∂x
− ∂2ux
∂y∂x

− iky
∂uz
∂z
− ∂2uz
∂y∂z

. (A.10)

The expression is rather cumbersome due to the curl operator in the original wave equa-

tion. Naturally, the other components of H0 are simply cyclic permutations of the above.

Moreover, we observe that H0 is self-adjoint. Since the corresponding H0 operator for the

electric field is a Sturm-Liouville operator with periodic boundary conditions (A.3), the

electric field wave operator is self-adjoint. Changing our basis set from electric field modes

to Bloch modes should not alter the self-adjoint property of H0, thus H0 as defined in

(A.10) is self-adjoint.
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Similarly, the ŷ component of W is

Wy|unk〉 =

(
2i
∂uy
∂x
− 2kxuy + kyux − i

∂ux
∂y

)
κx +(

kxux − i
∂ux
∂x

+ kzuz − i
∂uz
∂z

)
κy +(

2i
∂uy
∂z
− 2kzuy + kyuz − i

∂uz
∂y

)
κz, (A.11)

where κi represents a component of κ̃. Wx and Wz are also cyclic permutations of Wy.

For convenience, we can alternatively define operators W̃x, W̃y, and W̃z, such that

W̃x = κx
∂

∂κx
(Wx + Wy + Wz) , (A.12)

W̃y = κy
∂

∂κy
(Wx + Wy + Wz) , (A.13)

W̃z = κz
∂

∂κz
(Wx + Wy + Wz) , (A.14)

where we have just separated the perturbation dependences of the operators. Therefore,

W = Wx + Wy + Wz = W̃x + W̃y + W̃z. (A.15)

A key property of W is that it is an adjoint operator. In other words, 〈vk|W|uk〉 =

〈uk|W|vk〉∗. This property is a consequence of the periodic nature of Bloch modes. To

show this is true, we consider (A.11). For the terms without the derivatives, we note

∫
cell

v∗puqdV −
(∫

cell

u∗qvpdV

)∗
= 0, (A.16)

where the subscripts represent the different vector components of |uk〉 and |vk〉. For the

terms with the derivatives, we get

i

∫
cell

v∗p
∂uq
∂r

dV −
(
i

∫
cell

u∗q
∂vp
∂r

dV

)∗
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= i

∫
cell

∂

∂r

(
upv

∗
q

)
dV

= 0. (A.17)

In this section, we define the relevant operators and their action, setting the stage for

our k · p derivation. In the next section, we will apply perturbation theory to obtain a

relationship between the bandstructure and the Bloch modes.

A.2 Perturbation Theory

Analogous to k · p theory in solid state physics, we shall adopt the same approach as time-

independent perturbation theory in quantum mechanics to solve our perturbed system. We

shall obtain equations for each order of the perturbation expansion that will relate certain

properties of the bandstructure to the Bloch modes.

We begin by substituting the form of the perturbed Bloch mode, wavevector, and

eigenfrequency (A.7, A.6, A.8) into the “Hamiltonian” (A.9). We collect terms order by

order in µ. For the zeroth order in µ (i.e. O(1)), we recover the unperturbed wave equation.

To first order, O(µ), we find

H0|unk
(1)〉+ W|unk〉+ ω2

nn
2|unk

(1)〉+ λ(1)n2|unk〉 = 0. (A.18)

Before proceeding, we observe that

〈unk|n2|unk
(1)〉 = 0, (A.19)

because

〈unk′|n2|unk′〉 = 〈unk|n2|unk〉+ µ
(
〈unk|n2|unk

(1)〉+ c.c.
)

+ . . . , (A.20)

where both 〈unk′|n2|unk′〉 and 〈unk|n2|unk〉 are normalized.
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When we project (A.18) to 1
V
〈unk|, we obtain

λ(1) = − 1

V
〈unk|W|unk〉. (A.21)

A Taylor expansion about the eigenvalue corresponding to |unk〉 leads to an expression for

λ(1):

λ(1) = κx
∂ω2

n

∂kx
+ κy

∂ω2
n

∂ky
+ κz

∂ω2
n

∂kz
. (A.22)

Therefore, simplifying (A.21) and separating the κx, κy, and κz dependences give our first

set of relations between the slope at a particular point on the bandstructure to the Bloch

mode:

∂ω2
n

∂kx
= − 1

V

∫
cell

[
u∗x

(
kzuz − i

∂uz
∂z

+ kyuy − i
∂uy
∂y

)
+ u∗y

(
2i
∂uy
∂x
− 2kxuy + kyux − i

∂ux
∂y

)
+u∗z

(
2i
∂uz
∂x
− 2kxuz − i

∂ux
∂z

+ kzux

)]
dV (A.23)

∂ω2
n

∂ky
= − 1

V

∫
cell

[
u∗x

(
2i
∂ux
∂y
− 2kyux + kxuy − i

∂uy
∂x

)
+u∗y

(
kxux − i

∂ux
∂x

+ kzuz − i
∂uz
∂z

)
+u∗z

(
2i
∂uz
∂y
− 2kyuz + kzuy − i

∂uy
∂z

)]
dV (A.24)

∂ω2
n

∂kz
= − 1

V

∫
cell

[
u∗x

(
2i
∂ux
∂z
− 2kzux + kxuz − i

∂uz
∂x

)
+u∗y

(
2i
∂uy
∂z
− 2uyuz + kyuz − i

∂uz
∂y

)
+u∗z

(
kyuy − i

∂uy
∂y

+ kxux − i
∂ux
∂x

)]
dV. (A.25)
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We can also find the correction to the Bloch mode by projecting (A.18) to another mode

at the same k but at a different band, m. We label such as mode as 〈um|. The result is

n2|unk
(1)〉 =

1

V

∑
m6=k

〈umk|W|unk〉
ω2
m − ω2

n

|umk〉. (A.26)

Since our wave equation did not give pure eigenvalues, and since the electric field modes are

orthogonal to each other with respect to the dielectric constant, our eigenvector correction

is multiplied by the refractive index.

Now, let us examine the O(µ2) terms. This order of the expansion will contain informa-

tion about the curvature of the band, since the second order correction to the eigenvalue

can be written as

λ(2) =
1

2

(
κ2
x

∂2ω2
n

∂k2
x

+ κ2
y

∂2ω2
n

∂k2
y

+ κ2
z

∂2ω2
n

∂k2
z

+ κxκy
∂2ω2

n

∂kx∂ky
+ κyκz

∂2ω2
n

∂ky∂kz
+ κxκz

∂2ω2
n

∂kx∂kz

)
(A.27)

If we collect all of the second order terms in (A.9) and project the expression to the Bloch

mode itself, 〈unk|, we obtain

λ(2) =
1

V

[
κ2
x (〈unk|unk〉 − 〈ux

nk|ux
nk〉) + κ2

y (〈unk|unk〉 − 〈uy
nk|u

y
nk〉)

+κ2
z (〈unk|unk〉 − 〈uz

nk|uz
nk〉) + κxκy (〈uy

nk|u
x
nk〉+ c.c.) + κyκz (〈uz

nk|u
y
nk〉+ c.c.)

+κxκz (〈ux
nk|uz

nk〉+ c.c.)−
∑
m6=k

|〈umk|W|unk〉|2

ω2
m − ω2

n

]
, (A.28)

where |ux
nk〉, |u

y
nk〉, |uz

nk〉 are the three vectorial components of the Bloch mode. In arriving

at (A.28), we made an important assumption that |umk〉 is orthogonal to |unk〉. This

approximation holds true for the lower bands and is verified numerically. The inner product

between a Bloch mode from the first few bands and modes of higher bands is about 19

orders of magnitude smaller than its own magnitude. If we did not make the assumption,

(A.28) will only be slightly more complicated, where instead of the simple coupling factor,
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we will have a term like

∑
m6=n

〈umk|W/n2|unk〉〈unk|W|umk〉
ω2
m − ω2

n

. (A.29)

This is still relatively easy to deal with, but for the sake of simplicity and when analyzing

the lower bands, equation (A.28) will suffice.

Following a similar procedure to that used in the O(µ) analysis, we can separate the

terms based on like perturbation parameters to arrive at expressions for the band curva-

tures:

∂2ω2
n

∂k2
x

=
2

V

[
(〈unk|unk〉 − 〈ux

nk|ux
nk〉)−

∑
m6=n

|〈umk|W̃x|unk〉|2

ω2
m − ω2

n

]
, (A.30)

∂2ω2
n

∂k2
y

=
2

V

[
(〈unk|unk〉 − 〈uy

nk|u
y
nk〉)−

∑
m6=n

|〈umk|W̃y|unk〉|2

ω2
m − ω2

n

]
, (A.31)

∂2ω2
n

∂k2
z

=
2

V

[
(〈unk|unk〉 − 〈uz

nk|uz
nk〉)−

∑
m6=n

|〈umk|W̃z|unk〉|2

ω2
m − ω2

n

]
, (A.32)

∂2ω2
n

∂kxky
=

2

V

(〈uy
nk|u

x
nk〉+ c.c.)− 2

∑
m6=n

Re
[
〈umk|W̃x|unk〉〈umk|W̃y|unk〉

]
ω2
m − ω2

n

 , (A.33)

∂2ω2
n

∂kykz
=

2

V

(〈uy
nk|u

z
nk〉+ c.c.)− 2

∑
m6=n

Re
[
〈umk|W̃y|unk〉〈umk|W̃z|unk〉

]
ω2
m − ω2

n

 , (A.34)

∂2ω2
n

∂kxkz
=

2

V

(〈ux
nk|uz

nk〉+ c.c.)− 2
∑
m6=n

Re
[
〈umk|W̃x|unk〉〈umk|W̃z|unk〉

]
ω2
m − ω2

n

 . (A.35)

We have used our lower band approximation as in (A.28) in arriving at the curvature

relations. Our analysis is complete; we can now relate band curvatures to the corresponding

Bloch modes.
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A.3 Looking Ahead

We have derived a k · p theory for photonic crystals using time independent perturbation

theory. We have found the relationships between Bloch modes and the bandstructure. In

particular, we have obtained the expressions that relate the slope and curvature at a point

on the bandstructure to the Bloch modes corresponding to that wavevector. These results

will be useful in simplifying the envelope equations in the multiple scales derivation.
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