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Rogue waves on the background of periodic standing waves
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The derivative nonlinear Schrödinger (DNLS) equation is the canonical model for the dynamics of nonlinear
waves in plasma physics and optics. We study exact solutions describing rogue waves on the background of
periodic standing waves in the DNLS equation. We show that the space-time localization of a rogue wave is only
possible if the periodic standing wave is modulationally unstable. If the periodic standing wave is modulationally
stable, the rogue wave solutions degenerate into algebraic solitons propagating along the background and
interacting with the periodic standing waves. Maximal amplitudes of rogue waves are found analytically and
confirmed numerically.
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I. INTRODUCTION

Fundamental models for the dynamics of waves in fluids,
plasmas, and optical systems are written in terms of integrable
systems such as the nonlinear Schrödinger (NLS) equation,
the derivative nonlinear Schrödinger (DNLS) equation, and
their multicomponent generalizations. These models simplify
the complicated dynamics by accounting for only two mecha-
nisms in the wave evolution: dispersion and nonlinearity.

The focusing NLS equation is the most studied model
of this class. Periodic waves in complex physical sys-
tems are modeled by the constant-amplitude waves of the
NLS equation, which are known to be modulationally un-
stable [1]. Related to the modulational instability, rogue
waves (localized waves of large amplitude appearing from
nowhere and disappearing without a trace) emerge on the
constant-amplitude wave background. These rogue waves
are described by the exact solutions of the NLS equation
[2–5].

In the context of the multicomponent NLS models, it was
discovered in Refs. [6,7] that rogue waves only emerge on
the modulationally unstable constant-amplitude wave back-
ground. If waves are modulationally stable in a subset of the
parameter region, no rogue wave solutions can be constructed,
and numerical simulations do not show the occurrence of
localized waves of large amplitude [8].

The concept of modulational instability is introduced to
describe the instability of the constant-amplitude wave with
respect to perturbations of increasingly large periods [1].
If the constant-amplitude wave is unstable with respect to
perturbations of smaller periods but stable with respect to
perturbations of increasingly larger periods, it is said to be
modulationally stable, even though it is still unstable in the
time evolution of the governing model [9]. Note that in [6,7]
the concept of modulational instability was dubbed “baseband
modulational instability.”

Multiperiodic wave patterns in complex physical systems
are modeled by the periodic standing wave solutions of the
NLS equation. These periodic standing waves are also modu-
lationally unstable [10], and rogue waves in their background
exist as exact solutions of the NLS equation [11,12] and
are observed in numerical simulations [13] and optical and
hydrodynamical experiments [14].

A special relation between the modulational instability of
periodic standing waves and the existence of rogue wave
solutions was discovered in [15]. If the unstable spectral band
intersects the origin in the complex spectral plane tangentially
to the imaginary axis, the corresponding rogue wave solution
degenerates into a propagating algebraic soliton on the peri-
odic standing wave background. Similarly, it was shown for
the sine-Gordon equation [16] that rogue waves are localized
in space-time for modulationally unstable librational waves
but degenerate into propagating algebraic solitons for modu-
lationally stable rotational waves (which are still unstable with
respect to perturbations of shorter periods).

The purpose of this work is to study rogue waves in
the DNLS equation, which models long weakly nonlinear
Alfvén waves propagating along the constant magnetic field in
cold plasmas [17,18]. Rogue waves on the constant-amplitude
wave background were constructed recently in Ref. [19]. Here
we investigate the properties of the rogue waves arising in the
background of the periodic standing waves.

The precise characterization of modulational instability of
periodic standing waves in the DNLS equation was completed
in our previous work [20], where we implemented the alge-
braic method of nonlinearization of Lax equations after the
previous works in [21–25]. Compared to the previous studies
of periodic standing waves in the DNLS equation in [26–29],
the results of [20] gave a full picture of three possible types
of periodic standing waves. The first type is modulationally
unstable with two figure-8 unstable bands, the second type
is modulationally unstable with one figure-8 unstable band,
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and the third type is modulationally stable (in fact, stable with
respect to perturbations of any period).

The main outcomes of this work are summarized as fol-
lows:

(i) The periodic standing waves with two figure-8 unstable
bands admit two rogue waves localized in space-time.

(ii) The periodic standing waves with one figure-8 unstable
band admit one rogue wave and two algebraic solitons propa-
gating along its background.

(iii) The periodic standing waves with no unstable bands
admit four algebraic solitons and no rogue waves.

Our main results are in agreement with the previous obser-
vations in [6,7] and in [15,16] that the space-time localization
of rogue waves on the constant-amplitude and periodic stand-
ing wave background is possible if and only if the background
wave is modulationally unstable (once again, unstable with
respect to perturbations of increasingly long periods). There
is currently no mathematical proof of this result for a general
integrable system.

The regular way to construct the rogue wave solutions
on the background of the periodic standing waves is to use
the Darboux transformation. Darboux transformations for the
DNLS equation (1) are well-known after the previous works
in [30–33]. Applications of the Darboux transformation to
generate breathers on the background of constant-amplitude
solutions can be found in [34]. Darboux transformations
are also useful to add solitons in the mathematical analy-
sis of the existence of solutions to the initial-value problem
[35].

We use the Darboux transformation with the nonperiodic
solutions of the Lax equations associated with the periodic
standing waves of the DNLS equation. Although the algebraic
method from [20] only gives periodic solutions of the Lax
equations, the nonperiodic solutions can be explicitly char-
acterized in terms of integrals of the periodic standing wave
solutions, as we show here. Since the computations are long
and technical, our presentation includes only main results and
numerical visualizations, whereas computational details are
given as Appendixes.

In addition to numerical visualization of rogue wave so-
lutions (either localized in space-time or propagating as
algebraic solitons), we also compute maximal amplitudes
of the rogue waves. These maximal amplitudes are impor-
tant for future experiments with the rogue waves on the
periodic standing wave background. Some progress in the
analysis of maximal amplitudes for more general quasiperi-
odic solutions of the DNLS equation was recently obtained
in [36]. Other recent studies of quasiperiodic solutions of
the DNLS equation can be found in [25] and also in
[37,38].

The paper is organized as follows. Section II reviews the
construction of periodic standing waves based on our previous
work [20]. We show in Sec. III that Darboux transforma-
tions with the periodic eigenfunctions of the Lax equations
transform the class of periodic standing waves into itself.
Section IV reports on rogue waves obtained after Darboux
transformations with the nonperiodic solutions of the Lax
equations. Section V concludes the paper with a discussion
of future directions.

II. PERIODIC STANDING WAVES

We consider the DNLS equation in the following normal-
ized form:

iψt + ψxx + i(|ψ |2ψ )x = 0, (1)

where i = √−1 and ψ (x, t ) : R × R �→ C. As is shown in
[39], the DNLS equation is a compatibility condition φxt =
φtx of the following Lax equations:

φx = U (ψ, λ)φ, φt = V (ψ, λ)φ, (2)

where

U (ψ, λ) =
(−iλ2 λψ

−λψ̄ iλ2

)
(3)

and

V (ψ, λ) =
( −2iλ4 + iλ2|ψ |2 2λ3ψ + λ(iψx − |ψ |2ψ )

−2λ3ψ̄ + λ(iψ̄x + |ψ |2ψ̄ ) 2iλ4 − iλ2|ψ |2
)

. (4)

The standing wave reduction of the DNLS equation (1)
takes the form

ψ (x, t ) = u(x + 2ct )e4ibt , (5)

where b and c are real parameters, and u satisfies the second-
order equation:

d2u

dx2
+ i

d

dx
(|u|2u) + 2ic

du

dx
− 4bu = 0. (6)

The second-order equation (6) is integrable with the following
two first-order invariants:

2i

(
ū

du

dx
− u

dū

dx

)
− 3|u|4 − 4c|u|2 = 4a (7)

and

2

∣∣∣∣du

dx

∣∣∣∣
2

− |u|6 − 2c|u|4 − 4(a + 2b)|u|2 = 8d, (8)

where a and d are real parameters. As shown in [26] (see also
[20]), the standing wave solutions of the differential equations
(6)–(8) are related to four pairs of roots of the following
polynomial:

P(λ) = λ8 − 2cλ6 + λ4(a + 2b + c2)

+ λ2[d − c(a + 2b)] + b2. (9)

In the remainder of this section, we review details in the
construction of periodic standing waves based on our previous
work [20].
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A. Eigenvalues and eigenvectors of the Lax equations

The roots of P(λ) given by (9) determine the eigenvalues
of the Kaup-Newell (KN) spectral problem

ϕx = U (u, λ)ϕ, (10)

for either periodic or antiperiodic eigenvectors ϕ = (p, q)T

related to the periodic potential u. Eigenvector ϕ arises in the
separation of variable

φ(x, t ) = e2ibtσ3ϕ(x + 2ct, t ), (11)

where φ is a solution of the Lax equations (2) associated
with the standing wave ψ of the DNLS equation (1) given
by (5) and σ3 = diag(1,−1). Therefore, the eigenvector ϕ of
the KN spectral problem (10) also satisfies the time-evolution
equation

ϕt + 2cϕx + 2ibσ3ϕ = V (u, λ)ϕ. (12)

The roots of P(λ) arise either as complex quadruplets or
double real pairs or purely imaginary pairs [20]:

(i) If P(λ) admits a quadruplet of complex roots
{λ1, λ̄1,−λ1,−λ̄1}, then the standing wave u and the eigen-
vector ϕ1 = (p1, q1)T for the eigenvalue λ1 are related by

u = λ1 p2
1 + λ̄1q̄2

1. (13)

(ii) If P(λ) admits a pair of double real roots {λ1,−λ1}
with two linearly independent eigenvectors ϕ1 = (p1, q1)T

and ϕ2 = (q̄1,−p̄1)T for the same eigenvalue λ1, then the
same expression (13) holds.

(iii) If P(λ) admits two pairs of purely imaginary eigenval-
ues {iβ1,−iβ1, iβ2,−iβ2}, then the standing wave u and the
eigenvectors ϕ1 = (p1,−i p̄1)T and ϕ2 = (p2,−i p̄2)T for the
eigenvalues λ1 = iβ1 and λ2 = iβ2 are related by

u = iβ1 p2
1 + iβ2 p2

2. (14)

B. Complex Hamiltonian systems

Eigenvectors ϕ1 = (p1, q1)T and ϕ2 = (p2, q2)T of the KN
spectral problem (10) with eigenvalues λ1 and λ2 satisfy a
finite-dimensional complex Hamiltonian system, which is in-
tegrable [25]. This complex Hamiltonian system is equivalent
to the Lax equation

d

dx
� = [U , �], (15)

where U is obtained from U (u, λ) in (3) with u given by either
(13) or (14). The 2-by-2 Lax matrix � is given by

� :=
(

�11 �12

�21 −�11

)
, (16)

where

�11 = −i − λ2
1 p1q1

λ2 − λ2
1

− λ2
2 p2q2

λ2 − λ2
2

,

�12 = λ

(
λ1 p2

1

λ2 − λ2
1

+ λ2 p2
2

λ2 − λ2
2

)
,

�21 = −λ

(
λ1q2

1

λ2 − λ2
1

+ λ2q2
2

λ2 − λ2
2

)
.

Entries of the Lax matrix � can be rewritten in terms of u by

�11 = −i(
λ2 − λ2

1

)(
λ2 − λ2

2

)[
λ4 − λ2

(
c + 1

2
|u|2

)
+ b

]
,

�12 = λ(
λ2 − λ2

1

)(
λ2 − λ2

2

)[
λ2u + i

2

du

dx
− 1

2
u|u|2 − cu

]
,

�21 = −λ(
λ2 − λ2

1

)(
λ2 − λ2

2

)[
λ2ū − i

2

dū

dx
− 1

2
ū|u|2 − cū

]
,

so that

det � = −�2
11 − �12�21 = P(λ)(

λ2 − λ2
1

)2(
λ2 − λ2

2

)2 , (17)

where P(λ) is given by (9). Eigenvalues λ1 and λ2 arising in
the poles of � must be chosen from the roots of P(λ).

Let the four pairs of roots of the polynomial P(λ) in (9)
be denoted by {±λ1,±λ2,±λ3,±λ4}. The polynomial can be
factorized by its roots:

P(λ) = (
λ2 − λ2

1

)(
λ2 − λ2

2

)(
λ2 − λ2

3

)(
λ2 − λ2

4

)
. (18)

Comparison of (9) and (18) yields the relations

λ2
1 + λ2

2 + λ2
3 + λ2

4 = 2c,(
λ2

1 + λ2
2

)(
λ2

3 + λ2
4

) + λ2
1λ

2
2 + λ2

3λ
2
4 = a + 2b + c2,

(19)
λ2

1λ
2
2

(
λ2

3 + λ2
4

) + λ2
3λ

2
4

(
λ2

1 + λ2
2

) = ac + 2bc − d,

λ2
1λ

2
2λ

2
3λ

2
4 = b2,

which allow us to express parameter (a, b, c, d ) in terms of
{λ1, λ2, λ3, λ4} explicitly:

a = − 1
4 [(λ1 + λ2)2 − (λ3 + λ4)2]

× [(λ1 − λ2)2 − (λ3 − λ4)2],

b = λ1λ2λ3λ4,
(20)

c = 1
2

(
λ2

1 + λ2
2 + λ2

3 + λ2
4

)
,

d = − 1
8

(
λ2

1 + λ2
2 − λ2

3 − λ2
4

)(
λ2

1 − λ2
2 + λ2

3 − λ2
4

)
× (

λ2
1 − λ2

2 − λ2
3 + λ2

4

)
.

C. Characterization of the periodic standing waves

Explicit solutions for the periodic standing waves satis-
fying (6)–(8) are obtained after using the polar form u(x) =
R(x)eiθ (x) with

dθ

dx
= − a

R2
− 3

4
R2 − c (21)

and (
dR

dx

)2

+ a2

R2
+ 1

16
R6 + c

2
R4

+ R2
(

c2 − 4b − a

2

)
+ 2ac − 4d = 0. (22)

The transformation ρ = 1
2 R2 brings (22) to the form(

dρ

dx

)2

+ Q(ρ) = 0, (23)

062206-3



JINBING CHEN AND DMITRY E. PELINOVSKY PHYSICAL REVIEW E 103, 062206 (2021)

where

Q(ρ) = ρ4 + 4cρ3 + 2(2c2 − a − 8b)ρ2

+ 4(ac − 2d )ρ + a2. (24)

Let the four roots of the polynomial Q(ρ) be denoted by
{u1, u2, u3, u4} so that

Q(ρ) = (ρ − u1)(ρ − u2)(ρ − u3)(ρ − u4). (25)

Comparison of (24) with (25) yields

u1 + u2 + u3 + u4 = −4c,

u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4

= 2(2c2 − a − 8b), (26)

u1u2u3 + u1u2u4 + u1u3u4 + u2u3u4 = 4(2d − ac),

u1u2u3u4 = a2.

The roots {u1, u2, u3, u4} of Q are related to the roots
{±λ1,±λ2,±λ3,±λ4} of P due to (20) and (26). It was shown
in [26] and more recently in [20] that the relations are ex-
pressed by

u1 = − 1
2 (λ1 − λ2 + λ3 − λ4)2,

u2 = − 1
2 (λ1 − λ2 − λ3 + λ4)2,

(27)
u3 = − 1

2 (λ1 + λ2 − λ3 − λ4)2,

u4 = − 1
2 (λ1 + λ2 + λ3 + λ4)2.

Two families of periodic standing waves are obtained from the
quadrature (23) with (25).

1. Four roots of Q are real

Assume the following ordering for the four real roots of Q:

u4 � u3 � u2 � u1. (28)

Periodic solutions to the quadrature (23) are expressed explic-
itly (see, e.g., [40]) by

ρ(x) = u4 + (u1 − u4)(u2 − u4)

(u2 − u4) + (u1 − u2)sn2(νx; k)
, (29)

where positive parameters ν and k are uniquely expressed by

ν = 1

2

√
(u1 − u3)(u2 − u4),

(30)

k =
√

(u1 − u2)(u3 − u4)√
(u1 − u3)(u2 − u4)

.

The periodic solution ρ is located in the interval [u2, u1] and
has the period L = 2K (k)ν−1. The solution (29) with (30) is
meaningful for ρ = 1

2 R2 � 0 in two cases:

λ1 = λ̄3 = α1 + iβ1, λ2 = λ̄4 = α2 + iβ2 (31)

and
λ1 = iβ1, λ2 = iβ2, λ3 = iβ3, λ4 = iβ4. (32)

The roots ordered as (28) satisfy the more precise ordering

u4 � u3 � 0 � u2 � u1 (33)

in the case of (31) and

0 � u4 � u3 � u2 � u1 (34)

in the case of (32). Note that in the case of (34), another
periodic solution is obtained from (29) by exchanging u1 with
u3 and u2 with u4:

ρ(x) = u2 − (u2 − u3)(u2 − u4)

(u2 − u4) − (u3 − u4)sn2(νx; k)
, (35)

where the values of ν and k are the same as in (30).
In the case of (31), if α1, α2, β1, β2 are all positive, it

follows from (27) that

α1 = 1

2
√

2
(
√−u4 + √−u3),

α2 = 1

2
√

2
(
√−u4 − √−u3),

(36)

β1 = 1

2
√

2
(
√

u1 + √
u2),

β2 = 1

2
√

2
(
√

u1 − √
u2),

so that 0 � α2 � α1 and 0 � β2 � β1.
In the case of (32), it follows from (27) that

β1 = 1

2
√

2
(
√

u1 + √
u2 + √

u3 + √
u4),

β2 = 1

2
√

2
(−√

u1 − √
u2 + √

u3 + √
u4),

(37)

β3 = 1

2
√

2
(
√

u1 − √
u2 − √

u3 + √
u4),

β4 = 1

2
√

2
(−√

u1 + √
u2 − √

u3 + √
u4),

so that β2 � β4 � β3 � β1.

2. Two roots of Q are real and one pair of roots
is complex-conjugate

Assume that the two real roots are ordered as u2 � u1 and
the complex-conjugate roots are given by u3,4 = γ ± iη so
that

0 � u2 � u1, u3 = γ + iη, u4 = γ − iη. (38)

Periodic solutions to the quadrature (23) are expressed explic-
itly (see, e.g., [40]) by

ρ(x) = u1 + (u2 − u1)[1 − cn(μx; k)]

1 + δ + (δ − 1)cn(μx; k)
, (39)

where positive parameters δ, μ, and k are uniquely expressed
by

δ =
√

(u2 − γ )2 + η2√
(u1 − γ )2 + η2

,

(40)
μ = 4

√
[(u1 − γ )2 + η2][(u2 − γ )2 + η2],

and

2k2 = 1 − (u1 − γ )(u2 − γ ) + η2√
[(u1 − γ )2 + η2][(u2 − γ )2 + η2]

. (41)

The periodic solution ρ is located in the interval [u2, u1] and
has the period L = 4K (k)μ−1. The periodic solution (39) with
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(40) and (41) is meaningful for ρ = 1
2 R2 � 0 if

λ1 = λ̄2 = α1 + iβ1, λ3 = iβ3, λ4 = iβ4 (42)

with the following relations:

α1 = 1

2

√√
γ 2 + η2 − γ ,

β1 = 1

2
√

2
(
√

u1 + √
u2),

(43)

β3 = η

2
√√

γ 2 + η2 − γ

+ 1

2
√

2
(
√

u1 − √
u2),

β4 = η

2
√√

γ 2 + η2 − γ

− 1

2
√

2
(
√

u1 − √
u2).

where α1 � 0, β1 � 0, and β4 � β3.

III. DARBOUX TRANSFORMATIONS

Darboux transformations for the DNLS equation (1) were
constructed previously in [30–33]. Here we use the exact
formulas for the onefold and twofold Darboux transforma-
tions. The validity of the transformation formulas is verified
in Appendixes A and B.

Let ψ be a solution of the DNLS equation (1) and let φ be
a solution of the Lax equations (2) for the potential ψ with a
fixed value of λ. If ψ is the standing wave solution in the form
(5), then the solution φ can be expressed in the form (11).
We denote eigenvectors ϕ1 = (p1, q1)T and ϕ2 = (p2, q2)T

for eigenvalues λ1 and λ2, respectively.
Darboux transformations generate new solutions to the

DNLS equation (1) in the form

ψ̂ (x, t ) = û(x + 2ct, t )e4ibt . (44)

The following three basic Darboux transformations will be
used:

(i) If λ1 = iβ1 and q1 = −i p̄1, then the new solution is
given by

û = − p̄2
1

p2
1

[
u + 2iβ1

p1

p̄1

]
e−8ibt . (45)

(ii) If λ1,2 = iβ1,2 and q1,2 = −i p̄1,2, then the new solution
is given by

û =
(

β1 p̄1 p2 − β2 p̄2 p1

β1 p̄2 p1 − β2 p̄1 p2

)2
(

u + 2i
(
β2

1 − β2
2

)
p1 p2

β1 p̄1 p2 − β2 p̄2 p1

)
. (46)

(iii) If λ1 ∈ C with Re(λ1), Im(λ1) �= 0, then the new so-
lution is given by

û =
(

λ̄1|p1|2 + λ1|q1|2
λ1|p1|2 + λ̄1|q1|2

)2
[

u − 2i
(
λ2

1 − λ̄2
1

)
p1q̄1

λ̄1|p1|2 + λ1|q1|2
]
. (47)

Here we consider eigenvectors of the KN spectral problem
(10) found from the complex Hamiltonian system (15). We
show that the Darboux transformations with these eigenvec-
tors produce new solutions of the DNLS equation that are
translated versions of the same periodic standing waves.

Comparing expressions for �12 and �21 yields the follow-
ing relations for the squared components of the eigenvectors:

λ1 p2
1 = 1

λ2
1 − λ2

2

[
1

2

(
i
du

dx
− |u|2u

)
+ (λ2

1 − c)u

]
,

(48)

λ1q2
1 = 1

λ2
1 − λ2

2

[
−1

2

(
i
dū

dx
+ |u|2ū

)
+ (

λ2
1 − c

)
ū

]
,

whereas comparing expressions for �11 yields

λ2
1 p1q1 = i

λ2
1 − λ2

2

[
b − cλ2

1 + λ4
1 − 1

2
λ2

1|u|2
]
. (49)

By using the polar form decompositions

u(x) = R(x)eiθ (x),

p1(x) = P1(x)e
i
2 θ (x), (50)

q1(x) = Q1(x)e− i
2 θ (x)

and the phase equation (21), we can rewrite relations (48) and
(49) in the form

λ1P2
1 = 1

λ2
1 − λ2

2

[
i

2

dR

dx
− 1

8
R3 + a

2R
+

(
λ2

1 − c

2

)
R

]
,

(51)

λ1Q2
1 = 1

λ2
1 − λ2

2

[
− i

2

dR

dx
− 1

8
R3 + a

2R
+

(
λ2

1 − c

2

)
R

]
,

and

λ2
1P1Q1 = i

λ2
1 − λ2

2

[
b − cλ2

1 + λ4
1 − 1

2
λ2

1R2

]
. (52)

The periodic standing waves are given by either (29) or (39)
for ρ := 1

2 R2. Depending on the parameters (a, b, c, d ), the
roots of P(λ) include either pairs of purely imaginary eigen-
values or complex quadruplets.

A. Onefold transformation (45) for the periodic wave (29)

Let us consider the case (32) for the periodic wave (29)
with 0 � u4 � u3 � u2 � u1. Four pairs of purely imagi-
nary eigenvalues exist. Without loss of generality, we pick
one eigenvalue λ1 = iβ1. It is shown in Appendix C that
the new solution can be expressed in the form ρ̂ := 1

2 |û|2
with

ρ̂ = β2
1 a

(
b − cβ2

1 − β4
1

) + 2dβ4
1 + [

b2 + β4
1

(
2b + a − c2

) + β8
1

]
ρ + β2

1

(
b − cβ2

1 − β4
1

)
ρ2(

b + cβ2
1 + β4

1 + β2
1ρ

)2 . (53)
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For the periodic wave (29), this expression reduces to the form

ρ̂(x) = v1 − (v1 − v3)(v1 − v4)

(v1 − v3) + (v3 − v4)sn2(νx; k)
, (54)

where the values of ν and k are the same as in (30), and the
new roots 0 � v4 � v3 � v2 � v1 are given by

v1 = 1
4 (

√
u1 + √

u2 + √
u3 − √

u4)2,

v2 = 1
4 (

√
u1 + √

u2 − √
u3 + √

u4)2,
(55)

v3 = 1
4 (

√
u1 − √

u2 + √
u3 + √

u4)2,

v4 = 1
4 (−√

u1 + √
u2 + √

u3 + √
u4)2.

The new solution (54) is obtained from the periodic so-
lution (29) after u1,2,3,4 are replaced by v1,2,3,4 and the
transformation v1 ↔ v4 and v2 ↔ v3 is used. The new peri-
odic solution has four pairs of purely imaginary eigenvalues
{±iβ̃1,±iβ̃2,±iβ̃3,±iβ̃4} related to v1,2,3,4 by (37) after the
transformation (55). It is easy to verify that the location of
the purely imaginary eigenvalues is invariant under the trans-
formation (55) with β̃1 = β1 and β̃2,3,4 = −β2,3,4 if 2

√
v4 =

−√
u1 + √

u2 + √
u3 + √

u4 � 0.
The new periodic solution (54) satisfies the same differen-

tial equation (23) with (24) having parameters ã, b̃, c̃, and d̃
related to eigenvalues {±iβ̃1,±iβ̃2,±iβ̃3,±iβ̃4} by (20) and
to turning points v1,2,3,4 by (26). Since β̃1 = β1 and β̃2,3,4 =
−β2,3,4, it follows from (20) and (26) that

d̃ = d, c̃ = c, b̃ = −b, and ã = a + 4b. (56)

Thus, the onefold Darboux transformation (45) transforms
one periodic solution (29) of the differential equation (23)
with given parameters (a, b, c, d ) to another periodic solu-
tion (54) of the same equation with different parameters
(a + 4b,−b, c, d ). The new and old solutions are related
to the same four pairs of purely imaginary eigenvalues
{±iβ1,±iβ2,±iβ3,±iβ4}. Note that the transformation b̃ =
−b also follows from a comparison of (44) and (45).

B. Twofold transformation (46) for the periodic wave (29)

Let us now pick two eigenvalues λ1,2 = iβ1,2 in the case
(32) with 0 � u4 � u3 � u2 � u1. The new solution (46) can
be reduced after long symbolic computations to the form ρ̂ :=
1
2 |û|2 with

ρ̂(x) = u3 + (u1 − u3)(u2 − u3)

(u1 − u3) − (u1 − u2)sn2(νx; k)
. (57)

The expression (57) is obtained from the expression (29)
by means of the transformation u1 ↔ u2 and u3 ↔ u4. This
transformation generates the same periodic wave (29) but
translated by a half-period:

ρ̂(x + K (k)ν−1)

= u2(u1 − u3) − u3(u1 − u2)sn2(νx + K (k); k)
(u1 − u3) − (u1 − u2)sn2(νx + K (k); k)

= u1(u2 − u4) + u4(u1 − u2)sn2(νx; k)

(u2 − u4) + (u1 − u2)sn2(νx; k)
= ρ(x),

where we have used formulas

sn(x + K (k); k) = cn(x; k)

dn(x; k)
,

dn2(x; k) = 1 − k2sn2(x; k),

cn2(x; k) = 1 − sn2(x; k)

together with the definition of k in (30).
This recurrence of the periodic solution (29) after the

twofold transformation (46) can be explained as follows. It
follows from (55) that

√
v1 + √

v2 = √
u1 + √

u2,√
v1 − √

v2 = √
u3 − √

u4,√
v3 + √

v4 = √
u3 + √

u4,√
v3 − √

v4 = √
u1 − √

u2.

A composition of two transformations (55) restores the orig-
inal roots u1,2,3,4:

u1 = 1
4 (

√
v1 + √

v2 + √
v3 − √

v4)2,

u2 = 1
4 (

√
v1 + √

v2 − √
v3 + √

v4)2,

u3 = 1
4 (

√
v1 − √

v2 + √
v3 + √

v4)2,

u4 = 1
4 (−√

v1 + √
v2 + √

v3 + √
v4)2,

(58)

Similarly, parameters (a, b, c, d ) are invariant after the com-
position of two transformations (56):

(a, b, c, d ) �→ (a + 4b,−b, c, d )

�→ (a + 4b + 4(−b),−(−b), c, d )

= (a, b, c, d ). (59)

As a result, the new solution (57) satisfies the quadrature (23)
with the same values of parameters (a, b, c, d ) as in (24).

C. Twofold transformation (47) for the periodic wave (29)

Let us consider the case (31) for the periodic wave (29)
with u4 � u3 � 0 � u2 � u1. Two complex quadruplets exist.
We pick one eigenvalue λ1 from the two quadruplets. It is
shown in Appendix D that the new solution (47) can be written
in the form ρ̂ := 1

2 |û|2 with

ρ̂(x) = u3 + (u1 − u3)(u2 − u3)

(u1 − u3) − (u1 − u2)sn2(νx; k)
, (60)

which is the same as (57). Thus, the twofold transformation
(47) with the complex quadruplet produces the same result
as the twofold transformation (46) with two purely imaginary
eigenvalues.

D. Onefold transformation (45) for the periodic wave (39)

Let us consider the case (42) for the periodic wave (39)
with 0 � u2 � u1 and u3,4 = γ ± iη. There exist two pairs
of purely imaginary eigenvalues and a quadruplet of com-
plex quadruplets. Without loss of generality, we pick one
eigenvalue λ3 = iβ3. It is shown in Appendix E that the new
solution (45) can be written in the form ρ̂ := 1

2 |û|2 with

ρ̂(x) = ṽ2 + (ṽ1 − ṽ2)[1 − cn(μx; k)]

1 + δ̃ + (δ̃ − 1)cn(μx; k)
, (61)
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where the new roots 0 � ṽ2 � ṽ1 and ṽ3,4 = γ̃ ± iη̃ are given
by

ṽ1 = 1

4

(√
u1 + √

u2 +
√

2(
√

γ 2 + η2 + γ )
)2

,

ṽ2 = 1

4

(√
u1 + √

u2 −
√

2(
√

γ 2 + η2 + γ )
)2

,

ṽ3 = 1

4

(√
u1 − √

u2 + i
√

2(
√

γ 2 + η2 − γ )
)2

,

ṽ4 = 1

4

(√
u1 − √

u2 − i
√

2(
√

γ 2 + η2 − γ )
)2

,

(62)

the values of μ and k are the same as in (40) and (41), and

δ̃ =
√

(ṽ1 − ṽ3)(ṽ1 − ṽ4)√
(ṽ2 − ṽ3)(ṽ2 − ṽ4)

. (63)

Note that the new periodic solution (61) coincides with the pe-
riodic solution (39) after u1,2,3,4 are replaced by ṽ1,2,3,4 and ṽ1

is exchanged with ṽ2. We have also confirmed the validity of
the transformation (56) for the case of (61). Thus, the onefold
Darboux transformation (45) transforms the periodic solution
(39) of the differential equation (23) with given parameters
(a, b, c, d ) to another solution (61) of the same equation with
different parameters (a + 4b,−b, c, d).

E. Twofold transformation (46) for the periodic wave (39)

Let us pick now two purely imaginary eigenvalues λ3,4 =
iβ3,4 in the case of (42). The new solution (46) can be reduced
after long symbolic computations to the form ρ̂ := 1

2 |û|2 with

ρ̂(x) = u2 + (u1 − u2)[1 − cn(μx; k)]

[1 − cn(μx; k)] + δ−1[1 + cn(μx; k)]
, (64)

which is the periodic wave (39) after the transformation u1 ↔
u2. The latter transformation yields the same periodic wave
(39) but translated by a half-period:

ρ̂(x+2K (k)μ−1)=u2+ (u1 − u2)[1 + cn(μx; k)]

1 + cn(μx; k) + δ−1[1 − cn(μx; k)]

=u1+ (u2 − u1)[1 − cn(μx; k)]

1 + δ + (δ − 1)cn(μx; k)
= ρ(x),

where we have used the relation cn(x + 2K (k); k) =
−cn(x; k). Thus, the twofold transformation (46) applied to
the periodic solution (39) produces a translation of the same
periodic solution (39). This is explained again by the fact that
the composition of two transformations (56) in (59) returns
the original parameters (a, b, c, d ) of the quadrature (23).

F. Twofold transformation (47) for the periodic wave (39)

Finally, we pick eigenvalue λ1 from the complex quadru-
plet in the case (42). It is shown in Appendix F that the new
solution (47) can be written in the form ρ̂ := 1

2 |û|2 with

ρ̂ = u2 + (u1 − u2)[1 − cn(μx; k)]

1 − cn(μx; k) + δ−1[1 + cn(μx; k)]
, (65)

which is the same as (64). Thus, the twofold transformation
(47) with the complex eigenvalue produces again the same
outcome as the twofold transformation (46) with two purely
imaginary eigenvalues.

IV. ROGUE WAVE SOLUTIONS

Here we construct rogue wave solutions to the DNLS equa-
tion (1) by using Darboux transformations with the second
solution of the Lax equations (2) for the same eigenvalues
given by roots of the polynomial P(λ). The first solution of
the Lax equations is periodic for these eigenvalues, whereas
the second solution is generally nonperiodic. We use transfor-
mations (45) and (46) if P(λ) admits pairs of purely imaginary
roots, and transformation (47) if P(λ) admits quadruplets of
complex roots.

It is known from [20] that two pairs of purely imaginary
roots of P(λ) are related to the stable spectrum in the lin-
earization of the DNLS equation (1) at the periodic standing
wave solution (5), whereas a quadruplet of complex roots of
P(λ) is related to the modulationally unstable spectrum. In
full agreement with the modulational stability analysis, we
show that the new solutions related to two pairs of purely
imaginary roots describe algebraic solitons propagating on
the background of the periodic standing wave, whereas the
new solutions related to a quadruplet of complex eigenvalues
describe rogue waves localized in space and time on the back-
ground of the periodic standing wave.

From a technical point of view, we construct the second
solution to the Lax equations differently for the purely imagi-
nary roots and for the complex roots. Similar differences were
previously discovered for the periodic traveling waves in the
sine-Gordon equation [16].

A. Periodic wave (29) with λ1 being purely imaginary

Let λ1 = iβ1 ∈ iR be an eigenvalue of the KN spectral
problem (10). We use the decomposition (5) and (11) with the
eigenvector ϕ1 = (p1, q1)T, where q1 = −i p̄1 and p1 satisfies
the linear system

∂ p1

∂x
= iβ2

1 p1 + β1up̄1 (66)

and

∂ p1

∂t
+ 2c

∂ p1

∂x
+ 2ibp1 = −i

(
2β4

1 + β2
1 |u|2)p1 − 2β3

1 up̄1

+β1(iux − |u|2u) p̄1. (67)

This system follows from the Lax equations (10) and (12) due
to the reduction q1 = −i p̄1 for λ1 = iβ1. The second, linearly
independent solution ϕ̂1 = ( p̂1, q̂1)T of the system (66) and
(67) can be written in the form

p̂1 = p1χ1 − 1

2q1
, q̂1 = q1χ1 + 1

2p1
, (68)

where χ1 is assumed to be a real-valued function of x and
t . Wronskian between the two solutions is normalized by
p1q̂1 − p̂1q1 = 1. If q1 = −i p̄1 and χ1 is real, then q̂1 =
−i ¯̂p1.

Substituting (68) into (66) and (67) written for p̂1 and using
the same equations for p1 yields the following equations for
χ1:

∂χ1

∂x
= iβ1

2|p1|4
(
up̄2

1 − ūp2
1

)
(69)
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and
∂χ1

∂t
+ 2c

∂χ1

∂x
= iβ1

2|p1|4
(
ūp2

1 − up̄2
1

)(|u|2 + 2β2
1

)
− β1

2|p1|4
(
ūx p2

1 + ux p̄2
1

)
. (70)

In particular, we confirm that the function χ1(x, t ) is real.

By using the decomposition (50) and the representations
(51) and (52), we deduce from (69) that

∂χ1

∂x
= β4

1

(
β2

1 − β2
2

)[
a − 2

(
c + 2β2

1

)
ρ − ρ2

]
2
(
b + cβ2

1 + β4
1 + β2

1ρ
)2 , (71)

where we substituted λ2 = iβ2 for another purely imaginary
eigenvalue. Similarly, we deduce from (70) that

∂χ1

∂t
= −2β4

1

(
β2

1 − β2
2

)[
a
(
c + β2

1

) − d − 2
(
cβ2

1 + β4
1 + b

)
ρ − β2

1ρ2
]

(
b + cβ2

1 + β4
1 + β2

1ρ
)2 , (72)

where we have used (21), (23), and (24) in order to express
ux. Equations (71) and (72) are compatible with χ1xt = χ1tx if
and only if the right-hand side of (72) is constant because ρ

depends on x only. It is shown in Appendix G that substituting
(20), (29), and (37) into (72) yields the following simple
equation:

∂χ1

∂t
= 2β2

1

(
β2

1 − β2
2

)
, (73)

from which we obtain

χ1(x, t ) = c1 + k1x + f (x) + 2β2
1

(
β2

1 − β2
2

)
t, (74)

where c1 ∈ R is an arbitrary constant of integration,

k1 = νβ4
1

(
β2

1 − β2
2

)
4K (k)

∫ 2K (k)ν−1

0

[
a − 2

(
c + 2β2

1

)
ρ − ρ2

]
(
b + cβ2

1 + β4
1 + β2

1ρ
)2 dx

is the mean value of ∂χ1

∂x over the period L = 2ν−1K (k) of the
periodic wave ρ, and f is the L-periodic function with the zero
mean. The function χ1 remains bounded on the (x, t ) plane
along the line

k1(x + 2ct ) + 2β2
1

(
β2

1 − β2
2

)
t = 0, (75)

where we have recalled the transformation (11). The func-
tion χ1(x, t ) grows linearly in |x| + |t | → ∞ in the direction
transversal to the line (75).

Recall that the eigenvector ϕ1 = (p1, q1)T defines the
transformed periodic wave in the form ψtr (x, t ) = utr (x +
2ct )e4ibt with

utr = − p̄2
1

p2
1

[
u + 2iβ1

p1

p̄1

]
e−8ibt . (76)

By using the second solution ϕ̂1 = ( p̂1, q̂1)T given by (68),
we define a new solution to the DNLS equation in the form
ψ̂ (x, t ) = û(x + 2ct )e4ibt with

û = −
¯̂p2

1

p̂2
1

[
u + 2iβ1

p̂1

¯̂p1

]
e−8ibt . (77)

To illustrate the two solutions utr and û, we consider the
periodic standing wave (29) with the particular choice of

u1 = 2, u2 = 1, u3 = 0.5, u4 = 0.

This choice corresponds to parameters

a = 0, b = − 7

256
, c = −7

8
, d = 1

8

in the quadrature (23) with (24). In particular, parameters
satisfy c2 − 4b > 0 [20].

Two periodic waves ρ exist for the same values of pa-
rameters: the sign-definite wave in [u2, u1] is given by (29)
and the sign-indefinite wave in [u4, u3] is given by (35). The
sign-definite wave has the period L = 2ν−1K (k), whereas the
sign-indefinite wave has the double period L = 4ν−1K (k).
The sign-indefinite wave is smoothly represented in the origi-
nal variable R in the form

R(x) =
√

2u2u3 cn(νx; k)√
u2 − u3sn2(νx; k)

. (78)

Figure 1 shows the plot of ρ and ρtr := 1
2 |utr|2 versus x.

Panel (a) shows the transformation of the sign-definite wave
(29) and panel (b) shows the same for the sign-indefinite wave
(78).

As is explained in Sec. III, the transformed wave ρtr in
(76) is different from a translation of the original wave ρ. In
particular, ρ has turning points u1,2,3,4, but the transformed
wave ρtr has turning points v1,2,3,4 given by (55). For the
sign-definite wave, ρ changes between u2 = 1 and u1 = 2,
whereas ρtr changes between v4 ≈ 0.02 and v3 ≈ 0.31. For
the sign-indefinite wave, ρ changes between u4 = 0 and u3 =
0.5, whereas ρtr changes between v2 ≈ 0.73 and v1 ≈ 2.44.

Figure 2 shows the surface plots of ρ̂ := 1
2 |û|2 (a,c) and the

contour plots (b,d). We always use the choice c1 = 0 in (74).
The red line on the contour plots shows the line x + 2ct = 0,
whereas the black line shows the line (75).

The new solution in Fig. 2 describes propagation of the
algebraic soliton along the direction (75) on the background
of the periodic standing wave propagating along the line x +
2ct = 0. The background periodic wave is given in the limit
|χ | → ∞, where

lim
|χ1|→∞

û = − p̄2
1

p2
1

[
u + 2iβ1

p1

p̄1

]
e−8ibt = utr, (79)

which coincides with (76). The maximum of the algebraic
soliton is located at χ1 = 0, where

lim
χ1→0

û = − p̄2
1

p2
1

[
u − 2iβ1

p1

p̄1

]
e−8ibt . (80)

For the sign-definite periodic wave (29), it is shown in
Appendix H that the algebraic soliton reaches its maximal

062206-8



ROGUE WAVES ON THE BACKGROUND OF PERIODIC … PHYSICAL REVIEW E 103, 062206 (2021)

(a) -3 -2 -1 0 1 2 3x
0

0.5

1

1.5

2

tr

(b) -6 -4 -2 0 2 4 6x
0

0.5

1

1.5

2

2.5

tr

FIG. 1. The periodic standing wave ρ (red) and its transformed version ρtr (black) vs x for the sign-definite wave (29) (a) and the sign-
indefinite wave (78) (b).

value given by

ρ̂max = 1
4 (3

√
u1 + √

u2 + √
u3 + √

u4)2. (81)

We have computed ρ̂max ≈ 8.85, which coincides with the
numerical values in Fig. 2(a).

For the sign-indefinite periodic wave (78), similar compu-
tations give

ρ̂max = 1
4 (

√
u1 + √

u2 + 3
√

u3 + √
u4)2. (82)

We have computed ρ̂max ≈ 5.14, which coincides with the
numerical values in Fig. 2(c).

(b)
-10 -5 0 5 10 x

-3

-2

-1

0

1

2

3
t

(d)
-20 -10 0 10 20 x

-6

-4

-2

0

2

4

6
t

(a)

(c)

FIG. 2. New solutions to the DNLS equation in variable ρ̂ which describe propagation of an algebraic soliton on the background of the
periodic standing wave: solution surfaces (a), (c) and contour plots (b), (d) for the sign-definite wave (29) (a), (b) and the sign-indefinite wave
(78) (c), (d).
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(a) (b)
-20 -10 0 10 20x

-10

-5

0

5

10

t

(c) (d)

(e) (f)

FIG. 3. New solutions to the DNLS equation in variable ρ̂ obtained after the onefold transformation of the periodic wave (29) associated
with the eigenvalues iβ2 (a), (b), iβ3 (c), (d), and iβ4 (e), (f).

Figure 2 corresponds to the case of λ1 = iβ1. Figure 3
presents similar results for the sign-definite periodic wave (29)
when the onefold transformation is used with the eigenvalues
λ2 = iβ2 (a), (b), λ3 = iβ3 (c), (d), and λ4 = iβ4 (e), (f). For
the sign-definite periodic wave (29), the transformed wave
(76) is the same for λ1 and λ2; it is still located between
v4 ≈ 0.02 and v3 ≈ 0.31 but it is translated by half-period
between the two cases. For the same sign-definite periodic
wave (29), the transformed wave (76) is the same for λ3

and λ4; it is located between v2 ≈ 0.73 and v1 ≈ 2.44 but
it is translated by half-period between the two cases. Note
that β1 ≈ 1.1, β2 ≈ −0.6, β3 ≈ −0.1, and β4 ≈ −0.4. The
algebraic soliton is largest in the case of the largest eigenvalue

β1 and smallest in the case of the smallest (in absolute value)
eigenvalue β3. In fact, it is a depression wave in the case of β3.

The maximal values of ρ̂ are computed similarly to (81)
and (82). They correspond to 2β̂2

1,2,3,4 for each eigenvalue
λ1,2,3,4 = iβ1,2,3,4, where β̂1,2,3,4 is obtained from β1,2,3,4 after√

u1 is replaced by 3
√

u1 as in (81) and
√

u3 is replaced by
3
√

u3 as in (82). As a result, we obtain ρ̂max ≈ 5.14 for iβ2,
ρ̂max ≈ 1.61 for iβ3, and ρ̂max ≈ 3.90 for iβ4, in agreement
with Fig. 3.

Figure 4 presents the new solution to the DNLS equation
(1) obtained with the twofold transformation (46) for p̂1 and
p̂2. Here we take one eigenvalue as λ1 = iβ1 and the other
eigenvalue being λ2 = iβ2 (a), (b), λ3 = iβ3 (c), (d), and λ4 =
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FIG. 4. New solutions to the DNLS equation in variable ρ̂ obtained after the twofold transformation of the periodic wave (29). One
eigenvalue is iβ1, whereas the other eigenvalue is iβ2 (a), (b), iβ3 (c), (d), and iβ4 (e), (f).

iβ4 (e), (f). The second solution ϕ̂1 = ( p̂1, q̂1)T is defined by
(68) with χ1 given by (74). We always take c1 = 0 in (74) so
that the algebraic solitons propagate along the corresponding
lines (75). The line x + 2ct = 0 is shown by the red curve and
the two lines (75) for the two eigenvalues are shown by the
black curves in Figs. 4(b), 4(d) and 4(f).

The new solution describes interaction of the two algebraic
solitons on the background of the transformed wave obtained
with the twofold transformation (46) for p1 and p2. As was
established earlier, for λ1 and λ2, the background wave is the
same as the original sign-definite wave (29) but translated by a
half-period with ρtr ∈ [u2, u1]. For λ1 and either λ3 or λ4, the

background wave corresponds to the sign-indefinite wave (78)
with ρtr ∈ [u4, u3]. In the latter cases, the second algebraic
soliton is almost invisible in Figs. 4(c) and 4(e). We have
checked by taking nonzero c1 in (74) that the two algebraic
solitons become visible when they overlap at a point on the
(x, t ) plane away from the origin. However, when we take
c1 = 0 in (74) for both eigenvalues, the two algebraic solitons
overlap at the origin.

B. Periodic wave (29) with λ1 in a complex quadruplet

Let λ1 ∈ C\iR be an eigenvalue of the KN spectral prob-
lem (10). We use the decomposition (5) and (11) with the
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eigenvector ϕ1 = (p1, q1)T satisfying the linear system

∂ p1

∂x
= −iλ2

1 p1 + λ1uq1,

(83)
∂q1

∂x
= iλ2

1q1 − λ1ūp1,

and

∂ p1

∂t
+ 2c

∂ p1

∂x
+ 2ibp1

= i
( − 2λ4

1 + λ2
1|u|2)p1 + 2λ3

1uq1 + λ1(iux − |u|2u)q1,
(84)

∂q1

∂t
+ 2c

∂q1

∂x
− 2ibq1

= i
(
2λ4

1 − λ2
1|u|2)q1 − 2λ3

1ūp1 + λ1(iūx + |u|2ū)p1.

The second, linearly independent solution ϕ̂1 = ( p̂1, q̂1)T of
the system (83) and (84) can be written in the form

p̂1 = p1χ1 − q̄1

|p1|2 + |q1|2 ,

(85)

q̂1 = q1χ1 + p̄1

|p1|2 + |q1|2 ,

where χ1 is a complex-valued function of x and t . Wronskian
between the two solutions is normalized by p1q̂1 − p̂1q1 = 1.

Substituting (85) into (83) and (84) written for ϕ̂1 =
( p̂1, q̂1)T and using the same equations for ϕ1 = (p1, q1)T

yields the following equations for χ1:

∂χ1

∂x
= 2i

(
λ2

1 − λ̄2
1

)
p̄1q̄1 + (λ1 − λ̄1)

(
up̄2

1 + ūq̄2
1

)
(|p1|2 + |q1|2)2

(86)

and

∂χ1

∂t
+ 2c

∂χ1

∂x
= 1

(|p1|2 + |q1|2)2

[
2i p̄1q̄1

(
λ2

1 − λ̄2
1

)[
2
(
λ2

1 + λ̄2
1

) − |u|2] + 2
(
λ3

1 − λ̄3
1

)(
up̄2

1 + ūq̄2
1

)
+ (λ1 − λ̄1)

[
i
(
ux p̄2

1 − ūxq̄2
1

) − |u|2(up̄2
1 + ūq̄2

1

)]]
. (87)

Substituting (51) and (52) into (86) yields

∂χ1

∂x
= λ̄1

[
ρ2 + 2

(
c − 2λ̄2

1

)
ρ − a

] − 2(λ1 + λ̄1)
(
b − cλ̄2

1 + λ̄4
1 − λ̄2

1ρ
)

λ̄2
1(λ1 + λ̄1)(|p1|2 + |q1|2)2

. (88)

Regarding (87), it must again be constant. It is shown in
Appendix G that

∂χ1

∂t
= 2λ2

1

(
λ2

1 − λ̄2
1

)
. (89)

We obtain from (88) and (89) that

χ1(x, t ) = c1 + k1x + f (x) + 2λ2
1

(
λ2

1 − λ̄2
1

)
t, (90)

where c1 ∈ C is an arbitrary constant of integration, k1 is
the mean value of ∂χ1

∂x over the period L = 2ν−1K (k) of the
periodic wave ρ, and f is the L-periodic function with the
zero mean. The line equation

k1(x + 2ct ) + 2λ2
1

(
λ2

1 − λ̄2
1

)
t = 0 (91)

is now complex-valued, hence it defines two straight lines
on the (x, t ) plane. If the straight lines have different slopes,
they only intersect at (x, t ) = (0, 0) and this implies that the
function χ1(x, t ) grows linearly as |x| + |t | → ∞ everywhere
in the (x, t ) plane. Consequently, the new solution obtained
with the Darboux transformation (47) at the second solution
ϕ̂1 = ( p̂1, q̂1)T given by (85) displays the rogue wave lo-
calized on the transformed periodic wave. The transformed
periodic wave is obtained with the Darboux transformation
(47) at the first solution ϕ1 = (p1, q1)T .

To illustrate the two solutions, we consider the periodic
standing wave (29) with the particular choice of

u1 = 2, u2 = 1, u3 = 0, u4 = −0.5.

This choice corresponds to parameters

a = 0, b = 17

256
, c = −5

8
, d = −1

8

in the quadrature (23) with (24). Again, we preserve the con-
straint c2 − 4b > 0.

Figure 5 shows the periodic standing wave ρ (red) and its
transformed version ρtr (black) after the twofold transforma-
tion (47) with ϕ1 = (p1, q1)T . In agreement with (60), the
transformed wave is a half-period translation of the original
wave. Moreover, the same translation is true for both quadru-
plets in (31).

Figure 6 shows the rogue wave ρ̂ on the background of the
periodic standing wave ρ in (29) with the same parameters
as in Fig. 5 after the twofold transformation (47) with ϕ̂1 =
( p̂1, q̂1)T . Panel (a) corresponds to the quadruplet with λ1 and
panel (b) corresponds to the quadruplet with λ2. Although the

-2 -1 0 1 2x
0

0.5

1

1.5

2

tr

FIG. 5. The periodic standing wave ρ (red) and its transformed
version ρtr (black).
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FIG. 6. New solutions to the DNLS equation in variable ρ̂, which corresponds to the rogue waves on the background of the periodic
standing wave. Panels (a) and (b) correspond to (29) after the Darboux transformation (47) with ϕ̂1 = ( p̂1, q̂1)T for eigenvalues λ1 and λ2,
respectively.

surface plot in Fig. 6(b) does not show localization of the
rogue wave on the scale displayed, we have checked that
the real and imaginary part of Eq. (91) give two different
lines intersecting at (0,0), but the slopes of the two lines are
close to each other. As a result, Re(χ ) and Im(χ ) are bounded
along two different directions, hence the rogue wave ρ̂ is still
localized in space and time.

It is shown in Appendix I that the maximum of the rogue
wave occurs at the point (0,0) if c1 = 0 and it is given by

ρ̂max = (2
√

u1 + √
u2)2 (92)

for eigenvalue λ1 and

ρ̂max = (2
√

u1 − √
u2)2 (93)

for eigenvalue λ2. We have ρ̂max ≈ 14.66 for eigenvalue λ1

and ρ̂max ≈ 3.34 for eigenvalue λ2, which agree with the nu-
merical values in Fig. 6.

C. Darboux transformations for the periodic wave (39)

We end this section with an example of the periodic stand-
ing wave (39) for the particular choice

u1 = 2, u2 = 0, γ = 0.2, η = 0.1.

This choice corresponds to parameters

a = 0, b = 0.036, c = −0.6, d = 0.0125

in the quadrature (23) and (24) satisfying c2 − 4b > 0. The
expression (39) with u2 = 0 can be written as

ρ(x) = u1δ
1 + cn(μx; k)

1 + δ + (δ − 1)cn(μx; k)
. (94)

The solution (94) is sign-indefinite since ρ ∈ [0, u1].
Extracting the square root analytically yields the exact expres-
sion

R(x) =
√

2u1δcn
(

1
2μx; k

)
√

δcn2
(

1
2μx; k

) + sn2
(

1
2μx; k

)
dn2

(
1
2μx; k

) . (95)

The period of the periodic wave is L = 8K (k)μ−1.

(a)
-20 -10 0 10 20x
0

0.5

1

1.5

2

tr

(b)
-20 -10 0 10 20x
0

0.5

1

1.5

2

tr

FIG. 7. The periodic standing wave ρ (red) and its transformed version ρtr (black) vs x for the periodic standing wave (94). Panels (a) and
(b) correspond to the eigenvalues λ3 = iβ3 and λ1 = α1 + iβ1, respectively.
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FIG. 8. New solutions to the DNLS equation which corresponds to the propagation of an algebraic soliton on the background of the
periodic standing wave (94). Solutions are obtained by the transformation (77) with the eigenvalues λ3 = iβ3 (a,b) and λ4 = iβ4 (c,d).

The periodic wave (94) corresponds to the configuration
(42) with one complex quadruplet {λ1, λ̄1,−λ1,−λ̄1} and two
pairs of purely imaginary eigenvalues {±iβ3,±iβ4}.

Figure 7(a) shows the plot of ρ and ρtr := 1
2 |utr|2 versus x

after the transformation (76) for the eigenvalue λ3 = iβ3. The
transformed wave for the eigenvalue λ4 = iβ4 is a half-period
translation of ρtr for the eigenvalue λ3 = iβ3. Figure 7(b)
shows ρ and ρtr after the twofold transformation (47) with
the complex eigenvalue λ1 = α1 + iβ1.

Figure 8 shows the surface plots of ρ̂ := 1
2 |û|2 (a), (c)

and the contour plots (b), (d) after the transformation (77)
associated with the eigenvalues λ3 = iβ3 (a), (b) and λ4 = iβ4

(c), (d). The red line on the contour plots shows the line
x + 2ct = 0 and the black line shows the line (75). We can
see that the algebraic soliton propagates along this direction
and is modulated due to interaction with the periodic standing
wave.

The maxima of algebraic solitons are given by

ρ̂max = 1
4

(
3
√

u1 − √
u2 ±

√
2(

√
γ 2 + η2 + γ )

)2
, (96)

where the upper sign is for the eigenvalue λ3 = iβ3 and the
lower sign is for the eigenvalue λ4 = iβ4. For the parameters
in Fig. 8, we have excellent agreement with ρ̂max ≈ 6.66 for
λ3 = iβ3 and ρ̂max ≈ 2.76 for λ4 = iβ4.

FIG. 9. New solutions to the DNLS equation obtained by the twofold transformation with the two eigenvalues λ3 = iβ3 and λ4 = iβ4. Two
algebraic solitons propagate along the lines shown by black curves.

062206-14



ROGUE WAVES ON THE BACKGROUND OF PERIODIC … PHYSICAL REVIEW E 103, 062206 (2021)

FIG. 10. New solution to the DNLS equation in variable ρ̂ ob-
tained by the twofold transformation with the quadruplet λ1 = α1 +
iβ1. A rogue wave is formed on the background of the periodic
standing wave (94).

Figure 9 shows the result of the twofold transformation
(46) associated with the two eigenvalues λ3 = iβ3 and λ4 =
iβ4. The background wave is the same as in Fig. 7(b), that is, it
is a half-period translation of the periodic standing wave (39).
Two algebraic solitons propagate along the lines (75) shown
by black curves in Fig. 9(b) together with the line x + 2ct = 0
shown by the red curve.

Finally, Fig. 10 shows the result of the twofold trans-
formation (47) associated with the quadruplet of complex
eigenvalue λ1 = α1 + iβ1. The surface plot of ρ̂ indicates
that the rogue wave is fully localized on the background of
the periodic standing waves. This is explained again by the
fact that the real and imaginary parts of the complex-valued
equation (91) give two lines intersecting at the only point
(0,0). The maximal amplitude is given by the formula (92)
with ρ̂max = 8.

V. CONCLUSION

We have studied the rogue waves and algebraic solitons
arising on the background of periodic standing waves in the
derivative NLS equation. By using comprehensive analysis
and numerical visualizations for selected parameter values,
we showed that the modulationally stable periodic standing
waves support propagation of algebraic solitons along the
background, whereas the modulationally unstable periodic
standing waves are associated with the rogue waves localized
in space and time. Although only very few numerical experi-
ments were displayed, our analysis ensures that the conclusion
extends to all periodic standing waves of the DNLS equation
(both sign-definite and sign-indefinite). We have also derived
the exact expressions for the maximal amplitudes of the rogue
waves and the associated algebraic solitons.

This work paves the way to an understanding of the rogue
wave phenomenon in the DNLS equation, which is one of
the canonical models for the dynamics of waves in plasma
physics and optics. The recent results complement the study
of rogue waves on the constant-amplitude wave background

[19], maximal amplitudes of hyperelliptic solutions [36], and
modulational instability of periodic standing waves [20]. The
next tasks would involve setting up physical experiments and
confirming the modulational instability of the periodic stand-
ing waves and the maximal amplitudes of rogue waves as was
done in [14] with hydrodynamical and optical experiments. It
is also interesting to understand rogue wave phenomena in a
more general setting of quasiperiodic solutions of the DNLS
equation studied in [25].
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APPENDIX A: PROOF OF ONEFOLD DARBOUX
TRANSFORMATION

For convenience, let us denote the solution of the DNLS
equation (1) by ψ = u and the solution of the Lax equations
(2) for the eigenvalue λ = λ1 by φ1 = (p1, q1)T . Let T (u, λ)
be the gauge transformation in the form

T (u, λ) = λ

(
A1 0
0 D1

)
+

(
0 λ1

λ1 0

)
, (A1)

where

A1 = − q1

p1
, D1 = − p1

q1
, (A2)

so that A1D1 = 1 and det T (u, λ) = λ2 − λ2
1. We impose the

constraints on T (u, λ) from the condition that if φ is a solution
of the Lax equations (2) with u, then φ̂ = T (u, λ)φ is also a
solution of the Lax equations (2) with a new solution of the
DNLS equation (1), which we denote by û. This condition
yields the Darboux equations:

U (û, λ) = (Tx + TU )T −1,
(A3)

V (û, λ) = (Tt + TV )T −1,

where U = U (u, λ) and T = T (u, λ). By using (A1) and
(A3), we obtain the following system in different powers
of λ:

A1,x − λ1ū = λ1û,

uA1 + 2iλ1 = ûD1,
(A4)

ūD1 + 2iλ1 = ¯̂uA1,

D1,x + λ1u = −λ1 ¯̂u

and

iA1|u|2 − 2λ1ū = iA1|û|2 + 2λ1û,

A1,t + λ1(iūx + |u|2ū) = λ1(iûx − |û|2û),

A1(iux − |u|2u) − iλ1|u|2 = D1(iûx − |û|2û) + iλ1|û|2,
D1(iūx + |u|2ū) + iλ1|u|2 = A1(i ¯̂ux + |û|2 ¯̂u) − iλ1|û|2,

−iD1|u|2 + 2λ1u = −iD1|û|2 − 2λ1 ¯̂u,

D1,t + λ1(iux − |u|2u) = λ1(i ¯̂ux + |û|2 ¯̂u). (A5)
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It follows from (A2) and the Lax equations (2) that

A1,x = λ1ū + λ1uA2
1 + 2iλ2

1A1,

(A6)
D1,x = −λ1u − λ1ūD2

1 − 2iλ2
1D1,

and

A1,t = 2λ3
1ū − λ1(iūx + |u|2ū) + 4iλ4

1A1

− 2iλ2
1A1|u|2 + 2λ3

1A2
1u + λ1A2

1(iux − |u|2u),
(A7)

D1,t = −2λ3
1u − λ1(iux − |u|2u) − 4iλ4

1D1 + 2iλ2
1D1|u|2

− 2λ3
1D2

1ū + λ1D2
1(iūx + |u|2ū).

Substituting (A6) into (A4) shows that the first and fourth
equations of system (A4) are redundant, whereas the other two

equations produce the following transformation formulas:

û = u
q2

1

p2
1

− 2iλ1
q1

p1
, ¯̂u = ū

p2
1

q2
1

− 2iλ1
p1

q1
. (A8)

The complex-conjugate reduction in (A8) is satisfied if |p1| =
|q1| and λ1 + λ̄1 = 0. Hence, λ1 = iβ1 ∈ iR. Selecting q1 =
−i p̄1 as in the reduction (14) gives the onefold transformation
formula (45) from system (A8).

In view of relations (A8), the first and fifth equations in
system (A5) are redundant. Substituting (A7) into (A5) shows
that the second and sixth equations of system (A5) are redun-
dant. Finally, the third and fourth equations of system (A5) are
satisfied when we substitute derivatives of (A8) in x and use
relations (A6).

APPENDIX B: PROOF OF TWOFOLD DARBOUX TRANSFORMATION

Let φ1 = (p1, q1)T and φ2 = (p2, q2)T be two solutions of the Lax equations (2) for eigenvalues λ = λ1 and λ = λ2 satisfying
λ2

1 �= λ̄2
2. Let T (u, λ) be the gauge transformation in the form

T (u, λ) =
(
T11(λ) T12(λ)
T21(λ) T22(λ)

)
= λ2T2 + λT1 + T0, (B1)

where

T2 =
(

A2 0
0 D2

)
, T1 =

(
0 B1

C1 0

)
, T0 =

(
A0 0
0 A0

)
, (B2)

with

A2 = λ1α1 − λ2α2

λ1α2 − λ2α1
, B1 = λ2

2 − λ2
1

λ1α2 − λ2α1
, C1 = α1α2(λ2

2 − λ2
1)

λ1α1 − λ2α2

and

A0 = λ1λ2, A2D2 = 1, α1 = q1

p1
, α2 = q2

p2
.

It follows from (2) that αk for k = 1, 2 satisfy the following Riccati equations:

αkx = −λkū + 2iλ2
kαk − λkuα2

k , (B3)

αkt = −2λ3
k ū + λk (iūx + |u|2ū) + 2iλ2

kαk
(
2λ2

k − |u|2) − α2
k

[
2λ3

ku + λk (iux − |u|2u)
]
. (B4)

In addition, we check that

det T (u, λ) = (
λ2 − λ2

1

)(
λ2 − λ2

2

)
. (B5)

By using the Darboux equations (A3), we show that the new solution û is expressed by

û = A2
2u + 2iA2B1, ¯̂u = D2

2ū + 2iC1D2. (B6)

Let T ∗ := T −1 det T be the adjugate matrix of T (u, λ) and

(Tx + TU )T ∗ =
(
F11(λ, u) F12(λ, u)
F21(λ, u) F22(λ, u)

)
. (B7)

It follows from (3) and (B1) that F11(λ, u) and F22(λ, u) are the sixth-order polynomials in λ, and F12(λ, u) and F21(λ, u) are
the fifth-order polynomials in λ. It follows from (B1) and (B2) that for any k = 1, 2,

T11(λk ) = −T12(λk )αk, T11,x(λk ) = −T12,x (λk )αk − T12(λk )αkx, (B8)
T21(λk ) = −T22(λk )αk, T21,x(λk ) = −T22,x (λk )αk − T22(λk )αkx, (B9)

and

T11(−λk ) = T11(λk ), T12(−λk ) = −T12(λk ),
(B10)

T21(−λk ) = −T21(λk ), T22(−λk ) = T22(λk ).
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It follows from (B3) that ±λ1 and ±λ2 are the roots of Fi j (λ, u) for every i, j = 1, 2. For instance, since

F11(λ, u) = T22(−iλ2T11 − λūT12 + T11,x ) − T21(λuT11 + iλ2T12 + T12,x ),

we confirm

F11(±λk, u) = T12(λk )T22(λk )
(−αkx − λkū + 2iλ2

kαk − λkuα2
k

) = 0.

Dividing both sides of (B7) by det T and using (B5) yields

U (û, λ) := λ2U2 + λU1,

where the matrices U1 and U2 are independent of λ. Substituting these expressions into the first Darboux equation (A3) and using
U (u, λ) = λ2U2 + λU1, we obtain

λ4T2U2 + λ3(T1U2 + T2U1) + λ2(T1U1 + T0U2 + T2x ) + λ(T0U1 + T1x )

= λ4U2T2 + λ3(U2T1 + U1T2) + λ2(U2T0 + U1T1) + λU1T0. (B11)

The comparison of λ4 and λ3 on both sides of (B11) delivers

U2 =
(−i 0

0 i

)
, U1 =

(
0 A2

2u + 2iA2B1

−D2
2ū − 2iD2C1 0

)
=:

(
0 û

− ¯̂u 0

)
,

which confirms the claim in (B6). Also, the coefficients of λ2 and λ on both sides of (B11) yield four identities,

A2x = B1ū + C1
(
A2

2u + 2iA2B1
)
,

D2x = −C1u − B1
(
D2

2ū + 2iD2C1
)
,

(B12)
B1x = A0

(
A2

2u + 2iA2B1 − u
)
,

C1x = A0
(
ū − D2

2ū − 2iD2C1
)
,

which can be verified by using the formulas (B2) and (B3).
For the time-evolution equation, let us denote

(Tt + TV )T ∗ =
(
G11(λ, u) G12(λ, u)
G21(λ, u) G22(λ, u)

)
. (B13)

It is seen from (4) and (B1) that G11(λ, u) and G22(λ, u) are the eighth-order polynomials in λ, and G12(λ, u) and G21(λ, u) are
the seventh-order polynomials in λ. It follows from (B8) and (B9) that

T11,t (λk ) = −T12,t (λk )αk − T12(λk )αkt ,

T21,t (λk ) = −T22,t (λk )αk − T22(λk )αkt ,

which, together with (B4) and (B10), indicates that ±λ1 and ±λ2 are the roots of the polynomials Gi j (λ, u) for all i, j = 1, 2.
For instance, using

G11(λ, u) = T11T22(−2iλ4 + iλ2|u|2) + T12T22[−2λ3ū + λ(iūx + |u|2ū)] + T11,tT22

− T11T21[2λ3u + λ(iux − |u|2u)] − T12T21(2iλ4 − iλ2|u|2) − T21T12,t ,

we confirm

G11(±λk, u) = T12(λk )T22(λk )
[
2αk

(
2iλ4

k − iλ2
k |u|2) − α2

k

[
2λ3

ku + λk (iux − |u|2u)
]−2λ3

k ū + λk (iūx + |u|2ū) − αkt
] = 0.

Dividing both sides of (B13) by det T and using (B5) yields

V (û, λ) := λ4V4 + λ3V3 + λ2V2 + λV1,

where the matrices V1,2,3,4 are independent of λ. Substituting these expressions into the second Darboux equation (A3) and using
V (u, λ) = λ4V4 + λ3V3 + λ2V2 + λV1, we obtain

λ6T2V4 + λ5(T2V3 + T1V4) + λ4(T2V2 + T1V3 + T0V4) + λ3(T2V1 + T1V2 + T0V3) + λ2(T1V1 + T0V2 + T2t ) + λ(T0V1 + T1t )

= λ6V4T2 + λ5(V3T2 + V4T1) + λ4(V2T2 + V3T1 + V4T0) + λ3(V1T2 + V2T1 + V3T0) + λ2(V1T1 + V2T0) + λV1T0. (B14)

The comparison of λ6, λ5, λ4, and λ3 on both sides of (B14) yields

V4 =
(−2i 0

0 2i

)
,V3 =

(
0 2A2

2u + 4iA2B1

−2D2
2ū − 4iD2C1 0

)
=

(
0 2û

−2 ¯̂u 0

)
,V2 =

(
V (11)

2 0
0 V (22)

2

)
=

(
i|û|2 0

0 −i|û|2
)

,
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and

V1 =
(

0 V (12)
1

V (21)
1 0

)
=

(
0 iûx − |û|2û

i ¯̂ux + |û|2 ¯̂u 0

)
,

where
V (11)

2 = i|u|2 − 2D2B1ū − C1(2uA2 + 4iB1),

V (22)
2 = −i|u|2 + 2uC1A2 + B1(2D2ū + 4iC1),

V (12)
1 = A2

2(iux − |u|2u) − 2A2(iB1|u|2 − A0u) + 2B2
1ū + 2(B1C1 − A0A2)

(
uA2

2 + 2iA2B1
)
,

V (21)
1 = D2

2(iūx + |u|2ū) + 2D2(iC1|u|2 − A0ū) − 2C2
1 u − 2(B1C1 − A0D2)

(
D2

2ū + 2iC1D2
)
.

Note that the equality for V1 can be confirmed in view of (B6) and (B12). Furthermore, the comparison of λ2 and λ on both sides
of (B14) gives rise to four identities,

iB1ūx + B1|u|2ū + iA0|u|2 + A2t = iA0|u|2 − 2D2B1A0ū − A0C1(2A2u + 4iB1) + C1V (12)
1 ,

iC1ux − C1|u|2u − iA0|u|2 + D2t = −iA0|u|2 + 2A0A2C1u + A0B1(2D2ū + 4iC1) + B1V (21)
1 ,

and
iA0ux − A0|u|2u + B1t = A0V (12)

1 , iA0ūx + A0|u|2ū + C1t = A0V (21)
1 ,

which could be directly verified by using (B2) and (B4). Once again, the time-dependent problem confirms the validity of the
Darboux transformation formula (B6).

If we restrict λ1,2 = iβ1,2 and q1,2 = −i p̄1,2 in (B6), then we obtain the twofold Darboux transformation (46). If we restrict
λ2 = λ̄1, q2 = −p̄1, and p2 = q̄1 in (B6), then we obtain the twofold Darboux transformation (47).

APPENDIX C: PROOF OF (54)

For λ1 = iβ1 with β1 ∈ R, we substitute (50), (51), and (52) with Q1 = −iP̄1 into (45) and obtain

û = − P̄2
1

P2
1

b − β4
1 + 1

2β2
1ρ + β2

1
2ρ

(iρ ′ + a)

b + cβ2
1 + β4

1 + β2
1ρ

Re−iθ e−8ibt . (C1)

Expressing ρ ′ from (23) and (24) for ρ̂ = 1
2 |û|2, we reduce (C1) to (53), which we can write as N1/D1. Substituting parameters

(a, b, c, d ) from (20), the periodic wave ρ from (29), and the eigenvalue β1 from (37) into (53) yields

D1 = [
(u2 − u4)

(
b + cβ2

1 + β4
1 + u1β

2
1

) + (u1 − u2)
(
b + cβ2

1 + β4
1 + u4β

2
1

)
sn2(νx; k)

]2

= 1
8β2

1 (
√

u1 + √
u2)2(

√
u1 + √

u4)2(
√

u2 + √
u4)2

× [(
√

u1 + √
u3)(

√
u2 − √

u4) + (
√

u1 − √
u2)(

√
u3 + √

u4)sn2(νx; k)]2

and

N1 = sn4(νx; k)(u1 − u2)2
{
β2

1

(
a + u2

4

)(
b − cβ2

1 − β4
1

) + 2dβ4
1 + u4

[
b2 + β4

1 (2b + a − c2) + β8
1

]}
+ sn2(νx; k)(u1 − u2)(u2 − u4)

{
2β2

1 (a + u1u4)
(
b − cβ2

1 − β4
1

) + 4dβ4
1

+ (u1 + u4)
[
b2 + β4

1 (2b + a − c2) + β8
1

]} + (u2 − u4)2
{
β2

1

(
a + u2

1

)(
b − cβ2

1 − β4
1

)
+2dβ4

1 + u1
[
b2 + β4

1 (2b + a − c2) + β8
1

]}
= β2

1

32
(
√

u1 + √
u2)2(

√
u1 + √

u4)2(
√

u2 + √
u4)2

× [sn2(νx; k)(
√

u1 − √
u2)(

√
u3 + √

u4) + (
√

u2 − √
u4)(

√
u1 + √

u3)]

× [sn2(νx; k)(
√

u1 − √
u2)(

√
u3 + √

u4)(
√

u1 + √
u2 + √

u3 − √
u4)2

+ (
√

u2 − √
u4)(

√
u1 + √

u3)(
√

u1 − √
u2 − √

u3 − √
u4)2].

Canceling the common factors of D1 and N1 yields the quotient

ρ̂ = 1

4
(
√

u1 + √
u2 + √

u3 − √
u4)2 − (

√
u1 + √

u3)(
√

u2 − √
u4)(

√
u1 − √

u4)(
√

u2 + √
u3)

(
√

u1 + √
u3)(

√
u2 − √

u4) + (
√

u1 − √
u2)(

√
u3 + √

u4)sn2(νx; k)
,

which is equivalent to (54) with notations in (55).

062206-18



ROGUE WAVES ON THE BACKGROUND OF PERIODIC … PHYSICAL REVIEW E 103, 062206 (2021)

APPENDIX D: PROOF OF (60)

Substituting (50) into (47) yields

û =
(

λ̄1|P1|2 + λ1|Q1|2
λ1|P1|2 + λ̄1|Q1|2

)2[
R − 2i

(
λ2

1 − λ̄2
1

)
P1Q̄1

λ̄1|P1|2 + λ1|Q1|2
]

eiθ (D1)

so that

ρ̂ = 1

2

∣∣∣∣R − 2i
(
λ2

1 − λ̄2
1

)
P1Q̄1

λ̄1|P1|2 + λ1|Q1|2
∣∣∣∣
2

, (D2)

where ρ̂ := 1
2 |û|2. In what follows, we obtain explicit expressions for |P1|2, |Q1|2, and P1Q̄1.

By substituting (22) into (51) and (52), we obtain

2|λ1|2
∣∣λ2

1 − λ̄2
1

∣∣2
(|P1|4 + |Q1|4) = 4d − 4ac + 2a

(
λ2

1 + λ̄2
1

) + [
4b + 4|λ1|4 − 2c

(
λ2

1 + λ̄2
1

)]
R2 − 1

2

(
λ2

1 + λ̄2
1

)
R4

and

|λ1|4
∣∣λ2

1 − λ̄2
1

∣∣2|P1|2|Q1|2 = b2 − cb
(
λ2

1 + λ̄2
1

) + b
(
λ4

1 + λ̄4
1

) + c2|λ1|4 − c|λ1|4
(
λ2

1 + λ̄2
1

) + |λ1|8

− 1
2 b

(
λ2

1 + λ̄2
1

)
R2 + c|λ1|4R2 − 1

2 |λ1|4
(
λ2

1 + λ̄2
1

)
R2 + 1

4 |λ1|4R4.

Combining these two expressions together yields

4|λ1|2
∣∣λ2

1 − λ̄2
1

∣∣2
(|P1|2 + |Q1|2)2 = 8d − 8ac + 4a

(
λ2

1 + λ̄2
1

) + 8|λ1|−2b
[
b − c

(
λ2

1 + λ̄2
1

) + (
λ4

1 + λ̄4
1

)]
+ 8c2|λ1|2 − 8c|λ1|2

(
λ2

1 + λ̄2
1

) + 8|λ1|6 + [
8b + 8|λ1|4 − 4c

(
λ2

1 + λ̄2
1

)]
R2

− 4b|λ1|−2
(
λ2

1 + λ̄2
1

)
R2 + 8c|λ1|2R2 − 4|λ1|2

(
λ2

1 + λ̄2
1

)
R2

− (
λ2

1 + λ̄2
1

)
R4 + 2|λ1|2R4.

When a, b, c, and d are expressed from (20) and (31), it shows that each term on the right-hand side has a common factor
(λ1 − λ̄1)2. When the common factor is canceled, we obtain the following compact expression:

4|λ1|2
(
λ1 + λ̄1

)2
(|P1|2 + |Q1|2)2 = (

λ2
1 + λ̄2

1 − λ2
2 − λ̄2

2 + 2|λ1|2 − 2|λ2|2
)2

+ 2
(
λ2

1 + λ̄2
1 + λ2

2 + λ̄2
2 + 2|λ1|2 + 2|λ2|2

)
R2 + R4.

Expressing λ1 and λ2 by (31) and (36) and using ρ := 1
2 R2, we rewrite this expression in the following form:

|λ1|2(λ1 + λ̄1)2(|P1|2 + |Q1|2)2 = (ρ − u3)(ρ − u4). (D3)

Similarly, we obtain

4|λ1|2
∣∣λ2

1 − λ̄2
1

∣∣2
(|P1|2 − |Q1|2)2 = 8d − 8ac + 4a

(
λ2

1 + λ̄2
1

) − 8|λ1|−2b
[
b − c

(
λ2

1 + λ̄2
1

) + (
λ4

1 + λ̄4
1

)]
− 8c2|λ1|2 + 8c|λ1|2

(
λ2

1 + λ̄2
1

) − 8|λ1|6 + [8b + 8|λ1|4 − 4c
(
λ2

1 + λ̄2
1

)]
R2

+ 4b|λ1|−2
(
λ2

1 + λ̄2
1

)
R2 − 8c|λ1|2R2 + 4|λ1|2

(
λ2

1 + λ̄2
1

)
R2

− (
λ2

1 + λ̄2
1

)
R4 − 2|λ1|2R4,

where each term on the right-hand side now has a common factor (λ1 + λ̄1)2. When the common factor is canceled, we obtain
the following compact expression:

4|λ1|2(λ1 − λ̄1)2(|P1|2 − |Q1|2)2 = (
λ2

1 + λ̄2
1 − λ2

2 − λ̄2
2 − 2|λ1|2 + 2|λ2|2

)2

+2
(
λ2

1 + λ̄2
1 + λ2

2 + λ̄2
2 − 2|λ1|2 − 2|λ2|2

)
R2 + R4,

from which we obtain with the help of (31) and (36):

|λ1|2(λ1 − λ̄1)2(|P1|2 − |Q1|2)2 = (ρ − u1)(ρ − u2). (D4)

By substituting (29) and (30) into (D3) and (D4) and extracting the square root, we derive the following expressions:

|λ1|(λ1 + λ̄1)(|P1|2 + |Q1|2) = (u2 − u4)
√

(u1 − u3)(u1 − u4)dn(νx; k)

(u2 − u4) + (u1 − u2)sn2(νx; k)
(D5)
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and

i|λ1|(λ1 − λ̄1)(|P1|2 − |Q1|2) = (u1 − u2)
√

(u1 − u4)(u2 − u4)sn(νx; k)cn(νx; k)

(u2 − u4) + (u1 − u2)sn2(νx; k)
, (D6)

where α1 and β1 are assumed to be positive. The particular sign in (D6) has been chosen due to the following expression obtained
from (51):

i|λ1|2
(
λ2

1 − λ̄2
1

)
(|P1|4 − |Q1|4) = −dρ

dx
,

which implies that the sign of i(λ2
1 − λ̄2

1)(|P1|4 − |Q1|4) is the same as the sign of sn(νx; k)cn(νx; k).
By adding and subtracting (D5) and (D6), we obtain the desired expressions:

2|λ1|(λ1|P1|2 + λ̄1|Q1|2) =
√

(u1 − u4)(u2 − u4)
2νdn(νx; k) − i(u1 − u2)sn(νx; k)cn(νx; k)

(u2 − u4) + (u1 − u2)sn2(νx; k)
(D7)

and

2|λ1|(λ̄1|P1|2 + λ1|Q1|2) =
√

(u1 − u4)(u2 − u4)
2νdn(νx; k) + i(u1 − u2)sn(νx; k)cn(νx; k)

(u2 − u4) + (u1 − u2)sn2(νx; k)
. (D8)

It follows from (51) that

4|λ1|2
∣∣λ2

1 − λ̄2
1

∣∣2
P2

1 Q̄2
1 = −2

(
dR

dx

)2

+ 2i
dR

dx

((
λ2

1 + λ̄2
1 − c

)
R − 1

4
R3 + a

R

)

+ 4d − 4ac + 2a
(
λ2

1 + λ̄2
1

) + [
4b + 4|λ1|4 − 2c

(
λ2

1 + λ̄2
1

)]
R2 − 1

2

(
λ2

1 + λ̄2
1

)
R4.

Substituting (20) and (36) and expressing ρ = 1
2 R2 yields

4|λ1|2
∣∣λ2

1 − λ̄2
1

∣∣2
P2

1 Q̄2
1 = − 1

ρ

(
dρ

dx

)2

− i
1

ρ

dρ

dx
(ρ + √

u1u2)(ρ − √
u3u4)

−(λ1 + λ̄1)2(ρ − u1)(ρ − u2) − (λ1 − λ̄1)2(ρ − u3)(ρ − u4).

To see that the right-hand side is a complete square, we use (36) and write

4|λ1|2
∣∣λ2

1 − λ̄2
1

∣∣2
P2

1 Q̄2
1 = (u1 − u4)(u2 − u4)Z

[u1(u2 − u4) + u4(u1 − u2)sn2(νx; k)][(u2 − u4) + (u1 − u2)sn2(νx; k)]3
,

where

Z = −(u1 − u3)(u1 − u4)(u1 − u2)2(u2 − u4)2dn2(νx; k)sn2(νx; k)cn2(νx; k)

+ i
√

(u1 − u3)(u2 − u4)(u1 − u2)dn(νx; k)sn(νx; k)cn(νx; k)

× [(u1 + √
u1u2)(u2 − u4) + (u4 + √

u1u2)(u1 − u2)sn2(νx; k)]

× [(u1 − √
u3u4)(u2 − u4) + (u4 − √

u3u4)(u1 − u2)sn2(νx; k)]

+ 1
2 (

√−u4 + √−u3)2(u1 − u2)2sn2(νx; k)cn2(νx; k)

× [u1(u2 − u4) + u4(u1 − u2)sn2(νx; k)][(u2 − u4) + (u1 − u2)sn2(νx; k)]

+ 1
2 (

√
u1 + √

u2)2(u1 − u3)(u2 − u4)dn2(νx; k)

× [u1(u2 − u4) + u4(u1 − u2)sn2(νx; k)][(u2 − u4) + (u1 − u2)sn2(νx; k)].

Long but straightforward computations yield

Z = 1
2 (

√
u1 + √

u2)2{2νdn(νx; k)[
√

u1(u2 − u4)cn2(νx; k) + √
u2(u1 − u4)sn2(νx; k)]

+ i(
√

u1 − √
u2)sn(νx; k)cn(νx; k)[(u1 − √

u3u4)(u2 − u4) + (u4 − √
u3u4)(u1 − u2)sn2(νx; k)]}2.

Extracting the negative square root yields the final expression:

2|λ1|(λ1 + λ̄1)P1Q̄1 = −
√

(u1 − u4)(u2 − u4)
N2

D2
, (D9)

where

N2 := 2νdn(νx; k)[
√

u1(u2 − u4)cn2(νx; k) + √
u2(u1 − u4)sn2(νx; k)]

+ i(
√

u1 − √
u2)sn(νx; k)cn(νx; k)[(u1 − √

u3u4)(u2 − u4) + (u4 − √
u3u4)(u1 − u2)sn2(νx; k)]
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and

D2 :=
√

[u1(u2 − u4) + u4(u1 − u2)sn2(νx; k)][(u2 − u4) + (u1 − u2)sn2(νx; k)]3.

We chose the negative root by the continuity argument from the degenerate case u1 = u2 (k = 0), for which the periodic wave
(29) becomes the constant-amplitude solution ρ(x) = u1. Indeed, it follows from (D5) and (D6) that if u1 = u2 (k = 0), then

2|λ1|(λ1 + λ̄1)|P1|2 = 2|λ1|(λ1 + λ̄1)|Q1|2 =
√

(u1 − u3)(u1 − u4),

which coincides with the expression

2|λ1|(λ1 + λ̄1)P1Q̄1 = −
√

(u1 − u3)(u1 − u4)

obtained from (D9) with the negative sign. Note that P1 = −Q1 is x-independent in the degenerate case.
Combining together (D8) and (D9) yields

ρ − i
(
λ2

1 − λ̄2
1

)
RP1Q̄1

λ̄1|P1|2 + λ1|Q1|2
= −√

u1u2
√

(u1 − u3)(u2 − u4)dn(νx; k) + i
√

u3u4(u1 − u2)sn(νx; k)cn(νx; k)√
(u1 − u3)(u2 − u4)dn(νx; k) + i(u1 − u2)sn(νx; k)cn(νx; k)

.

Substituting this expression into (D2) yields

ρ̂(x) = u1u2(u1 − u3)(u2 − u4)dn2(νx; k) + u3u4(u1 − u2)2sn2(νx; k)cn2(νx; k)

ρ[(u1 − u3)(u2 − u4)dn2(νx; k) + (u1 − u2)2sn2(νx; k)cn2(νx; k)]

= u2(u1 − u3) − u3(u1 − u2)sn2(νx; k)

(u1 − u3) − (u1 − u2)sn2(νx; k)
, (D10)

which is simply Eq. (60).

APPENDIX E: PROOF OF (61)

Substituting parameters (a, b, c, d) from (20), the periodic wave ρ from (39), and the eigenvalue β3 from (43) into (53) yields

ρ̂ = N3

D3
, (E1)

where

D3 = [(
b + cβ2

3 + β4
3

)
[1 + δ + (δ − 1)cn(μx; k)] + β2

3 [u1δ + u2 + (u1δ − u2)cn(μx; k)]
]2

(E2)

and

N3 = [
β2

3 a
(
b − cβ2

3 − β4
3

) + 2dβ4
3

]
[1 + δ + (δ − 1)cn(μx; k)]2 + [

b2 + β4
3 (2b + a − c2) + β8

3

]
[1 + δ + (δ − 1)cn(μx; k)]

× [u1δ + u2 + (u1δ − u2)cn(μx; k)] + β2
3

(
b − cβ2

3 − β4
3

)
[u1δ + u2 + (u1δ − u2)cn(μx; k)]2. (E3)

After canceling the common factors in D3 and N3, we arrive at the expression

ρ̂ = 1
4

(√
u1 + √

u2 −
√

2(γ +
√

γ 2 + η2)
)2 + A(1 − cn(μx; k))

B(1 − cn(μx; k)) + C(1 + cn(μx; k))
, (E4)

where

A =
√

2(γ +
√

γ 2 + η2)(
√

u1 + √
u2)(u2 −

√
2u2(γ +

√
γ 2 + η2) +

√
γ 2 + η2),

B = u2 −
√

2u2(γ +
√

γ 2 + η2) +
√

γ 2 + η2,

C = δ(u1 +
√

2u1(γ +
√

γ 2 + η2) +
√

γ 2 + η2).

This expression yields (61) with (62) and (63).

APPENDIX F: PROOF OF (65)

The explicit expressions for λ1|P1|2 + λ̄1|Q1|2 and P1Q̄1 at the periodic wave (39) are obtained similarly to the derivation
explained in Appendix D. By using (39)–(41), (43), (D3), and (D4), we obtain

|λ1|2(λ1 + λ̄1)2(|P1|2 + |Q1|2)2 = 4[(u2 − γ )2 + η2]dn2(μx; k)

[1 + δ + (δ − 1)cn(μx; k)]2
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and

|λ1|2(λ1 − λ̄1)2(|P1|2 − |Q1|2)2 = −δ(u1 − u2)2sn2(μx; k)

[1 + δ + (δ − 1)cn(μx; k)]2
,

which result in

|λ1|(λ1 + λ̄1)(|P1|2 + |Q1|2) = 2
√

(u2 − γ )2 + η2dn(μx; k)

1 + δ + (δ − 1)cn(μx; k)
(F1)

and

i|λ1|(λ1 − λ̄1)(|P1|2 − |Q1|2) =
√

δ(u1 − u2)sn(μx; k)

1 + δ + (δ − 1)cn(μx; k)
, (F2)

where we have extracted the negative squared root analogous to Eq. (D6). With the help of (F1) and (F2), we come to the required
expressions for the periodic standing waves (39),

2|λ1|(λ1|P1|2 + λ̄1|Q1|2) = 2
√

(u2 − γ )2 + η2dn(μx; k) − i
√

δ(u1 − u2)sn(μx; k)

1 + δ + (δ − 1)cn(μx; k)
(F3)

and

2|λ1|(λ̄1|P1|2 + λ1|Q1|2) = 2
√

(u2 − γ )2 + η2dn(μx; k) + i
√

δ(u1 − u2)sn(μx; k)

1 + δ + (δ − 1)cn(μx; k)
. (F4)

On the other hand, we obtain from (51) after a lengthy calculation
√

2|λ1||λ2
1 − λ̄2

1|P1Q̄1 = −N4

D4
, (F5)

where

N4 = dn(μx; k)(
√

u1 + √
u2)

√
(u2 − γ )2 + η2[(δ

√
u1 − √

u2)cn(μx; k) + δ
√

u1 + √
u2]

+ i

2
(u1 − u2)sn(μx; k)

√
δ{u2 + u1δ − (1 + δ)

√
γ 2 + η2 + cn(μx; k)[u1δ − u2 + (1 − δ)

√
γ 2 + η2]},

D4 = [1 + δ + (δ − 1)cn(μx; k)]
3
2 [u2(1 − cn(μx; k)) + u1δ(1 + cn(μx; k))]

1
2 ,

where we have extracted the negative squared root due to the same reason as (D9).
By applying (F4) and (F5), we obtain

ρ − i
(
λ2

1 − λ̄2
1

)
RP1Q̄1

λ̄1|P1|2 + λ1|Q1|2
= −2

√
u1u2[(u2 − γ )2 + η2]dn(μx; k) + i(u1 − u2)

√
δ(γ 2 + η2)sn(μx; k)

2
√

(u2 − γ )2 + η2dn(μx; k) + i
√

δ(u1 − u2)sn(μx; k)
,

which yields

ρ̂(x) = 4u1u2[(u2 − γ )2 + η2]dn2(μx; k) + δ(u1 − u2)2(γ 2 + η2)sn2(μx; k)

4[(u2 − γ )2 + η2]dn2(μx; k) + δ(u1 − u2)2sn2(μx; k)

= u1δ(1 − cn(μx; k)) + u2(1 + cn(μx; k))
1 + cn(μx; k) + δ(1 − cn(μx; k))

,

and hence the explicit expression (65).

APPENDIX G: PROOF OF (73) AND (89)

For the derivation of (73), it follows from (20) and (37) that

β2
1

(
d − ac − aβ2

1

) = (
b + cβ2

1 + β4
1

)2
.

Substituting this relation into (72) yields

∂χ1

∂t
= 2β2

1

(
β2

1 − β2
2

)[
β2

1 d − aβ2
1 (c + β2

1 ) + 2β2
1

(
cβ2

1 + β4
1 + b

)
ρ + β4

1ρ2
]

(
b + cβ2

1 + β4
1 + β2

1ρ
)2

= 2β2
1

(
β2

1 − β2
2

)[(
b + cβ2

1 + β4
1

)2 + 2β2
1

(
cβ2

1 + β4
1 + b

)
ρ + β4

1ρ2
]

(
b + cβ2

1 + β4
1 + β2

1ρ
)2

= 2β2
1

(
β2

1 − β2
2

)
, (G1)

which coincides with (73).
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For the derivation of (89), we substitute (20), (51), and (52) into (87) and obtain

∂χ1

∂t
= N5

D5
, (G2)

where

D5 = (|p1|2 + |q1|2)2,

N5 = 4

λ̄2
1

(
b − cλ̄2

1 + λ̄4
1 − λ̄2

1ρ
)(

ρ + c − λ2
1 − λ̄2

1

)

+ 1

λ̄1(λ1 + λ̄1)

{
2
(
λ2

1 + λ̄2
1 + |λ1|2

)[
ρ2 + 2

(
c − 2λ̄2

1

)
ρ − a

] + 2λ̄2
1ρ

2 + 4
(
cλ̄2

1 − 2b
)
ρ + 4ac − 2aλ̄2

1 − 4d
}
.

It follows from (D5) that

D5 = 2(u2 − u4)2(u1 − u4)(u1 − u3)dn2(νx; k)

|λ1|2(
√−u3 + √−u4)2

. (G3)

On the other hand, it follows from (29) and (36) that

N5 = 2i(
√

u1 + √
u2)(u1 − u4)(u2 − u4)[

√
u1 + √

u2 − i(
√−u3 + √−u4)]

(
√−u3 + √−u4)[

√
u1 + √

u2 + i(
√−u3 + √−u4)]

× [u2u3cn2(νx; k) + u4(u2sn2(νx; k) − u3) − u1(u2 − u3sn2(νx; k) − u4cn2(νx; k))]

= 2i(
√

u1 + √
u2)(u1 − u4)(u2 − u4)2[

√
u1 + √

u2 − i(
√−u3 + √−u4)]

(
√−u3 + √−u4)[

√
u1 + √

u2 + i(
√−u3 + √−u4)]

(u1 − u3)

[
1 + (u1 − u2)(−u3 + u4)

(u1 − u3)(u2 − u4)
sn2(νx; k)

]

= 2i(
√

u1 + √
u2)(u1 − u3)(u1 − u4)(u2 − u4)2

(
√−u3 + √−u4)[

√
u1 + √

u2 + i(
√−u3 + √−u4)]

[
√

u1 + √
u2 − i(

√−u3 + √−u4)]dn2(νx; k). (G4)

A simple calculation for N5/D5 via (G3) and (G4) yields (89).

APPENDIX H: PROOF OF (81) AND (82)

We select c1 = 0 so that χ1(0, 0) = 0 in (74). Resorting to (20), (29), (37), and (50)–(52), we have

|û(0, 0)| =
∣∣∣∣u(0, 0) − 2iβ1

p1(0, 0)

p̄1(0, 0)

∣∣∣∣
=

∣∣∣∣−iβ2
1ρ ′(0) + 3β2

1ρ2(0) + 2ρ(0)
(
3β4

1 + 2cβ2
1 + b

) − aβ2
1√

2ρ(0)
[
b + cβ2

1 + β4
1 + β2

1ρ(0)
] ∣∣∣∣, (H1)

which yields (81) since ρ(0) = u1, ρ ′(0) = 0, and ρ̂ = 1
2 |û|2.

Since the expression (H1) applies to other purely imaginary eigenvalues, we can replace ρ(0) = u1 and β1 with ρ(0) = u3

and β3 in (H1) and obtain (82).

APPENDIX I: PROOF OF (92) AND (93)

We select c1 = 0 so that χ1(0, 0) = 0 in (90). We obtain from (47), (50), and (85) that

|û(0, 0)| =
∣∣∣∣R(0) + 2i

(
λ2

1 − λ̄2
1

)
P1(0, 0)Q̄1(0, 0)

λ̄1|P1(0, 0)|2 + λ1|Q1(0, 0)|2
∣∣∣∣. (I1)

It follows from (D7) and (D9) that

2|λ1|[λ1|P1(0, 0)|2 + λ̄1|Q1(0, 0)|2] =
√

(u1 − u3)(u1 − u4) (I2)

and

2|λ1|(λ1 + λ̄1)P1(0, 0)Q̄1(0, 0) = −
√

(u1 − u3)(u1 − u4). (I3)

Substituting λ1 from (36), R(0) = √
2u1, and relations (I2) and (I3) into (I1) yields (92).
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Repeating computations for eigenvalue λ2 in (36) yields

2|λ2|[λ2|P2(0, 0)|2 + λ̄2|Q2(0, 0)|2] =
√

(u1 − u3)(u1 − u4) (I4)

and

2|λ2|(λ2 + λ̄2)P2(0, 0)Q̄2(0, 0) = −
√

(u1 − u3)(u1 − u4), (I5)

which yields (93).
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