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ABSTRACT
We analyze the spectral stability of the standing periodic waves in the massive Thirring model in laboratory coordinates. Since
solutions of the linearized MTM equation are related to the squared eigenfunctions of the linear Lax system, the spectral stability
of the standing periodic waves can be studied by using their Lax spectrum. We show analytically that each family of standing
periodic waves is distinguished by the location of eight eigenvalues which coincide with the end points of the spectral bands of
the Lax spectrum. The standing periodic waves are proven to be spectrally stable if the eight eigenvalues are located either on
the imaginary axis or along the diagonals of the complex plane. By computing the Lax spectrum numerically, we show that this
stability criterion is satisfied for some standing periodic waves.

1 Introduction

The massive Thirring model (MTM) is a mathematical model in
quantum field theory. This model was first proposed by Thirring
in [1] and has been used as an integrable example of the nonlinear
Dirac equation in the space of one dimension [2]. Integrability
of the MTM was first established in [3] and then explored in
[4–6]. The Hermitian version of the MTM admits a natural  -
symmetric extension, which is gauge-equivalent to the original
version [7].

We use the following normalized form of the MTM in the
laboratory coordinates:

{
𝑖(𝑢𝑡 + 𝑢𝑥) + 𝑣 + |𝑣|2𝑢 = 0,

𝑖(𝑣𝑡 − 𝑣𝑥) + 𝑢 + |𝑢|2𝑣 = 0,
(1.1)

along with the initial condition (𝑢, 𝑣)|𝑡=0 = (𝑢0, 𝑣0). The complete
integrability of the MTM is due to the existence of the following
Lax pair of linear equations [3]:{

𝜓𝑥 = 𝐿(𝑢, 𝑣, 𝜆)𝜓,

𝜓𝑡 = 𝑀(𝑢, 𝑣, 𝜆)𝜓,
(1.2)

where
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Here, 𝑖 is the imaginary unit with 𝑖2 = −1, the bar represents
the complex conjugate, and 𝜎3 is the third Pauli matrix, 𝜎3 =
diag(1,−1).

The inverse scattering transform (IST) method for the linear
system (1.2) was developed formally in [8] and rigorously in [9,
10, 11]. The ISTmethodwas used to solve the initial-value problem
on the infinite line [10] and to establish the long-time scattering
properties near the soliton solutions [11]. Solutions in the quarter-
plane were also obtained with the unified transform method
in [12]. The initial-value problem for the MTM system (1.1) has
been alternatively studied by using the contraction mapping and
energy methods in Sobolev space 𝐻𝑠(ℝ) with 𝑠 >

1

2
(see review

in [13]). Solutions of the MTM system in the space 𝐿2(ℝ) of low
regularity were studied in [14–18].

For physical applications in the quantum field theory and quan-
tum optics, it is important to study stability of the standing and
traveling waves in the time evolution of the MTM system (1.1).
Every standing wave solution can be extended as the traveling
wave solution due to the Lorentz symmetry

[
𝑢(𝑥, 𝑡)
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]
↦

⎡⎢⎢⎢⎢⎢⎣

(
1 − 𝑐

1 + 𝑐

)1∕4
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)
(
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𝑣

(
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)
⎤⎥⎥⎥⎥⎥⎦
, 𝑐 ∈ (−1, 1),

(1.3)

which exists because the MTM system (1.1) is relativistically
invariant. In addition, every standing wave solution can be trans-
lated in space, time, and complex phase due to the translational
and rotational symmetries[

𝑢(𝑥, 𝑡)

𝑣(𝑥, 𝑡)

]
↦

[
𝑢(𝑥 + 𝑥0, 𝑡 + 𝑡0)ei𝜃0

𝑣(𝑥 + 𝑥0, 𝑡 + 𝑡0)ei𝜃0

]
, 𝑥0, 𝑡0, 𝜃0 ∈ ℝ. (1.4)

The simplest standing wave solution of the MTM system is the
Dirac soliton (also known as the gap soliton):

⎧⎪⎨⎪⎩
𝑢(𝑥, 𝑡) = 𝑖𝛼 sech

(
𝛼𝑥 − 𝑖

𝛾

2

)
e−𝑖𝛽𝑡 ,

𝑣(𝑥, 𝑡) = −𝑖𝛼 sech
(

𝛼𝑥 + 𝑖
𝛾

2

)
e−𝑖𝛽𝑡 ,

(1.5)

where 𝛼 ∶= sin 𝛾, 𝛽 ∶= cos 𝛾, and 𝛾 ∈ (0, 𝜋) is a free parameter.
Spectral stability of Dirac solitons was established with the
completeness of squared eigenfunctions [18] and has been used
to study spectral stability of solitary waves in nonintegrable
Dirac equations [19–21]. Orbital stability of Dirac solitons in
Sobolev space 𝐻1(ℝ) was obtained in [22] by using the higher-
order energy of the MTM system (1.1). Orbital stability of Dirac
solitons in a weighted 𝐿2(ℝ) space was obtained in [23] with
the Bäcklund–Darboux transformation. Transverse instability of
Dirac solitons in the two-dimensional generalizations of the
MTM system (1.1) was shown in [24].

Multisoliton solutions to the MTM system have also been con-
structed with different algebraic methods in [25–29] both on
the zero and constant nonzero backgrounds. More recently, the
MTM system was studied for the existence of rogue waves given

by the rational solutions which arise on the constant nonzero
background due to its modulational instability [30–33]. It is
important to combine the study of multisoliton and multi-rogue-
wave solutions on the nonzero background with the proper
stability analysis of the nonzero background. This step was
missing in the previous publications, where algebraic methods
have been used. Based on several model examples involving the
constant nonzero background [34–36] and the standing periodic
waves [37–39] (see also reviews in [40, 41]), we know that the
space–time localization of the rogue waves is related to the
instability growth rate of the background. If the background is
modulationally stable, numerical simulations do not show the
occurrence of large-amplitude rogue waves [42].

The main motivation for our work is to give a complete spectral
stability analysis of the standing wave solutions to the MTM system
(1.1) which include the constant nonzero solutions.

The study of spectral stability of standing and travelingwave solu-
tions of integrable equations by using the squared eigenfunction
method has started with the works of Deconinck and his coau-
thors [43–47]. With the algebraic nonlinearizationmethod of Cao
and Geng [48] which connects standing and traveling waves with
the integrable finite-dimensional Hamiltonian systems, Chen
and Pelinovsky found rogue wave solutions for many integrable
equations [37, 49–51] (see also [39, 52]) in the caseswhen thewave
background is modulationally unstable. The stability problem for
the standing periodic waves can be solved from the Lax spectrum
due to separation of variables and this has been explored for
numerical study of the stability spectrum in many integrable
equations [38, 53, 54]. However, the variables do not separate for
the double-periodic solutions [55] and for traveling periodicwaves
in lattice equations [56]. Further study of the spectral and orbital
stability of the traveling wave solutions can be found in [57, 58].
Our work expands the study of spectral stability to the case of the
standing periodic waves in the MTM system (1.1).

The standing wave solutions of the MTM system (1.1) are written
in the form:

𝑢(𝑥, 𝑡) = 𝑈(𝑥)e−𝑖𝜔𝑡, 𝑣(𝑥, 𝑡) = 𝑉(𝑥)e−𝑖𝜔𝑡, (1.6)

where 𝜔 ∈ ℝ is the frequency parameter and (𝑈, 𝑉) ∈ ℂ2 is the
wave profile. To include the class of Dirac solitons (1.5), we will
consider here the standing waves satisfying the reduction 𝑉 = 𝑈̄.

Figure 1 presents the existence diagram of the standing waves on
the parameter plane (𝑏, 𝜔), where

𝑏 ∶= −𝜔(|𝑈|2 + |𝑉|2) − |𝑈|2|𝑉|2 − (𝑈̄𝑉 + 𝑉̄𝑈) (1.7)

is the 𝑥-independent parameter that corresponds to the Hamil-
tonian of the spatial dynamical system for (𝑈, 𝑉). The existence
results for the standing waves are summarized as follows:

∙ Region I for 𝑏 ∈ (−∞, 0) contains exactly one family of
standing waves with the mapping 𝑥 ↦ arg(𝑈) = − arg(𝑉)

being monotonically increasing.

∙ Region II bounded by 𝑏 = 0, 𝜔 ∈ [−1, 1] (black line), 𝑏 = (1 −
𝜔)2, 𝜔 ∈ (−∞, 1] (red line), and 𝑏 = (1 + 𝜔)2, 𝜔 ∈ (−∞,−1]
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FIGURE 1 The existence diagram on the (𝑏, 𝜔) parameter plane.

(blue line) contains exactly one family of standing waves
with the mapping 𝑥 ↦ arg(𝑈) = − arg(𝑉) being bounded and
periodic.

∙ Region III for 𝑏 ∈ (0, (1 + 𝜔)2),𝜔 ∈ (−∞,−1) contains exactly
two families of standing waves with the mapping 𝑥 ↦

arg(𝑈) = − arg(𝑉) being monotonically increasing for one
family and monotonically decreasing for the other family.

∙ Region IV contains no families of standing waves.

Strictly speaking, standing waves of the form (1.6) with monoton-
ically increasing or decreasing mapping 𝑥 ↦ arg(𝑈) = − arg(𝑉)

are not periodic in 𝑥 even though the mapping 𝑥 ↦ |𝑈| = |𝑉| is
bounded and periodic. For notational convenience, we still refer
to these solutions loosely as the standing periodic waves.

The constant solutions of the MTM system (1.1) occur on the
boundary of the region II, that is, for 𝑏 = 0, 𝜔 ∈ [−1, 1] (black
line), 𝑏 = (1 − 𝜔)2, 𝜔 ∈ (−∞, 1] (red line), and 𝑏 = (1 + 𝜔)2, 𝜔 ∈

(−∞,−1] (blue line). The constant solution is zero in the first case
and nonzero in the other two cases.

We define the Lax spectrum of the standing periodic waves as
the set of admissible values of 𝜆 in the linear system (1.2)
for which 𝜓(⋅, 𝑡) ∈ 𝐿∞(ℝ, ℂ2) for every 𝑡 ∈ ℝ. Accordingly, the
stability spectrum is defined as the set of admissible values of
Λ in the linearized MTM system, see (3.5) below, for which
the eigenfunction is bounded on ℝ. By using the squared
eigenfunction relation between solutions of the linear system (1.2)
and solutions of the linearized MTM system (3.5) found in [18],
we study the spectral stability of the standing periodic waves from
their Lax spectrum. The spectral bands of the Lax spectrumwhich
determine the spectral stability versus the spectral instability of
the standing periodic waves are located between eight roots of the
function

𝑃(𝜆) ∶= 1

4

(
𝜆2 + 1

𝜆2
− 2𝜔

)2

− 𝑏. (1.8)

Coefficients of 𝑃(𝜆) are computed from parameters (𝑏, 𝜔) in (1.6)
and (1.7). We show that if 𝑈 = 𝑉̄, then the roots of 𝑃(𝜆) enjoy the
triple symmetry of reflections in the complex plane:

∙ about the real axis ℝ,

∙ about the imaginary axis 𝑖ℝ,

∙ about the unit circle 𝕊1.

By converting the linear system (1.2) to the matrix eigenvalue
problem, see Appendix A, we compute the Lax spectrum
numerically by using the Fourier collocation method from [59,
Section 2.4]. The stability spectrum is obtained from the relation
Λ = ±𝑖

√
𝑃(𝜆).

Figure 2 displays the Lax spectrum (top panels) and the stability
spectrum (bottom panels) for different families of the standing
periodic waves. The location of the eight roots of 𝑃(𝜆) is shown
by red crosses. The dotted green line shows the unit circle 𝕊1.
The location of roots of 𝑃(𝜆), the Lax spectrum, and the stability
spectrum are summarized as follows:

∙ In region I, the roots of 𝑃(𝜆) form two quadruplets of complex
eigenvalues which are symmetric about 𝕊1 (see Figure 2A).
The stability spectrumcontains the unstable figure-eight band
if𝜔 ≠ 0 (see Figure 2F). For𝜔 = 0, the bands connecting roots
of 𝑃(𝜆) are located along the main diagonals (see Figure 2B),
and the stability spectrum is on 𝑖ℝ (see Figure 2G).

∙ In region IIA, the roots of 𝑃(𝜆) form two quadruplets of
complex eigenvalues located on 𝕊1 (see Figure 2C). The
stability spectrum contains the unstable segment on ℝ (see
Figure 2H).

∙ In region IIB, the roots of 𝑃(𝜆) form a quadruplet of complex
eigenvalues on 𝕊1 and two pairs of purely imaginary eigen-
values which are symmetric about 𝕊1 (see Figure 2D). The
stability spectrum contains the unstable segment on ℝ (see
Figure 2I).

∙ In region III, the roots of 𝑃(𝜆) form four pairs of purely
imaginary eigenvalues, which are symmetric about 𝕊1 (see
Figure 2E). The stability spectrum is on 𝑖ℝ (see Figure 2J).

We note that the Lax and stability spectra in region III are identi-
cal for both families of the standing periodic waves which coexist
in region III. Although Figure 2 only shows some numerical
approximations for particular points in the (𝑏, 𝜔) plane, we have
checked that the same results are true for every point in the
corresponding regions of the parameter plane (𝑏, 𝜔). Based on
these numerical approximations, we obtain the following stability
criterion for the standing periodic waves of theMTM system (1.1),
which is the main result of this work.

The standing periodic waves in the form (1.6) with 𝑉 = 𝑈̄ are
spectrally stable in the MTM system (1.1) if and only if all roots
of 𝑃(𝜆) in (1.8) are located either on the imaginary axis 𝑖ℝ or
along the diagonals of the complex plane.

We also show the spectral stability of the constant nonzero back-
ground for 𝑏 = (1 + 𝜔)2,𝜔 ∈ (−∞,−1] (blue line on Figure 1) and
the constant zero background for 𝑏 = 0,𝜔 ∈ [−1, 1] (black line on
Figure 1). Moreover, the family of solitary waves on the constant
nonzero background and the family of Dirac solitons (1.5) on the
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FIGURE 2 Lax spectrum (top panels) and the stability spectrum (lower panels) for the standing periodic waves in regions I, IIA, IIB, and III of
Figure 1.

constant zero background are also spectrally stable. On the other
hand, we show that the constant nonzero background for 𝑏 =
(1 − 𝜔)2, 𝜔 ∈ (−∞, 1] (red line on Figure 1) is spectrally unstable.

Organization of the paper. The standing waves of the form
(1.6) with 𝑉 = 𝑈̄ are classified in Section 2 by using the phase
portraits for a planar Hamiltonian system. Section 3 reports the
squared eigenfunction relation between solutions of the linear
system (1.2) and solutions of the linearized MTM system at the
standing waves. Properties of eigenvalues of the Lax and stability
spectra are described in Section 4. The Lax and stability spectra
for the constant nonzero solutions are computed analytically in
Section 5. With these exact solutions, we have also tested the
numerical method to recover the same spectra numerically. In
Section 6, we obtain exact solutions for the standing periodic
waves in relation to roots of 𝑃(𝜆) and compute numerical
approximations of their Lax and stability spectra. The paper is
concluded with a summary in Section 7. The numerical method
is described in Appendix A.

2 Classification of StandingWaves

Profiles (𝑈, 𝑉) of the standing wave solutions of the form (1.6) are
found from the system of first-order differential equations{

𝑖𝑈′ + 𝜔𝑈 + 𝑉 + |𝑉|2𝑈 = 0,

−𝑖𝑉′ + 𝜔𝑉 + 𝑈 + |𝑈|2𝑉 = 0,
(2.1)

which is obtained by substituting (1.6) into (1.1). System (2.1) can
be written as the complex Hamiltonian system

𝑖
𝑑𝑈

𝑑𝑥
= 𝜕𝐻

𝜕𝑈̄
, −𝑖

𝑑𝑉

𝑑𝑥
= 𝜕𝐻

𝜕𝑉̄
(2.2)

generated by the real-valued Hamiltonian

𝐻(𝑈, 𝑉) = −𝜔(|𝑈|2 + |𝑉|2) − |𝑈|2|𝑉|2 − (𝑈̄𝑉 + 𝑉̄𝑈), (2.3)

which coincides with (1.7). Since 𝐻 is independent of 𝑥, the
Hamiltonian is conserved for every solution of system (2.1).

Another real-valued conserved quantity for system (2.1) is

𝐹(𝑈, 𝑉) = |𝑈|2 − |𝑉|2, (2.4)

conservation of which follows by adding the following two
equations:

𝑖(𝑈̄𝑈′ − 𝑈̄′𝑈) + 𝑈̄𝑉 − 𝑈𝑉̄ =0,

−𝑖(𝑉̄𝑉′ − 𝑉̄′𝑉) + 𝑉̄𝑈 − 𝑉𝑈̄ =0.

With two conserved quantities (2.3) and (2.4), system (2.1) is
completely integrable. In what follows, we will only consider the
standingwaves under the reduction𝑉 = 𝑈̄, which corresponds to
𝐹(𝑈, 𝑉) ≡ 0. This particular case includes the Dirac solitons (1.5)
at the constant zero background. We use the polar form

𝑈(𝑥) = 𝜁(𝑥)e
𝑖

2
𝜃(𝑥)

, 𝑉(𝑥) = 𝜁(𝑥)e−
𝑖

2
𝜃(𝑥) (2.5)

with real-valued 𝜁 and 𝜃 and obtain the system of first-order
differential equations{

𝜁′ = 𝜁 sin 𝜃,

𝜃′ = 2 cos 𝜃 + 2𝜁2 + 2𝜔
(2.6)

for which 𝑏 ∶= 𝐻(𝑈, 𝑉) = −2𝜔𝜁2 − 𝜁4 − 2𝜁2 cos 𝜃 is a constant.
With further transformation 𝜁 =

√
𝜉, system (2.6) is rewritten in

the form {
𝜉′ = 2𝜉 sin 𝜃,

𝜃′ = 2𝜔 + 2𝜉 + 2 cos 𝜃
(2.7)

for which 𝑏 = −2𝜔𝜉 − 𝜉2 − 2𝜉 cos 𝜃.

The relevant periodic solutions of system (2.7) correspond to the
domain

Γ+ ∶= {(𝜃, 𝜉) ∶ 𝜉 ≥ 0}

and the boundary line Γ0 ∶= {(𝜃, 𝜉) ∶ 𝜉 = 0} is invariant in the
evolution of the spatial dynamical system (2.7). In addition,
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TABLE 1 The type of equilibrium points of Proposition 2.1.

Point 𝝎 ∈ (𝟏,∞) 𝝎 ∈ (−𝟏, 𝟏) 𝝎 ∈ (−∞,−𝟏)

P+ center center saddle
P− saddle center center
Q+ – saddle –
Q− – saddle –

system (2.7) is 2𝜋-periodic with respect to 𝜃, which allows us
to close the system on the cylinder 𝕋 × ℝ, where 𝕋 ∶= [0, 2𝜋)

subject to the 2𝜋-periodicity condition.

The following two propositions determine the equilibrium points
of the planar system (2.7) in 𝕋 × ℝ.

Proposition 2.1. System (2.7) admits the following equilibrium
points in 𝕋 × ℝ.

∙ Two equilibrium points {P+, P−} exist for every 𝜔 ∈ ℝ, where

P+ ∶= {(𝜃, 𝜉) = (0,−(1 + 𝜔))} and P−

∶= {(𝜃, 𝜉) = (𝜋, 1 − 𝜔)}.

∙ Two equilibrium points {Q+, Q−} exist for 𝜔 ∈ (−1, 1), where

Q+ ∶= {(𝜃, 𝜉) = (arccos(−𝜔), 0)} and Q−

∶= {(𝜃, 𝜉) = (2𝜋 − arccos(−𝜔), 0)}.

Proof. Assume that (𝜃0, 𝜉0) ∈ 𝕋 × ℝ is the equilibrium point of
system (2.7). Then,{

𝜉0 sin 𝜃0 = 0,

𝜔0 + 𝜉0 + cos 𝜃0 = 0.

If 𝜉0 = 0, then either 𝜃0 = arccos(−𝜔) or 𝜃0 = 2𝜋 − arccos(−𝜔).
This yields {Q+, Q−} for every 𝜔 ∈ [−1, 1]. If sin 𝜃0 = 0, then
either 𝜃0 = 0 and 𝜉0 = −(1 + 𝜔) or 𝜃0 = 𝜋 and 𝜉0 = 1 − 𝜔. This
yields {P+, P−} for every 𝜔 ∈ ℝ. For 𝜔 = ±1, the sets {Q+, Q−} and
{P+, P−} coincide. □

Remark 2.1. The equilibrium points {Q+, Q−} belongs to the
invariant line Γ0 for 𝜔 ∈ (−1, 1). For applications of (2.7) in 𝕋 ×
ℝ+, the equilibrium point P+ is relevant for𝜔 ∈ (−∞,−1] and the
equilibrium point P− is relevant for 𝜔 ∈ (−∞, 1]. No equilibrium
points belong to 𝕋 × ℝ+ for 𝜔 ∈ (1,∞).

Proposition 2.2. Classification of equilibrium points is given in
Table 1.

Proof. Let (𝜃0, 𝜉0) ∈ 𝕋 × ℝ be an equilibrium point of system
(2.7) and (𝜃1, 𝜉1) ∈ ℝ × ℝ be a small perturbation. Linearized
equations of system (2.7) at (𝜃0, 𝜉0) are given by{

𝜉′
1 = 2 sin 𝜃0𝜉1 + 2𝜉0 cos 𝜃0𝜃1,

𝜃′ = 2𝜉1 − 2 sin 𝜃0𝜃1.
(2.8)

The linearized system (2.8) is defined by the coefficient matrix

𝐴 = 2

(
sin 𝜃0 𝜉0 cos 𝜃0

1 − sin 𝜃0

)

for which tr(𝐴) = 0 and det(𝐴) = −4[sin
2
𝜃0 + 𝜉0 cos 𝜃0]. The sign

of det(𝐴) determines the type of the equilibrium point. It is a
center if det(𝐴) > 0 and a saddle if det(𝐴) < 0.

For P+, we have det(𝐴) = 4(1 + 𝜔) so that it is a center for 𝜔 > −1

and a saddle for 𝜔 < −1. For P−, we have det(𝐴) = 4(1 − 𝜔) so
that it is a center for 𝜔 < 1 and a saddle for 𝜔 > 1. For Q±, we
have det(𝐴) = −4 sin

2
𝜃0 so that they are saddles for every 𝜔 ∈

(−1, 1). □

Remark 2.2. For 𝜔 = −1, the equilibrium points Q± coalesce
with P+ and induce the change of the type of P+ from a center for
𝜔 > −1 to a saddle for 𝜔 < −1. For 𝜔 = 1, the equilibrium points
Q± coalesce with P− and induce the change of the type of P− from
a center for 𝜔 < 1 to a saddle for 𝜔 > 1.

Next we classify all admissible solutions of system (2.7) by
constructing phase portraits of the dynamical systemon the phase
plane (𝜃, 𝜉) in 𝕋 × ℝ. The classification of admissible solutions is
summarized in the following proposition.

Proposition 2.3. The system (2.7) admits the following bounded
solutions in 𝕋 × ℝ+:

∙ For 𝜔 ∈ (−∞,−1), three families exist for 𝑏 ∈ (−∞, (1 + 𝜔)2),
𝑏 ∈ (0, (1 + 𝜔)2), and 𝑏 ∈ ((1 + 𝜔)2, (1 − 𝜔)2), separated by
two heteroclinic orbits for 𝑏 = (1 + 𝜔)2 from P+ and its 2𝜋-
periodic continuation. The second family disappears at 𝜔 =
−1.

∙ For 𝜔 ∈ (−1, 1), two families exist for 𝑏 ∈ (−∞, 0) and 𝑏 ∈

(0, (1 − 𝜔)2) separated by two heteroclinic orbits for 𝑏 = 0. The
second family disappears at 𝜔 = 1.

∙ For 𝜔 ∈ (1,∞), only one family exists for 𝑏 ∈ (−∞, 0).

Proof. The assertion follows from the study of orbits of the
planar Hamiltonian system on the phase plane (𝜃, 𝜉) in 𝕋 ×
ℝ shown on Figures 3, 4, and 5. The phase portraits are
obtained by plotting the level curves of the function 𝐵(𝜃, 𝜉) = 𝑏,
where

𝐵(𝜃, 𝜉) ∶= −2𝜔𝜉 − 𝜉2 − 2𝜉 cos 𝜃.

Saddle points are shown by crosses and the center points are
shown by stars.

For 𝜔 ∈ (−∞,−1), see Figure 3A, we have 𝐵(0,−(1 + 𝜔)) = (1 +
𝜔)2 for the saddle point P+ and 𝐵(𝜋, 1 − 𝜔) = (1 − 𝜔)2 for the
center pointP−. P− is themaximumof𝐵 and P+ is the saddle point
of 𝐵. One family of periodic orbits for 𝑏 ∈ ((1 + 𝜔)2, (1 − 𝜔)2)

exists inside the punctured neighborhood of the center point P−
bounded by the two heteroclinic orbits from the saddle point P+
and its 2𝜋-periodic continuation. The second family of periodic
orbits for 𝑏 ∈ (−∞, (1 + 𝜔)2) exists above the upper heteroclinic
orbit and has monotonically increasing 𝜃. The third family of
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FIGURE 3 Phase portraits in the phase plane (𝜃, 𝜉) for (A) 𝜔 = −1.5 and (B) 𝜔 = 1.5.

FIGURE 4 Phase portraits in the phase plane (𝜃, 𝜉) for (A) 𝜔 = −1 and (B) 𝜔 = 1.

FIGURE 5 Phase portraits in the phase plane (𝜃, 𝜉) for (A) 𝜔 = −0.5 and (B) 𝜔 = 0.5.

periodic orbits for 𝑏 ∈ (0, (1 + 𝜔)2) exists between the lower
heteroclinic orbit and the invariant line Γ0 and hasmonotonically
decreasing 𝜃.

When 𝜔 = −1, see Figure 4A, the saddle point P+ and its 2𝜋-
periodic continuation belongs to the invariant line Γ0. The third
family of periodic orbits between the lower heteroclinic orbit and
the invariant line disappears whereas the other two families of
periodic orbits persist.

For 𝜔 ∈ (1,∞), see Figure 3B, both P− and P+ are located in 𝕋 ×
ℝ−. One family of periodic orbits for 𝑏 ∈ (−∞, 0) exists above the
invariant line Γ0 and has monotonically increasing 𝜃. When 𝜔 =
1, see Figure 4B, the saddle point P− belongs to the invariant line
but does not affect the existence of the family of periodic orbits
for 𝑏 ∈ (−∞, 0).

Finally, for 𝜔 ∈ (−1, 1), see Figure 5, both P+ and P− are cen-
ter points, but P+ ∈ 𝕋 × ℝ− and P− ∈ 𝕋 × ℝ+. The other two

6 of 24 Studies in Applied Mathematics, 2025
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equilibrium points Q+ and Q− are saddle points located on the
invariant line Γ0. One family of periodic orbits for 𝑏 ∈ (0, (1 −
𝜔)2) exists inside the punctured neighborhood of the center
point P− bounded by the two heteroclinic orbits from the two
saddle points Q+ and Q−. The second family of periodic orbits
for 𝑏 ∈ (−∞, 0) exists above the upper heteroclinic orbit and has
monotonically increasing 𝜃. □

Remark 2.3. Existence of bounded solutions in Proposition 2.3
is represented in Figure 1, where the parameter plane (𝑏, 𝜔) is
divided into several regions. Region I for 𝑏 ∈ (−∞, 0) and 𝜔 ∈ ℝ

contains one family of periodic orbits in 𝕋 × ℝ+ above the upper
heteroclinic orbit. Region II for either 𝑏 ∈ (0, (1 − 𝜔)2) and 𝜔 ∈

(−1, 1) or 𝑏 ∈ ((1 + 𝜔)2, (1 − 𝜔)2) and 𝜔 ∈ (−∞,−1] contains one
family of periodic orbits in 𝕋 × ℝ+ inside the two heteroclinic
orbits. Region III for 𝑏 ∈ (0, (1 + 𝜔)2) and 𝜔 ∈ (−∞,−1) contains
two families of periodic orbits in 𝕋 × ℝ+ above the upper hete-
roclinic orbit and between the lower heteroclinic orbit and the
invariant line Γ0. Region IV contains no periodic orbits.

Remark 2.4. Boundaries between regions I, II, III, and IV in
Figure 1 correspond to some particular nonperiodic solutions of
system (2.7). The black line at 𝑏 = 0 and 𝜔 ∈ [−1, 1] gives the
constant zero solution for the saddle points Q+ and Q− and the
solitary wave solutions on the zero background for the upper
heteroclinic orbit (if𝜔 ≠ 1). The blue line at 𝑏 = (1 + 𝜔)2 and𝜔 ∈

(−∞,−1) gives the constant nonzero solution for the saddle point
P+ and two solitary wave solutions on the nonzero background
for the upper and lower heteroclinic orbits. The red line for 𝑏 =
(1 − 𝜔)2 and 𝜔 ∈ (−∞, 1) gives the constant nonzero solution for
the center point P−.

3 Squared Eigenfunction Relation for the
StandingWaves

By substituting the standing waves of the form (1.6) into the Lax
system (1.2) and separating the variables with

𝜓(𝑥, 𝑡) = e
𝑖

2
𝜔𝑡𝜎3+Ω𝑡

Ψ(𝑥), (3.1)

we obtain the following system of linear equations forΨ ∈ ℂ2 and
Ω ∈ ℂ: {

Ψ′(𝑥) = 𝐿(𝑈, 𝑉, 𝜆)Ψ(𝑥),

ΩΨ(𝑥) = 𝑀(𝑈, 𝑉, 𝜆)Ψ(𝑥) − 𝑖

2
𝜔𝜎3Ψ(𝑥).

(3.2)

The following proposition establishes the admissible values of Ω

obtained from the characteristic function 𝑃(𝜆) given by (1.8).

Proposition 3.1. Let (𝑈, 𝑉) be solutions of (2.1) with𝐻(𝑈, 𝑉) =
𝑏 in (2.3) and 𝐹(𝑈, 𝑉) = 0 in (2.4). Then, Ω is found from the
characteristic equation

4Ω2 + 𝑃(𝜆) = 0, (3.3)

where 𝑃(𝜆) is given by (1.8).

Proof. Since the second equation of system (3.2) is a linear
homogeneous equation, there is a nonzero solution forΨ(𝑥) ∈ ℂ2

if and only if

||||||||||
− 𝑖

2

(
𝜆2 + 1

𝜆2

)
+ 𝑖

2
(|𝑈|2 + |𝑉|2) + 𝑖𝜔 + 2Ω

𝑖

𝜆
𝑈̄ + 𝑖𝜆𝑉̄

𝑖

𝜆
𝑈 + 𝑖𝜆𝑉

𝑖

2

(
𝜆2 + 1

𝜆2

)
− 𝑖

2
(|𝑈|2 + |𝑉|2) − 𝑖𝜔 + 2Ω

||||||||||
= 0.

The characteristic equation is written in the form (3.3) with

𝑃(𝜆) = 1

4

(
𝜆2 + 1

𝜆2
− |𝑈|2 − |𝑉|2 − 2𝜔

)2

+
(

1

𝜆
𝑈̄ + 𝜆𝑉̄

)(
1

𝜆
𝑈 + 𝜆𝑉

)

= 1

4

(
𝜆2 + 1

𝜆2
− 2𝜔

)2

+ 1

2

(
𝜆2 − 1

𝜆2

)
(|𝑉|2 − |𝑈|2)

+ 1

4
(|𝑈|2 + |𝑉|2)

2 + 𝜔(|𝑈|2 + |𝑉|2) + 𝑉̄𝑈 + 𝑉𝑈̄.

If 𝐻(𝑈, 𝑉) = 𝑏 and 𝐹(𝑈, 𝑉) = 0, then 𝑃(𝜆) is given by (1.8). □

To derive the spectral stability problem for the standing waves of
the form (1.6), we consider the time-dependent MTM system (1.1)
and substitute the perturbation in the form

𝑢(𝑥, 𝑡) = e−𝑖𝜔𝑡[𝑈(𝑥) + 𝔲(𝑥, 𝑡)], 𝑣(𝑥, 𝑡) = e−𝑖𝜔𝑡[𝑉(𝑥) + 𝔳(𝑥, 𝑡)].

Perturbation terms satisfy the linearized equations of motion

⎧⎪⎪⎨⎪⎪⎩

(𝑖𝜕𝑡 + 𝑖𝜕𝑥 + 𝜔 + |𝑉|2)𝔲 + (1 + 𝑈𝑉̄)𝔳 + 𝑈𝑉𝔳 = 0,

(−𝑖𝜕𝑡 − 𝑖𝜕𝑥 + 𝜔 + |𝑉|2)𝔲 + (1 + 𝑈̄𝑉)𝔳 + 𝑈̄𝑉̄𝔳 = 0,

(𝑖𝜕𝑡 − 𝑖𝜕𝑥 + 𝜔 + |𝑈|2)𝔳 + (1 + 𝑈̄𝑉)𝔲 + 𝑈𝑉𝔲 = 0,

(−𝑖𝜕𝑡 + 𝑖𝜕𝑥 + 𝜔 + |𝑈|2)𝔳 + (1 + 𝑈𝑉)𝔲 + 𝑈̄𝑉̄𝔲 = 0.

(3.4)

Normal modes are obtained after the separation of variables with

𝔲(𝑥, 𝑡) = eΛ𝑡𝑢1(𝑥), 𝔲(𝑥, 𝑡) = eΛ𝑡𝑢2(𝑥),

𝔳(𝑥, 𝑡) = eΛ𝑡𝑣1(𝑥), 𝔳(𝑥, 𝑡) = eΛ𝑡𝑣2(𝑥),

where 𝑢2(𝑥) ≠ 𝑢̄1(𝑥) and 𝑣2(𝑥) ≠ 𝑣1(𝑥) if Λ ∉ ℝ. The normal
modes are found from the spectral stability problem, which
follows from the linearized equations (3.4),

⎧⎪⎪⎨⎪⎪⎩

( 𝑖𝜕𝑥 + 𝜔 + |𝑉|2)𝑢1 + (1 + 𝑈𝑉̄)𝑣1 + 𝑈𝑉𝑣2 = −𝑖Λ𝑢1,

(−𝑖𝜕𝑥 + 𝜔 + |𝑉|2)𝑢2 + (1 + 𝑈̄𝑉)𝑣2 + 𝑈̄𝑉̄𝑣1 = 𝑖Λ𝑢2,

(−𝑖𝜕𝑥 + 𝜔 + |𝑈|2)𝑣1 + (1 + 𝑈̄𝑉)𝑢1 + 𝑈𝑉𝑢2 = −𝑖Λ𝑣1,

( 𝑖𝜕𝑥 + 𝜔 + |𝑈|2)𝑣2 + (1 + 𝑈𝑉̄)𝑢2 + 𝑈̄𝑉̄𝑢1 = 𝑖Λ𝑣2.

(3.5)

Since |𝑈| = |𝑉| is periodic in 𝑥, we use Floquet’s theorem
and define the admissible values of Λ from bounded solutions
(𝑢1, 𝑢2, 𝑣1, 𝑣2) ∈ 𝐿∞(ℝ, ℂ4). If the admissible values of Λ include
points with Re(Λ) > 0, then the standing wave of the form (1.6) is
called spectrally unstable. Otherwise, it is called spectrally stable.

The central part of the spectral stability theory in the integrable
systems is the relation between solutions of the linearized system
(3.5) and the squared eigenfunctions satisfying the linear system
(3.2). This relation for the solitary wave solutions was found
by Kaup and Lakoba in [18, eq. 18]. The following proposition
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reproduces this result with a straightforward verification
included for the sake of completeness.

Proposition 3.2. Let Ψ = (𝑝, 𝑞)T be the eigenvector of the linear
system (3.2) with someΩ ∈ ℂ. Then,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢1 =
1

𝜆
𝑞2 + 𝑈𝑝𝑞,

𝑢2 =
1

𝜆
𝑝2 − 𝑈̄𝑝𝑞,

𝑣1 = −𝜆𝑞2 − 𝑉𝑝𝑞,

𝑣2 = −𝜆𝑝2 + 𝑉̄𝑝𝑞

(3.6)

is the solution of the linearized MTM system (3.5) with

Λ = 2Ω = ±𝑖
√

𝑃(𝜆). (3.7)

Proof. LetΨ = (𝑝, 𝑞)T be the eigenvector of the linear system (3.2)
for someΩ ∈ ℂ. By adding and subtracting the two equations, we
obtain two linear systems

𝑖

(
𝑝′

𝑞′

)
−
⎛⎜⎜⎝

𝜔

2
0

0 −𝜔

2

⎞⎟⎟⎠
(

𝑝

𝑞

)
+ 𝑖Ω

(
𝑝

𝑞

)
=

⎛⎜⎜⎜⎝
|𝑉|2

2
− 𝜆2

2
𝜆𝑉̄

𝜆𝑉
𝜆2

2
− |𝑉|2

2

⎞⎟⎟⎟⎠
(

𝑝

𝑞

)
,

(3.8)
and

𝑖

(
𝑝′

𝑞′

)
+

( 𝜔

2
0

0 − 𝜔

2

)(
𝑝

𝑞

)
− 𝑖Ω

(
𝑝

𝑞

)
=

⎛⎜⎜⎝
− |𝑈|2

2
+ 1

2𝜆2
− 1

𝜆
𝑈̄

− 1

𝜆
𝑈

|𝑈|2
2

− 1

2𝜆2

⎞⎟⎟⎠
(

𝑝

𝑞

)
.

(3.9)
Multiplying the first equations in systems (3.8) and (3.9) by 2𝑝 and
the second equations in systems (3.8) and (3.9) by 2𝑞 yields

⎧⎪⎪⎨⎪⎪⎩

𝑖(𝑝2)′ − 𝜔𝑝2 − |𝑉|2𝑝2 + 2𝑖Ω𝑝2 = −𝜆2𝑝2 + 2𝜆𝑉̄𝑝𝑞,

𝑖(𝑞2)′ + 𝜔𝑞2 + |𝑉|2𝑞2 + 2𝑖Ω𝑞2 = 𝜆2𝑞2 + 2𝜆𝑉𝑝𝑞,

𝑖(𝑝2)′ + 𝜔𝑝2 + |𝑈|2𝑝2 − 2𝑖Ω𝑝2 = 1

𝜆2
𝑝2 − 2

𝜆
𝑈̄𝑝𝑞,

𝑖(𝑞2)′ − 𝜔𝑞2 − |𝑈|2𝑞2 − 2𝑖Ω𝑞2 = − 1

𝜆2
𝑞2 − 2

𝜆
𝑈𝑝𝑞.

(3.10)

Multiplying the first equations in systems (3.8) and (3.9) by 𝑞 and
the second equations in systems (3.8) and (3.9) by 𝑝, and adding
them together, yields{

𝑖(𝑝𝑞)′ = −2𝑖Ω𝑝𝑞 + 𝜆(𝑉̄𝑞2 + 𝑉𝑝2),

𝑖(𝑝𝑞)′ = 2𝑖Ω𝑝𝑞 − 1

𝜆
(𝑈̄𝑞2. + 𝑈𝑝2).

(3.11)

By using (2.1) and (3.11), we obtain

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑖(𝑈𝑝𝑞)′ + 𝜔(𝑈𝑝𝑞) + |𝑉|2(𝑈𝑝𝑞) + 2𝑖Ω𝑈𝑝𝑞 = 𝜆𝑈𝑉̄𝑞2 + 𝜆𝑈𝑉𝑝2 − 𝑉𝑝𝑞,

𝑖(𝑈̄𝑝𝑞)′ − 𝜔(𝑈̄𝑝𝑞) − |𝑉|2(𝑈̄𝑝𝑞) + 2𝑖Ω𝑈̄𝑝𝑞 = 𝜆𝑈̄𝑉̄𝑞2 + 𝜆𝑈̄𝑉𝑝2 + 𝑉̄𝑝𝑞,

𝑖(𝑉𝑝𝑞)′ − 𝜔(𝑉𝑝𝑞) − |𝑈|2(𝑉𝑝𝑞) − 2𝑖Ω𝑉𝑝𝑞 = −
(

𝑉𝑈̄

𝜆
𝑞2 + 𝑉𝑈

𝜆
𝑝2

)
+ 𝑈𝑝𝑞,

𝑖(𝑉̄𝑝𝑞)′ + 𝜔(𝑉̄𝑝𝑞) + |𝑈|2(𝑉̄𝑝𝑞) − 2𝑖Ω𝑉̄𝑝𝑞 = −
(

𝑉̄𝑈̄

𝜆
𝑞2 + 𝑉̄𝑈

𝜆
𝑝2

)
− 𝑈̄𝑝𝑞.

(3.12)
We are now ready to confirm all four equations of the linearized
MTM system (3.5) from four equations of (3.10) and (3.12):

(𝑖𝜕𝑥 + 𝜔 + |𝑉|2)( 1

𝜆
𝑞2 + 𝑈𝑝𝑞) = −

2𝑖Ω𝑞2

𝜆
− 2𝑖Ω𝑈𝑝𝑞 + 𝜆𝑞2

+ 𝑉𝑝𝑞 + 𝜆𝑈𝑉̄𝑞2 + 𝜆𝑈𝑉𝑝2

= −2𝑖Ω𝑢1 − 𝑣1 − 𝑈𝑉̄𝑣1 − 𝑈𝑉𝑣2,

(𝑖𝜕𝑥 − 𝜔 − |𝑉|2)( 1

𝜆
𝑝2 − 𝑈̄𝑝𝑞

)
= −

2𝑖Ω𝑝2

𝜆
+ 2𝑖Ω𝑈̄𝑝𝑞 − 𝜆𝑝2

+ 𝑉̄𝑝𝑞 − 𝜆𝑈̄𝑉̄𝑞2 − 𝜆𝑈̄𝑉𝑝2

= −2𝑖Ω𝑢2 + 𝑣2 + 𝑈̄𝑉̄𝑣1 + 𝑈̄𝑉𝑣2,

(𝑖𝜕𝑥 − 𝜔 − |𝑈|2)(𝜆𝑞2 + 𝑉𝑝𝑞) = 2𝑖𝜆Ω𝑞2 + 2𝑖Ω𝑉𝑝𝑞 − 1

𝜆
𝑞2 − 𝑈𝑝𝑞

−
(

𝑉𝑈̄

𝜆
𝑞2 + 𝑉𝑈

𝜆
𝑝2

)
= −2𝑖Ω𝑣1 − 𝑢1 − 𝑉𝑈̄𝑢1 − 𝑉𝑈𝑢2,

(𝑖𝜕𝑥 + 𝜔 + |𝑈|2)(−𝜆𝑝2 + 𝑉̄𝑝𝑞) = −2𝑖𝜆Ω𝑝2 + 2𝑖Ω𝑉̄𝑝𝑞 − 1

𝜆
𝑝2

+ 𝑈̄𝑝𝑞 −
(

𝑉̄𝑈̄

𝜆
𝑞2 + 𝑉̄𝑈

𝜆
𝑝2

)
= 2𝑖Ω𝑣2 − 𝑢2 − 𝑉̄𝑈̄𝑢1 − 𝑉̄𝑈𝑢2.

This yields (3.5) with Λ = 2Ω. Then, 2Ω = ±𝑖
√

𝑃(𝜆) follows from
(3.3). □

Remark 3.1. There are two particular solutionsΨ = (𝑝1, 𝑞1)
𝑇 and

Ψ = (𝑝2, 𝑞2)
𝑇 of the second-order system of differential equations

Ψ′(𝑥) = 𝐿(𝑈, 𝑉, 𝜆)Ψ(𝑥)

for each 𝜆 ∈ ℂ. By the linear superposition principle, combina-
tions of the two solutions give three particular solutions of the
fourth-order system (3.5) given by (3.6). Completeness of squared
eigenfunctions in the case of decaying potentials (𝑈, 𝑉) has been
proven for the MTM system (1.1) in [18], see a general theory of
completeness of squared eigenfunctions in integrable systems in
[59, Sections 2.6–2.7]. In the case of periodic potentials (𝑈, 𝑉),
completeness of squared eigenfunctions is still an open question,
see discussion in [60].

4 Properties of Eigenvalues of Lax and Stability
Spectra

Here we consider solutions of the spectral problem given by the
first equation of system (3.2). If Ψ = (𝑝, 𝑞)𝑇 , then the spectral
problem can be written explicitly as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑝′(𝑥) = 𝑖

4

(
𝜆2 − 1

𝜆2

)
𝑝 − 𝑖𝜆

2
𝑉̄(𝑥)𝑞 + 𝑖

2𝜆
𝑈̄(𝑥)𝑞

+ 𝑖

4
(|𝑈(𝑥)|2 − |𝑉(𝑥)|2)𝑝,

𝑞′(𝑥) = − 𝑖

4

(
𝜆2 − 1

𝜆2

)
𝑞 − 𝑖𝜆

2
𝑉(𝑥)𝑝 + 𝑖

2𝜆
𝑈(𝑥)𝑝

− 𝑖

4
(|𝑈(𝑥)|2 − |𝑉(𝑥)|2)𝑞.

(4.1)
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The Lax spectrum of the spectral problem (4.1) is defined as
the set of admissible values of 𝜆 for which there exists a
bounded solution (𝑝, 𝑞) ∈ 𝐿∞(ℝ, ℂ2). By Proposition 3.2, this
solution of the spectral problem (4.1) defines a bounded solution
(𝑢1, 𝑢2, 𝑣1, 𝑣2) ∈ 𝐿∞(ℝ, ℂ4) of the spectral stability problem (3.5)
and hence the stability spectrum of the standing periodic waves.

If 𝜁(𝑥) = 𝜁(𝑥 + 𝐿) is the 𝐿-periodic solution of system (2.6), then
𝜃(𝑥) is either 𝐿-periodic or monotone, see the phase portraits in
the proof of Proposition 2.3. The profiles (𝑈, 𝑉) in (2.5) are 𝐿-
periodic in the former case and 𝐿-antiperiodic in the latter case.
In both cases, the Floquet’s theorem can be used either with the
period 𝐿 or with the period 2𝐿 to get all bounded solutions (𝑝, 𝑞)

of the spectral problem (4.1) with 𝜆 in the Lax spectrum. Each
admissible value of 𝜆 in the Lax spectrumwill be referred to as an
eigenvalue for simplicity.

The following proposition specifies symmetries of eigenvalues in
the Lax spectrum.

Proposition 4.1. Let (𝑈, 𝑉) be a solution of (2.1) and assume
that 𝜆 ∈ ℂ is an eigenvalue of the spectral problem (4.1) with the
eigenvector Ψ = (𝑝, 𝑞)𝑇 . Then

∙ −𝜆 is also an eigenvalue with the eigenvector Ψ = (𝑝,−𝑞)𝑇 .

∙ 𝜆̄ is also an eigenvalue with the eigenvector Ψ = (𝑞̄,−𝑝̄)𝑇 .

∙ −𝜆̄ is also an eigenvalue with the eigenvector Ψ = (𝑞̄, 𝑝̄)𝑇 .

If 𝑉 = 𝑈̄, then 1

𝜆
is also an eigenvalue with the eigenvector Ψ =

(𝑞,−𝑝)𝑇 .

Proof. Transformation 𝜆 → −𝜆 and (𝑝, 𝑞) → (𝑝,−𝑞) leaves
system (4.1) invariant, which yields the first assertion.

Taking complex conjugate of system (4.1) yields

⎧⎪⎪⎨⎪⎪⎩
𝑝̄′(𝑥) = − 𝑖

4

(
𝜆̄2 − 1

𝜆̄2

)
𝑝̄ + 𝑖𝜆̄

2
𝑉𝑞̄ − 𝑖

2𝜆̄
𝑈𝑞̄ − 𝑖

4
(|𝑈|2 − |𝑉|2)𝑝̄,

𝑞̄′(𝑥) = 𝑖

4

(
𝜆̄2 − 1

𝜆̄2

)
𝑞̄ + 𝑖𝜆̄

2
𝑉̄𝑝̄ − 𝑖

2𝜆̄
𝑈̄𝑝̄ + 𝑖

4
(|𝑈|2 − |𝑉|2)𝑞̄.

Hence, (𝑞̄,−𝑝̄)𝑇 is also a solution of (4.1) with 𝜆 replaced by 𝜆̄,
which yields the second assertion.

The third assertion is a composition of the first two.

If 𝑉 = 𝑈̄, then using (4.1) and replacing 𝜆 with 1

𝜆
yields

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑞′(𝑥) = 𝑖

4

(
𝜆2 − 1

𝜆2

)
𝑞 − 𝑖

2𝜆
𝑉𝑝 + 𝑖𝜆

2
𝑈𝑝

= 𝑖

4

(
𝜆2 − 1

𝜆2

)
𝑞 + 𝑖𝜆

2
𝑉̄𝑝 − 𝑖

2𝜆
𝑈̄𝑝,

𝑝′(𝑥) = − 𝑖

4

(
𝜆2 − 1

𝜆2

)
𝑝 − 𝑖

2𝜆
𝑉̄𝑞 + 𝑖𝜆

2
𝑈̄𝑞

= − 𝑖

4

(
𝜆2 − 1

𝜆2

)
𝑝 + 𝑖𝜆

2
𝑉𝑞 − 𝑖

2𝜆
𝑈𝑞.

Hence, (𝑞,−𝑝)𝑇 is also a solution of (4.1) with 𝜆 replaced by 1

𝜆
,

which yields the final assertion. □

Corollary 4.1. If 𝜆 ∈ ℝ∖{0} is an eigenvalue, then it is at least
double with two eigenvectors Ψ = (𝑝, 𝑞)𝑇 and Ψ = (𝑞̄,−𝑝̄)𝑇 .

Proof. If 𝜆 ∈ ℝ∖{0} is a simple eigenvalue, then the symmetry in
Proposition 4.1 implies that there is a constant 𝑐1 ∈ ℂ such that(

𝑝

𝑞

)
= 𝑐1

(
𝑞̄

−𝑝̄

)
,

which yields 𝑝 = 𝑐1𝑞̄, 𝑞̄ = −𝑐1𝑝, and hence |𝑐1|2 = −1, a contra-
diction. Therefore, 𝜆 ∈ ℝ∖{0} is at least a double eigenvalue. □

Corollary 4.2. If 𝜆 ∈ 𝑖ℝ∖{0} is an eigenvalue, then it is simple
if and only if the eigenvector Ψ = (𝑝, 𝑞)𝑇 satisfies 𝑝 = 𝑐2𝑞̄ for some
constant 𝑐2 ∈ ℂ such that |𝑐2| = 1.

Proof. If 𝜆 ∈ 𝑖ℝ∖{0} is a simple eigenvalue, then the symmetry in
Proposition 4.1 implies that there is a constant 𝑐2 ∈ ℂ such that(

𝑝

𝑞

)
= 𝑐2

(
𝑞̄

𝑝̄

)
,

which yields 𝑝 = 𝑐2𝑞̄, 𝑞̄ = 𝑐2𝑝, and hence |𝑐2|2 = 1. This gives the
criterion for the eigenvalue 𝜆 ∈ 𝑖ℝ∖{0} to be simple. □

Next we relate the Lax spectrum of the spectral problem (4.1) and
the stability spectrumof the linearizedMTMsystem (3.5) by using
(3.7) rewritten again as

Λ = ±𝑖
√

𝑃(𝜆). (4.2)

It follows from (1.8) that 𝑃(𝜆) inherits the symmetry of Proposi-
tion 4.1 since 𝑉 = 𝑈̄. If 𝜆 ∈ ℂ is a root of 𝑃(𝜆), so are −𝜆, 𝜆−1, and
−𝜆−1. Hence, let us introduce 𝜆1, 𝜆2 ∈ ℂ and factorize 𝑃(𝜆) by its
roots {±𝜆1,±𝜆2,±𝜆−1

1 ,±𝜆−1
2 }

𝑃(𝜆) = 1

4𝜆4

(
𝜆2 − 𝜆2

1

)(
𝜆2 − 𝜆−2

1

)(
𝜆2 − 𝜆2

2

)(
𝜆2 − 𝜆−2

2

)
. (4.3)

The correspondence between (1.8) and (4.3) implies the relations
between parameters (𝑏, 𝜔) ∈ ℝ2 and (𝜆1, 𝜆2) ∈ ℂ2:{

4𝜔 = 𝜆2
1 + 𝜆−2

1 + 𝜆2
2 + 𝜆−2

2 ,

4𝜔2 − 4𝑏 =
(
𝜆2

1 + 𝜆−2
1

)(
𝜆2

2 + 𝜆−2
2

)
.

(4.4)

Remark 4.1. If 𝜆1 ∈ ℂ∖(ℝ ∪ 𝑖ℝ ∪ 𝕊1), then 𝜆2 = 𝜆̄1 by the
symmetry of Proposition 4.1. Also if 𝜆1 ∈ ℝ such that |𝜆1| ≠ 1,
then 𝜆2 = 𝜆1 by the symmetry of Corollary 4.1. If either 𝜆1 ∈ 𝑖ℝ

or 𝜆1 ∈ 𝕊1, then 𝜆2 may be unrelated to 𝜆1. Further details on the
distribution of roots of 𝑃(𝜆) in relation to the periodic solutions of
system (2.1) with𝑉 = 𝑈̄ and parameters (𝑏, 𝜔) ∈ ℝ2 will be given
in Section 6.

The following three propositions state some general results on the
stability spectrumΛ in (4.2) from the roots of 𝑃(𝜆) in (4.3) and the
location of the Lax spectrum of 𝜆.

Proposition 4.2. Assume that 𝜆1, 𝜆2 ∉ ℝ in (4.3). If 𝜆 ∈ ℝ, then
Λ ∈ 𝑖ℝ.

9 of 24

 14679590, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12789 by D
m

itry Pelinovsky - M
cm

aster U
niversity L

ibrary C
o , W

iley O
nline L

ibrary on [27/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Proof. If 𝜆1, 𝜆2 ∉ ℝ, then 𝑃(𝜆) has no zeros for 𝜆 ∈ ℝ and 𝑃(𝜆) >

0 for every 𝜆 ∈ ℝ from the dominant term𝑃(𝜆) ∼
1

4
𝜆4 as |𝜆| → ∞.

It follows from (4.2) that Λ ∈ 𝑖ℝ for 𝑃(𝜆) > 0. □

Proposition 4.3. If 𝜆 ∈ 𝑖ℝ, thenΛ ∈ 𝑖ℝ, provided the following
conditions on the roots 𝜆1, 𝜆2 in (4.3) are satisfied:

∙ 𝜆1, 𝜆2 ∈ ℂ∖(ℝ ∪ 𝑖ℝ).

∙ 𝜆1 ∈ 𝕊1 and 𝜆2 = 𝑖𝛽2 with 𝛽2 ≥ 1 under further restriction:

Im(λ) ∈ (−∞,−β2] ∪ [−β−1
2 , β−1

2 ] ∪ [β2,∞). (4.5)

∙ 𝜆1 = 𝑖𝛽1 and 𝜆2 = 𝑖𝛽2 with 𝛽1 ≥ 𝛽2 ≥ 1 under further restric-
tion:

Im(λ) ∈ (−∞,−β1] ∪ [−β2,−β−1
2 ] ∪ [−β−1

1 , β−1
1 ] ∪ [β−1

2 , β2] ∪ [β1,∞).

(4.6)

Proof. If 𝜆 ∈ 𝑖ℝ, we use 𝜆 = 𝑖𝛽 and rewrite 𝑃(𝜆) as

𝑃(𝑖𝛽) = 1

4𝛽4
(𝛽2 + 𝜆2

1)(𝛽
2 + 𝜆−2

1 )(𝛽2 + 𝜆2
2)(𝛽

2 + 𝜆−2
2 ).

If 𝜆1, 𝜆2 ∈ ℂ∖(ℝ ∪ 𝑖ℝ), then 𝑃(𝑖𝛽) has no roots for 𝛽 ∈ ℝ and
𝑃(𝑖𝛽) > 0 for every 𝛽 ∈ ℝ from the dominant term 𝑃(𝑖𝛽) ∼

1

4
𝛽4

as |𝛽| → ∞. It follows from (4.2) that Λ ∈ 𝑖ℝ for 𝑃(𝑖𝛽) > 0.

If 𝜆1 ∈ 𝕊 and 𝜆2 = 𝑖𝛽2 with 𝛽2 ≥ 1, then

𝑃(𝑖𝛽) = 1

4𝛽4
(𝛽2 + 𝜆2

1)(𝛽
2 + 𝜆−2

1 )(𝛽2 − 𝛽2
2)(𝛽2 − 𝛽−2

2 ).

We have 𝑃(𝑖𝛽) ≥ 0 if 𝛽2 ≥ 𝛽2
2 or 0 ≤ 𝛽2 ≤ 𝛽−2

2 , which implies Λ ∈

𝑖ℝ under the restriction (4.5).

If 𝜆1 = 𝑖𝛽1 and 𝜆2 = 𝑖𝛽2 with 𝛽1 ≥ 𝛽2 ≥ 1, then

𝑃(𝑖𝛽) = 1

4𝛽4
(𝛽2 − 𝛽2

1)(𝛽2 − 𝛽−2
1 )(𝛽2 − 𝛽2

2)(𝛽2 − 𝛽−2
2 ).

We have 𝑃(𝑖𝛽) ≥ 0 if 𝛽2 ≥ 𝛽2
1 , or 𝛽−2

2 ≤ 𝛽2 ≤ 𝛽2
2 , or 0 ≤ 𝛽2 ≤ 𝛽−2

1 ,
which implies Λ ∈ 𝑖ℝ under the restriction (4.6). □

Proposition 4.4. Assume that 𝜆1 = 𝛼1e
𝜋𝑖

4 , 𝜆2 = 𝛼1e
− 𝜋𝑖

4 with
𝛼1 > 1. If 𝜆 = ±𝛼e±

𝜋𝑖

4 with 𝛼−1
1 ≤ 𝛼 ≤ 𝛼1, then Λ ∈ 𝑖ℝ.

Proof. We rewrite (4.3) as

𝑃
(
±𝛼e±

𝜋𝑖

4

)
= − 1

4𝛼4
(𝛼4 − 𝛼4

1)(𝛼4 − 𝛼−4
1 ).

We have 𝑃(𝜆) ≥ 0 if 𝛼−4
1 ≤ 𝛼4 ≤ 𝛼4

1 , which is equivalent to 𝛼−1
1 ≤

𝛼 ≤ 𝛼1 if 𝛼 > 0. For this 𝜆, we have Λ ∈ 𝑖ℝ. □

5 Lax and Stability Spectra for
Constant-Amplitude Solutions

Here, we compute explicitly the Lax and stability spectra for the
constant-amplitude solutions which correspond to the equilib-
rium points P± in Proposition 2.1. The exact results are used for
comparison with the numerical results to control accuracy of

numerical approximations.Wedonot compute theLax and stabil-
ity spectra for the zero-amplitude solutions which correspond to
the equilibrium points Q± since the spectral stability of the zero-
amplitude solutions is well-known for the MTM system (1.1) and
the relevant Lax and stability spectra can be easily computed in
the exact form.

5.1 Constant-Amplitude Solution for 𝐏−

By Proposition 2.2, the equilibrium point is a center for 𝜔 ∈

(−∞, 1), see Figures 3A, 4A, and 5. It is located in𝕋 × ℝ+ along the
red curve on Figure 1, where 𝑏 = (1 − 𝜔)2 and 𝜔 ∈ (−∞, 1]. Since
𝜃 = 𝜋 and 𝜉 = 1 − 𝜔 by Proposition 2.1, the constant-amplitude
solution (2.5) is given by

𝑈 = 𝑖
√

1 − 𝜔, 𝑉 = −𝑖
√

1 − 𝜔, 𝜔 ∈ (−∞, 1). (5.1)

The Lax spectrum for the admissible solutions of the spectral
problem (4.1) with (𝑈, 𝑉) in (5.1) is given by the following
proposition.

Proposition 5.1. Let (𝑈, 𝑉) be given by (5.1) and consider
bounded solutions of the spectral problem (4.1).

∙ If 𝜔 ∈ (−∞, 0], then the Lax spectrum is given by

ℝ ∪
{
𝑖𝛽 ∶ 𝛽 ∈ (−∞,−𝛽2] ∪ [−𝛽−1

2 , 𝛽−1
2 ] ∪ [𝛽2,+∞)

}
∪ 𝕊1∖{0},

where 𝛽2 ∶=
√

1 − 𝜔 +
√
−𝜔.

∙ If 𝜔 ∈ (0, 1), then the Lax spectrum is given by

ℝ ∪ 𝑖ℝ ∪
{
𝑒𝑖𝛼 ∶ 𝛼 ∈ [−𝛼1, 𝛼1] ∪ [𝜋 − 𝛼1, 𝜋 + 𝛼1]

}
∖{0},

where 𝛼1 ∶= arccos
√

𝜔.

Proof. The spectral problem for the Lax spectrum is obtained by
substituting (5.1) into (4.1),

⎧⎪⎨⎪⎩
𝑝′(𝑥) = 𝑖

4
(𝜆2 − 𝜆−2)𝑝 + 1

2
(𝜆 + 𝜆−1)

√
1 − 𝜔𝑞,

𝑞′(𝑥) = − 𝑖

4
(𝜆2 − 𝜆−2)𝑞 − 1

2
(𝜆 + 𝜆−1)

√
1 − 𝜔𝑝.

(5.2)

Looking for nonzero bounded solutions of (5.2) in the form
𝑝(𝑥) = 𝑝̂e𝑖𝜅𝑥, 𝑞(𝑥) = 𝑞̂e𝑖𝜅𝑥 with 𝜅 ∈ ℝ and constant (𝑝̂, 𝑞̂) ∈ ℂ2,
we obtain the characteristic equation in the form

||||||||
1

4
(𝜆2 − 𝜆−2) − 𝜅 − 𝑖

2
(𝜆 + 𝜆−1)

√
1 − 𝜔

𝑖

2
(𝜆 + 𝜆−1)

√
1 − 𝜔 −1

4
(𝜆2 − 𝜆−2) − 𝜅

|||||||| = 0.

Expansion of the determinant yields

𝜅2 = 1

16
(𝜆2 − 𝜆−2)2 + 1

4
(𝜆 + 𝜆−1)2(1 − 𝜔).

Next we analyze admissible values of 𝜆 ∈ ℂ∖{0} for which 𝜅 ∈ ℝ.

∙ For every 𝜆 ∈ ℝ and 𝜔 ∈ (−∞, 1), we have 𝜅 ∈ ℝ.
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∙ For 𝜆 ∈ 𝑖ℝ, we set 𝜆 = 𝑖𝛽 with 𝛽 ∈ ℝ and obtain

𝜅 = ±1

4
(𝛽 − 𝛽−1)

√
(𝛽 + 𝛽−1)2 − 4(1 − 𝜔).

Since (𝛽 + 𝛽−1)2 ≥ 4 for any 𝛽 ∈ ℝ, we have 𝜅 ∈ ℝ for every
𝛽 ∈ ℝ if 𝜔 ∈ (0, 1). On the other hand, if 𝜔 ∈ (−∞, 0], then
𝜅 ∈ ℝ if and only if 𝛽 ∈ (−∞,−𝛽2] ∪ [−𝛽−1

2 , 𝛽−1
2 ] ∪ [𝛽2,∞),

where 𝛽2 ∶=
√

1 − 𝜔 +
√
−𝜔.

∙ For 𝜆 ∈ 𝕊1, we set 𝜆 = e𝑖𝛼 with 𝛼 ∈ [0, 2𝜋] and obtain

𝜅 = ± cos 𝛼
√

cos2 𝛼 − 𝜔.

If 𝜔 ∈ (−∞, 0], then 𝜅 ∈ ℝ for any 𝛼 ∈ [0, 2𝜋]. On the other
hand, if 𝜔 ∈ (0, 1), then 𝜅 ∈ ℝ for cos2 𝛼 ≥ 𝜔, which yields
𝛼 ∈ [−𝛼1, 𝛼1] ∪ [𝜋 − 𝛼1, 𝜋 + 𝛼1] with 𝛼1 ∶= arccos

√
𝜔.

In addition, it follows that 𝜅 ∉ ℝ if 𝜆 ∈ ℂ∖(ℝ ∪ 𝑖ℝ ∪ 𝕊1). □

The end points of the Lax spectrum in Proposition 5.1 are related
to the roots of 𝑃(𝜆) in (1.8) according to the following corollary.

Corollary 5.1. Let (𝑈, 𝑉) be given by (5.1) and consider roots of
𝑃(𝜆) in (1.8).

∙ If 𝜔 ∈ (−∞, 0], then roots of 𝑃(𝜆) are {±1,±1,±𝛽2𝑖,±𝛽−1
2 𝑖},

where 𝛽2 ∶=
√

1 − 𝜔 +
√
−𝜔.

∙ If𝜔 ∈ (0, 1), then roots of 𝑃(𝜆) are {±1,±1,±e𝑖𝛼1 ,±e−𝑖𝛼1 }, where
𝛼1 ∶= arccos

√
𝜔.

Proof. We obtain from (4.4) with 𝑏 = (1 − 𝜔)2 that{
4𝜔 = 𝜆2

1 + 𝜆−2
1 + 𝜆2

2 + 𝜆−2
2 ,

8𝜔 − 4 = (𝜆2
1 + 𝜆−2

1 )(𝜆2
2 + 𝜆−2

2 ).

Eliminating either 𝜆2
1 + 𝜆−2

1 or 𝜆2
2 + 𝜆−2

2 yields a quadratic equa-
tion with two roots at

𝜆2
1 + 𝜆−2

1 = 2, 𝜆2
2 + 𝜆−2

2 = 4𝜔 − 2.

Hence, we have 𝜆1 = 1 and either 𝜆2 = 𝑖𝛽2 for 𝜔 ∈ (−∞, 0]

with 𝛽2 ∶=
√

1 − 𝜔 +
√
−𝜔 or 𝜆2 = e𝑖𝛼1 for 𝜔 ∈ (0, 1) with 𝛼1 ∶=

arccos(𝜔). This defines all roots of𝑃(𝜆) in viewof the factorization
formula (4.3). □

Remark 5.1. The part of the Lax spectrumof Proposition 5.1 on 𝑖ℝ

satisfy the stability restriction (4.5) of Proposition 4.3. However,
the other part of the Lax spectrum on 𝕊1 produces the unstable
spectrum of the linearized MTM system (3.5) for the constant-
amplitude solution (5.1). The end points of the Lax spectrum on
either 𝑖ℝ or 𝕊1 are given by roots of 𝑃(𝜆) in Corollary 5.1.

5.2 Constant-Amplitude Solution for 𝐏+

By Proposition 2.2, the equilibrium point is a saddle for 𝜔 ∈

(−∞,−1), see Figure 3A. It is located in 𝕋 × ℝ+ along the
blue curve on Figure 1, where 𝑏 = (1 + 𝜔)2 and 𝜔 ∈ (−∞,−1].
Since 𝜃 = 0 and 𝜉 = −(1 + 𝜔) by Proposition 2.1, the constant-

amplitude solution (2.5) is given by

𝑈 =
√
−(1 + 𝜔), 𝑉 =

√
−(1 + 𝜔), 𝜔 ∈ (−∞,−1). (5.3)

The Lax spectrum for the admissible solutions of the spectral
problem (4.1) with (𝑈, 𝑉) in (5.3) is given by the following
proposition.

Proposition 5.2. Let (𝑈, 𝑉) be given by (5.3) and consider
bounded solutions of the spectral problem (4.1). If 𝜔 ∈ (−∞,−1),
then the Lax spectrum is given by

ℝ ∪
{
𝑖𝛽 ∶ 𝛽 ∈ (−∞,−𝛽2] ∪ [−𝛽−1

2 , 𝛽−1
2 ] ∪ [𝛽2,+∞)

}
∖{0},

where 𝛽2 ∶=
√
−(1 + 𝜔) +

√
−𝜔.

Proof. The spectral problem for the Lax spectrum is obtained by
substituting (5.3) into (4.1),

⎧⎪⎨⎪⎩
𝑝′(𝑥) = 𝑖

4
(𝜆2 − 𝜆−2)𝑝 − 𝑖

2
(𝜆 − 𝜆−1)

√
−(1 + 𝜔)𝑞,

𝑞′(𝑥) = − 𝑖

4
(𝜆2 − 𝜆−2)𝑞 − 1

2
(𝜆 − 𝜆−1)

√
−(1 + 𝜔)𝑝.

(5.4)

Looking for nonzero bounded solutions of (5.4) in the form
𝑝(𝑥) = 𝑝̂e𝑖𝜅𝑥, 𝑞(𝑥) = 𝑞̂e𝑖𝜅𝑥 with 𝜅 ∈ ℝ and constant (𝑝̂, 𝑞̂) ∈ ℂ2,
we obtain the characteristic equation in the form

||||||||
1

4
(𝜆2 − 𝜆−2) − 𝜅 −1

2
(𝜆 − 𝜆−1)

√
−(1 + 𝜔)

−1

2
(𝜆 − 𝜆−1)

√
−(1 + 𝜔) −1

4
(𝜆2 − 𝜆−2) − 𝜅

|||||||| = 0.

Expansion of the determinant yields

𝜅2 = 1

16
(𝜆2 − 𝜆−2)2 − 1

4
(𝜆 − 𝜆−1)2(1 + 𝜔).

Next we analyze admissible values of 𝜆 ∈ ℂ∖{0} for which 𝜅 ∈ ℝ.

∙ For every 𝜆 ∈ ℝ and 𝜔 ∈ (−∞,−1), we have 𝜅 ∈ ℝ.

∙ For 𝜆 ∈ 𝑖ℝ, we set 𝜆 = 𝑖𝛽 with 𝛽 ∈ ℝ and obtain

𝜅 = ±1

4
(𝛽 + 𝛽−1)

√
(𝛽 − 𝛽−1)2 + 4(1 + 𝜔).

Since 𝜔 ∈ (−∞,−1), we have 𝜅 ∈ ℝ if and only if 𝛽 ∈

(−∞,−𝛽2] ∪ [−𝛽−1
2 , 𝛽−1

2 ] ∪ [𝛽2,∞), where 𝛽2 ∶=
√
−(1 + 𝜔) +√

−𝜔.

∙ For 𝜆 ∈ 𝕊1, we set 𝜆 = e𝑖𝛼 with 𝛼 ∈ [0, 2𝜋] and obtain

𝜅 = ±𝑖 sin 𝛼
√

cos2 𝛼 − (1 + 𝜔).

Since 𝜔 ∈ (−∞,−1), we have 𝜅 ∈ 𝑖ℝ for any 𝛼 ∈ [0, 2𝜋]. The
points 𝛼 = 0 and 𝛼 = 𝜋 for which 𝜅 = 0 correspond to 𝜆 =
±1 ∈ ℝ.

In addition, it follows that 𝜅 ∉ ℝ if 𝜆 ∈ ℂ∖(ℝ ∪ 𝑖ℝ ∪ 𝕊1). □

The roots of 𝑃(𝜆) in (1.8) are given by the following corollary.

Corollary 5.2. Let (𝑈, 𝑉) be given by (5.3). Roots of 𝑃(𝜆) in (1.8)
are given by {±𝑖,±𝑖,±𝛽2𝑖,±𝛽−1

2 𝑖}, where 𝛽2 ∶=
√
−(1 + 𝜔) +

√
−𝜔.
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FIGURE 6 Lax and stability spectra for the equilibrium point P− with 𝜔 = −0.1 obtained analytically (A)–(B) and numerically (C)–(D).

Proof. We obtain from (4.4) with 𝑏 = (1 + 𝜔)2 that{
4𝜔 = 𝜆2

1 + 𝜆−2
1 + 𝜆2

2 + 𝜆−2
2 ,

−8𝜔 − 4 = (𝜆2
1 + 𝜆−2

1 )(𝜆2
2 + 𝜆−2

2 ).

Eliminating either 𝜆2
1 + 𝜆−2

1 or 𝜆2
2 + 𝜆−2

2 yields a quadratic equa-
tion with two roots at

𝜆2
1 + 𝜆−2

1 = −2, 𝜆2
2 + 𝜆−2

2 = 4𝜔 + 2.

Hence, we have 𝜆1 = 𝑖 and 𝜆2 = 𝑖𝛽2 with 𝛽2 ∶=
√
−(1 + 𝜔) +√

−𝜔. This defines all the roots of 𝑃(𝜆) in view of the factorization
formula (4.3). □

Remark 5.2. The double roots {±𝑖,±𝑖} of 𝑃(𝜆) in Corollary 5.2
do not belong to the Lax spectrum of Proposition 5.2, whereas
the roots {±𝑖𝛽2,±𝑖𝛽−1

2 } correspond to the end points of the Lax
spectrum on 𝑖ℝ. This part of the Lax spectrum satisfy the stability
restriction (4.5) of Proposition 4.3. Since the Lax spectrum on ℝ

is also stable by Proposition 4.2, the linearized MTM system (3.5)
has the stable spectrum for the constant-amplitude solution (5.3).

5.3 Numerical Approximation of the Lax and
Stability Spectra

We will now approximate the Lax spectrum numerically in the
complex 𝜆-plane to confirm the conclusions of Propositions 5.1
and 5.2. Moreover, by using Λ = ±𝑖

√
𝑃(𝜆), we will also plot the

stability spectrum of the linearized MTM system (3.5) on the
complex Λ-plane.

Figure 6A,B gives the Lax and stability spectra for the equilibrium
point P− with 𝜔 = −0.1 obtained from Proposition 5.1. The red

crosses display the roots of 𝑃(𝜆). The numerical approximations
of the Lax and stability spectra are shown in Figure 6C,D for
the same value 𝜔 = −0.1. Details of the numerical method are
explained in Appendix A.

The same results are shown in Figure 7 for the equilibrium point
P− with 𝜔 = 0.1. Compared with Figure 6 and in agreement with
Proposition 5.1, the Lax spectrum on 𝑖ℝ has gaps for𝜔 = −0.1 and
no gaps for 𝜔 = 0.1 and the Lax spectrum on 𝕊1 has gaps for 𝜔 =
0.1 and no gaps for 𝜔 = −0.1.

Figure 8A,B gives the Lax and stability spectra for the equilibrium
point P+ with 𝜔 = −1.2 obtained from Proposition 5.2. The red
crosses display again the roots of 𝑃(𝜆). Note that the double
roots ±𝑖 do not belong to the Lax spectrum. The numerical
approximations of the Lax and stability spectra are shown in
Figure 8C,D for the same value 𝜔 = −1.2. The green dotted curve
shows the unit circle 𝕊1 which is not a part of the Lax spectrum.
Wehave again confirmed a full agreement between the theory and
the numerical approximations.

Remark 5.3. In agreement with Remarks 5.1 and 5.2, Figures 6,
7, and 8 confirm that the center equilibrium point P− is spectrally
unstable and the saddle equilibrium point P+ is spectrally stable
in the spectral stability problem (3.5).

6 Lax and Stability Spectra for Standing Periodic
Waves

Here, we approximate the Lax and stability spectra for the
standing periodic waves (1.6) with 𝑉 = 𝑈̄. By using (2.5),
(2.6), and (2.7) with 𝑏 = −2𝜔𝜉 − 𝜉2 − 2𝜉 cos 𝜃, the profile 𝜉 of
the standing periodic waves is obtained from the first-order
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FIGURE 7 The same as in Figure 6 but for P− with 𝜔 = 0.1.

FIGURE 8 The same as in Figure 6 but for P+ with 𝜔 = −1.2.
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invariant

(𝜉′)2 + 𝑅(𝜉) = 0, (6.1)

where

𝑅(𝜉) = (𝑏 + 2𝜔𝜉 + 𝜉2)2 − 4𝜉2

= 𝜉4 + 4𝜔𝜉3 + (4𝜔2 + 2𝑏 − 4)𝜉2 + 4𝑏𝜔𝜉 + 𝑏2

= (𝜉 − 𝑢1)(𝜉 − 𝑢2)(𝜉 − 𝑢3)(𝜉 − 𝑢4),

where (𝑢1, 𝑢2, 𝑢3, 𝑢4) satisfy

⎧⎪⎪⎨⎪⎪⎩

𝑢1 + 𝑢2 + 𝑢3 + 𝑢4 = −4𝜔,

𝑢1𝑢2 + 𝑢1𝑢3 + 𝑢1𝑢4 + 𝑢2𝑢3 + 𝑢2𝑢4 + 𝑢3𝑢4 = 4𝜔2 + 2𝑏 − 4,

𝑢1𝑢2𝑢3 + 𝑢1𝑢2𝑢4 + 𝑢1𝑢3𝑢4 + 𝑢2𝑢3𝑢4 = −4𝑏𝜔,

𝑢1𝑢2𝑢3𝑢4 = 𝑏2.

(6.2)
The following proposition relates roots {𝑢1, 𝑢2, 𝑢3, 𝑢4} of the
quartic polynomial 𝑅(𝜉) in (6.1) to roots {±𝜆1,±𝜆2,±𝜆−1

1 ,±𝜆−1
2 } of

𝑃(𝜆) in (1.8). For the cubic and derivative NLS equations, such
relations were found by Kamchatnov [61, 62].

Proposition 6.1. Roots (𝑢1, 𝑢2, 𝑢3, 𝑢4) of𝑅(𝜉) are related to roots
{±𝜆1,±𝜆2,±𝜆−1

1 ,±𝜆−1
2 } of 𝑃(𝜆) by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑢1 = −1

4

(
𝜆1 − 𝜆−1

1 − 𝜆2 + 𝜆−1
2

)2
,

𝑢2 = −1

4

(
𝜆1 + 𝜆−1

1 − 𝜆2 − 𝜆−1
2

)2
,

𝑢3 = −1

4

(
𝜆1 − 𝜆−1

1 + 𝜆2 − 𝜆−1
2

)2
,

𝑢4 = −1

4

(
𝜆1 + 𝜆−1

1 + 𝜆2 + 𝜆−1
2

)2
.

(6.3)

Proof. The proof is a direct calculation. We show that relations
(4.4) and (6.3) recover relations (6.2). For the first two equations of
system (6.2), we obtain

𝑢1 + 𝑢2 + 𝑢3 + 𝑢4 = −
(
𝜆2

1 + 𝜆−2
1 + 𝜆2

2 + 𝜆−2
2

)
= −4𝜔

and

𝑢1𝑢2 + 𝑢1𝑢3 + 𝑢1𝑢4 + 𝑢2𝑢3 + 𝑢2𝑢4 + 𝑢3𝑢4

= 3

8

(
𝜆2

1 + 𝜆−2
1 + 𝜆2

2 + 𝜆−2
1

)2
− 1

2

(
𝜆2

1 + 𝜆−2
1

) (
𝜆2

2 + 𝜆−2
2

)
− 4

= 4𝜔2 + 2𝑏 − 4.

For the last two equations of system (6.2), we obtain from (4.4)
that

4𝑏 = 1

4

(
𝜆2

1 + 𝜆−2
1 + 𝜆2

2 + 𝜆−2
2

)2
−
(
𝜆2

1 + 𝜆−2
1

) (
𝜆2

2 + 𝜆−2
2

)
=

(𝜆1𝜆2 − 1)2(𝜆1𝜆2 + 1)2(𝜆1 − 𝜆2)
2(𝜆1 + 𝜆2)

2

4𝜆4
1𝜆

4
2

,

which yields

𝑏2 =
(𝜆1𝜆2 − 1)4(𝜆1𝜆2 + 1)4(𝜆1 − 𝜆2)

4(𝜆1 + 𝜆2)
4

256𝜆8
1𝜆

8
2

and

4𝑏𝜔 =
(𝜆1𝜆2 − 1)2(𝜆1𝜆2 + 1)2(𝜆1 − 𝜆2)2(𝜆1 + 𝜆2)2(𝜆2

1 + 𝜆2
2)(𝜆2

1𝜆2
2 + 1)

16𝜆6
1𝜆6

2

.

These two equations define the right-hand sides of the last two
equations of system (6.2). Substituting (6.3) to the left-hand sides
of the last two equations of system (6.2) and using the symbolic
software program MAPLE, we verify their equivalence with the
right-hand sides. □

Next, we identify the possible roots {±𝜆1,±𝜆2,±𝜆−1
1 ,±𝜆−1

2 } of 𝑃(𝜆)

in each region of the parameter plane (𝑏, 𝜔), see Figure 1, where
the standing periodic waves exist.

Proposition 6.2. Let the roots of 𝑃(𝜆) be given by
{±𝜆1,±𝜆2,±𝜆−1

1 ,±𝜆−1
2 }. Then, we have

∙ 𝜆1 = 𝜆̄2 ∈ ℂ∖(ℝ ∪ 𝑖ℝ ∪ 𝕊1) in region I,

∙ 𝜆1, 𝜆2 ∈ 𝕊1∖(ℝ ∪ 𝑖ℝ) with 𝜆1 ≠ 𝜆2 in region IIA,

∙ 𝜆1 ∈ 𝕊1∖(ℝ ∪ 𝑖ℝ) and 𝜆2 = 𝑖𝛽2 ∈ 𝑖ℝ∖(ℝ ∪ 𝕊1) in region IIB,

∙ 𝜆1 = 𝑖𝛽1 ∈ 𝑖ℝ∖(ℝ ∪ 𝕊1) and 𝜆2 = 𝑖𝛽2 ∈ 𝑖ℝ∖(ℝ ∪ 𝕊1)with 𝛽1 ≠

𝛽2 in region III.

Proof. Solving 𝑃(𝜆) = 0 in (1.8) yields

𝜆2 + 1

𝜆2
= 2𝜔 ± 2

√
𝑏. (6.4)

Since {±𝜆1,±𝜆2,±𝜆−1
1 ,±𝜆−1

2 } are roots of 𝑃(𝜆), we have

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜆2
1 = (𝜔 +

√
𝑏) +

√
(𝜔 +

√
𝑏)2 − 1,

𝜆−2
1 = (𝜔 +

√
𝑏) −

√
(𝜔 +

√
𝑏)2 − 1,

𝜆2
2 = (𝜔 −

√
𝑏) +

√
(𝜔 −

√
𝑏)2 − 1,

𝜆−2
2 = (𝜔 −

√
𝑏) −

√
(𝜔 −

√
𝑏)2 − 1.

(6.5)

This allows us to consider different cases in each existence region
of the parameter plane (𝑏, 𝜔) given by Proposition 2.3.

∙ Since 𝑏 ∈ (−∞, 0) and 𝜔 ∈ ℝ in region I, we obtain from (6.5)
that 𝜆1 = 𝜆̄2 ∈ ℂ∖(ℝ ∪ 𝑖ℝ ∪ 𝕊1).

∙ We have 𝑏 ∈
(
0, min{(1 − 𝜔)2, (1 + 𝜔)2}

)
and 𝜔 ∈ (−1, 1) in

region IIA. It is sufficient to consider the case of 𝜔 ∈ [0, 1)

for which 𝑏 ∈ (0, (1 − 𝜔)2), since the case of 𝜔 ∈ (−1, 0) is
similar. Since 𝜔 +

√
𝑏, 𝜔 −

√
𝑏 ∈ (−1, 1), we obtain from (6.5)

that 𝜆1, 𝜆2 ∈ 𝕊1∖(ℝ ∪ 𝑖ℝ) with 𝜆1 ≠ 𝜆2.

∙ We have 𝑏 ∈
(
(1 + 𝜔)2, (1 − 𝜔)2

)
and 𝜔 ∈ (−∞, 0) in region

IIB. Since𝜔 +
√

𝑏 ∈ (−1, 1) and𝜔 −
√

𝑏 < −1, we obtain from
(6.5) that 𝜆1 ∈ 𝕊1∖(ℝ ∪ 𝑖ℝ) and 𝜆2 = 𝑖𝛽2 ∈ 𝑖ℝ∖(ℝ ∪ 𝕊1).
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FIGURE 9 Sample points in each region on the (𝑏, 𝜔) plane for
numerical approximations.

∙ We have 𝑏 ∈ (0, (1 + 𝜔)2) with 𝜔 ∈ (−∞,−1) in region III.
Since 𝜔 +

√
𝑏 < −1 and 𝜔 −

√
𝑏 < −1, we obtain from (6.5)

that 𝜆1 = 𝑖𝛽1 ∈ 𝑖ℝ∖(ℝ ∪ 𝕊1) and 𝜆2 = 𝑖𝛽2 ∈ 𝑖ℝ∖(ℝ ∪ 𝕊1)with
𝛽1 ≠ 𝛽2.

This concludes the analysis since the standing periodic waves do
not exist in region IV. □

We use Propositions 6.1 and 6.2 in order to investigate the spectral
stability of the standing periodic waves in different regions of
the parameter plane (𝑏, 𝜔) (see Figure 1). In each region, we
give the explicit representation for the periodic solution 𝜉(𝑥) and
the roots of 𝑃(𝜆), after which we select several sample points
to approximate the Lax spectrum numerically according to the
method explained in Appendix A. The sample points in each
region are shown inFigure 9. From thenumerical approximations
of the Lax spectrum, we find the stability spectrum by using (3.7).
This will verify the stability and instability conclusions shown in
Figure 2.

6.1 Standing Periodic Waves in Region I

By Proposition 6.2, roots of 𝑃(𝜆) form two complex quadruplets,
which are reflected symmetrically relative to the unit circle 𝕊1.
For definiteness, we write 𝜆1 = 𝛼1 + 𝑖𝛽1 and 𝜆2 = 𝛼1 − 𝑖𝛽1 with
𝛼2

1 + 𝛽2
1 ≠ 1 so that equations (6.2) yield

𝜔 =

(
𝛼2

1 − 𝛽2
1

) ((
𝛼2

1 + 𝛽2
1

)2
+ 1

)
2
(
𝛼2

1 + 𝛽2
1

)2

and

𝑏 = −
(
𝛼2

1 + 𝛽2
1 − 1

)2(
𝛼2

1 + 𝛽2
1 + 1

)2
𝛽2

1𝛼2
1(

𝛼2
1 + 𝛽2

1

)4
.

By using (6.3), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢1 =
𝛽2

1

(
𝛼2

1 + 𝛽2
1 + 1

)2(
𝛼2

1 + 𝛽2
1

)2
,

𝑢2 =
𝛽2

1

(
𝛼2

1 + 𝛽2
1 − 1

)2(
𝛼2

1 + 𝛽2
1

)2
,

𝑢3 = −
𝛼2

1

(
𝛼2

1 + 𝛽2
1 − 1

)2(
𝛼2

1 + 𝛽2
1

)2
,

𝑢4 = −
𝛼2

1

(
𝛼2

1 + 𝛽2
1 + 1

)2(
𝛼2

1 + 𝛽2
1

)2
,

which satisfy the ordering 𝑢4 ≤ 𝑢3 ≤ 0 ≤ 𝑢2 ≤ 𝑢1. The exact peri-
odic solution of the first-order invariant (6.1) with this ordering
can be written in the explicit form, see [51]:

𝜉(𝑥) = 𝑢4 +
(𝑢1 − 𝑢4)(𝑢2 − 𝑢4)

(𝑢2 − 𝑢4) + (𝑢1 − 𝑢2)sn
2(𝜈𝑥; 𝑘)

, (6.6)

where

𝜈 = 1

2

√
(𝑢1 − 𝑢3)(𝑢2 − 𝑢4), 𝑘 =

√
(𝑢1 − 𝑢2)(𝑢3 − 𝑢4)√
(𝑢1 − 𝑢3)(𝑢2 − 𝑢4)

.

The periodic solution 𝜉(𝑥) in (6.6) is located in the interval
[𝑢2, 𝑢1] and has period 𝐿 = 2𝐾(𝑘)𝜈−1. The component 𝜃(𝑥) in the
standing periodic waves (1.6) and (2.5) is given by

𝜃(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
arccos

−(𝜉2 + 2𝜔𝜉 + 𝑏)

2𝜉
, 0 ≤ 𝜃 ≤ 𝜋,

2𝜋 − arccos
−(𝜉2 + 2𝜔𝜉 + 𝑏)

2𝜉
, 𝜋 ≤ 𝜃 ≤ 2𝜋.

(6.7)

Since

𝜃′ = 𝜉 − 𝑏𝜉−1
> 0

follows from (2.7) with 𝑏 = −2𝜔𝜉 − 𝜉2 − 2𝜉 cos 𝜃, the mapping
𝑥 ↦ 𝜃(𝑥) is monotonically increasing in each period, in agree-
ment with the phase portraits on Figures 3, 4, and 5 for 𝑏 <

0.

Remark 6.1. As 𝑏 → 0, the point inside the existence region
I approaches to the boundary given by the black vertical line
on Figure 1. At this boundary, bifurcations of the two com-
plex quadruplets in the roots of 𝑃(𝜆) depend on the value
of 𝜔 ∈ ℝ.

∙ If 𝜔 ∈ (−1, 1), each of the four pairs of roots of 𝑃(𝜆) coalesce
on 𝕊1. For the solution continued inside region IIA, the roots
of 𝑃(𝜆) form two complex quadruplets on 𝕊1.

∙ If 𝜔 ∈ (1,∞), each of the four pairs of roots of 𝑃(𝜆) coalesce
on ℝ. The four double roots on ℝ are reflected symmetrically
relatively to the values ±1. The solution cannot be continued
inside region IV.

∙ If𝜔 ∈ (−∞,−1), each of the four pairs of roots of𝑃(𝜆) coalesce
on 𝑖ℝ. The four double roots on 𝑖ℝ are reflected symmetrically
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FIGURE 10 The Lax and stability spectra for the standing periodic wave with 𝛼1 = 1.4 and 𝛽1 = 1.1 at point A.

FIGURE 11 The same as Figure 10 but for 𝛼1 = 1.1 and 𝛽1 = 1.4 at point B.

relatively to the values ±𝑖. For the solution continued inside
region III, the roots of 𝑃(𝜆) form four pairs on 𝑖ℝ which are
reflected symmetrically relatively to the values ±𝑖.

To compute the Lax and stability spectra, we use the numerical
method fromAppendix A and approximate the Floquet spectrum
at different points in region I shown in Figure 9 after which we
use the transformationΛ = ±𝑖

√
𝑃(𝜆) to approximate the stability

spectrum of the standing periodic waves.

At point A, we take 𝛼1 = 1.4 and 𝛽1 = 1.1. The Lax spectrum is
shown inFigure 10A,where the red crosses represent roots of𝑃(𝜆)

as two complex quadruplets, which are reflected symmetrically
about 𝕊1. The stability spectrum is shown in Figure 10B and
contains the figure-eight instability band.

Figure 11 shows similar Lax and stability spectra at point B, for
which we take 𝛼1 = 1.1 and 𝛽1 = 1.4. The Lax spectra between
the two cases are only different by the convexity of the spec-
tral bands connecting the complex quadruplets, whereas the
stability spectra are very similar and contain the figure-eight
instability band.

Figure 12 shows the Lax and stability spectra for point 𝐶 close
to the boundary 𝑏 = 0 for 𝜔 ∈ (1,∞), for which we take 𝛼1 = 1.1

and 𝛽1 = 0.1. The complex quadruplets are very close to the real
axis of the 𝜆 plane. The same figure-eight appears in the stability
spectrum in the Λ plane.

Figure 13 shows the Lax and stability spectra for point 𝐷 which is
also close to the boundary 𝑏 = 0 but for 𝜔 ∈ (−∞,−1), for which
we take 𝛼1 = 0.2 and 𝛽1 = 1.2. The complex quadruplets are now
close to the imaginary axis of the 𝜆 plane.

In the symmetric case 𝜔 = 0, the roots of 𝑃(𝜆) are located at the
diagonals in the 𝜆 plane. Figure 14 shows the Lax and stability
spectra at point E for which 𝛼1 = 𝛽1 = 1.4. We can see that the
spectral bands of the Lax spectrum are located at the diagonals
in the 𝜆 plane. Consequently, the stability spectrum is located on
𝑖ℝ and the figure-eight shrinks to the vertical line. We note that
the derivative NLS equation considered in [53] does not have such
families of standing periodic wave solutions.

Figure 15 shows the same at point F for which 𝛼1 = 𝛽1 = 0.8.
Since the point is close to the boundary 𝑏 = 0 for 𝜔 ∈ (−1, 1), the

16 of 24 Studies in Applied Mathematics, 2025
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FIGURE 12 The same as Figure 10 but for 𝛼1 = 1.1 and 𝛽1 = 0.1 at point C.

FIGURE 13 The same as Figure 10 but for 𝛼1 = 0.2 and 𝛽1 = 1.2 at point D.

complex quadruplets are close to the unit circle 𝕊1 in the 𝜆 plane,
whereas the stability spectrum on 𝑖ℝ admits some bandgaps.

We summarize that every standing periodic wave in region Iwith
𝜔 ≠ 0 is spectrally unstable due to the figure-eight instability
band. On the other hand, every standing periodic wave in region
I with 𝜔 = 0 is spectrally stable.

6.2 Standing Periodic Waves in Region 𝐈𝐈𝐀

By Proposition 6.2, roots of 𝑃(𝜆) form two complex quadruplets
located on the unit circle 𝕊1. Hence, we write 𝜆1 = 𝛼1 + 𝑖𝛽1 and
𝜆2 = 𝛼2 + 𝑖𝛽2 with 𝛼2

1 + 𝛽2
1 = 𝛼2

2 + 𝛽2
2 = 1 so that Equations (6.2)

yield

𝜔 = 1

2

(
𝛼2

1 + 𝛼2
2 − 𝛽2

1 − 𝛽2
2

)
and

𝑏 = −
(
𝛼2

1 − 𝛼2
2

) (
𝛽2

1 − 𝛽2
2

)
=

(
𝛽2

1 − 𝛽2
2

)2
.

By using (6.3), we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢1 = (𝛽1 + 𝛽2)
2,

𝑢2 = (𝛽1 − 𝛽2)
2,

𝑢3 = −(𝛼1 − 𝛼2)
2,

𝑢4 = −(𝛼1 + 𝛼2)
2,

which satisfy the same ordering 𝑢4 ≤ 𝑢3 ≤ 0 ≤ 𝑢2 ≤ 𝑢1 as in
region I. The exact periodic solution of the first-order invariant
(6.1) with this ordering is still written in the same explicit form
(6.6). It follows from the phase portraits on Figure 5 for 𝜔 ∈

(−1, 1) that the mapping 𝑥 ↦ 𝜃(𝑥) is periodic for the periodic
orbits inside the heteroclinic orbits. The values of 𝜃(𝑥) can be
computed from the same formula (6.7).

Remark 6.2. As 𝑏 → min{(1 − 𝜔)2, (1 + 𝜔)2}, the point inside
the existence region IIA approaches the boundaries given by the
red line for 𝜔 ∈ (0, 1) and by the green line for 𝜔 ∈ (−1, 0) in
Figure 1. At each boundary, bifurcations of the roots of 𝑃(𝜆) occur
as follows:
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FIGURE 14 The same as Figure 10 but for 𝛼1 = 𝛽1 = 1.4 at point E.

FIGURE 15 The same as Figure 10 but for 𝛼1 = 𝛽1 = 0.8 at point F.

∙ If 𝜔 ∈ (0, 1) and 𝑏 → (1 − 𝜔)2, then 𝛽1 → 0 which implies
that 𝜆1 → 1. Hence, in this limit one quadruplet of the roots
of 𝑃(𝜆) is still located on 𝕊1 but the other one becomes a
pair of double real eigenvalues at ±1. The solution cannot be
continued inside region IV.

∙ If 𝜔 ∈ (−1, 0) and 𝑏 → (1 + 𝜔)2, then 𝛼2 → 0 which implies
that 𝜆2 → 𝑖. Hence, in this limit one quadruplet of the roots
of 𝑃(𝜆) is still located on 𝕊1 but the other one becomes
a pair of double purely imaginary eigenvalues at ±𝑖. For
the solution continued inside region IIB, the roots of 𝑃(𝜆)

form one complex quadruplet on 𝕊1 and two pairs of purely
imaginary eigenvalues symmetrically reflected about ±𝑖.

Figure 16 shows numerically computed Lax and stability spectra
at point H, for which we take 𝛼1 = 0.6 and 𝛼2 = 0.5. Besides the
Lax spectrum onℝ ∪ 𝑖ℝ, there exists four bands on𝕊1 in between
the two complex quadruplets in the roots of 𝑃(𝜆). The stability
spectrum includes a segment on the real axis related to the four
bands of the Lax spectrum on 𝕊1.

Figure 17 shows similar Lax and stability spectra at point 𝐺,
for which 𝛼1 = 0.9 and 𝛼2 = 0.2. Since the point 𝐺 is close to

the boundary 𝑏 = (1 + 𝜔)2 for 𝜔 ∈ (−1, 0), the bands of the Lax
spectrum on 𝕊1 are wider and four roots of 𝑃(𝜆) are close to the
points ±𝑖. The stability spectrum includes a larger segment along
the real axis.

We summarize that every standing periodic wave in region IIA is
spectrally unstable due to the instability band on ℝ.

6.3 Standing Periodic Waves in Region 𝐈𝐈𝐁

By Proposition 6.2, roots of 𝑃(𝜆) form a complex quadruplet
located on the unit circle 𝕊1 and two pairs of purely imaginary
eigenvalues symmetrically reflected about ±𝑖. Hence, we write
𝜆1 = 𝛼1 + 𝑖𝛽1 and 𝜆2 = 𝑖𝛽2 with 𝛼2

1 + 𝛽2
1 = 1 so that Equations

(6.2) yield

𝜔 = −1

4

(
𝛽2

2 + 𝛽−2
2 − 2𝛼2

1 + 2𝛽2
1

)
and

𝑏 = 1

16

(
𝛽2

2 + 𝛽−2
2 + 2 − 4𝛽2

1

)2
.
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FIGURE 16 The same as Figure 10 but for 𝛼1 = 0.6 and 𝛼2 = 0.5 at point H.

FIGURE 17 The same as Figure 10 but for 𝛼1 = 0.9 and 𝛼2 = 0.2 at point G.

By using (6.3), we obtain

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑢1 =
1

4

(
2𝛽1 + 𝛽2 + 𝛽−1

2

)2
,

𝑢2 =
1

4

(
2𝛽1 − 𝛽2 − 𝛽−1

2

)2
,

𝑢3 = −1

4

(
2𝛼1 − 𝑖

(
𝛽2 − 𝛽−1

2

))2
,

𝑢4 = −1

4

(
2𝛼1 + 𝑖

(
𝛽2 − 𝛽−1

2

))2
,

which satisfy the same ordering 0 ≤ 𝑢2 ≤ 𝑢1 with 𝑢3 and 𝑢4 being
complex conjugate to each other. For definiteness, we will define
𝑢3 = 𝛾 + 𝑖𝜂 and 𝑢4 = 𝛾 − 𝑖𝜂 with

𝛾 = −𝛼2
1 +

1

4

(
𝛽2 − 𝛽−1

2

)2
, 𝜂 = 𝛼1

(
𝛽2 − 𝛽−1

2

)
.

The exact periodic solution of the first-order invariant (6.1) with
this ordering of roots of 𝑅(𝜉) can be written in the explicit form,
see [51],

𝜉(𝑥) = 𝑢1 +
(𝑢2 − 𝑢1)(1 − cn(𝜇𝑥; 𝑘))

1 + 𝛿 + (𝛿 − 1)cn(𝜇𝑥; 𝑘)
, (6.8)

where positive parameters 𝛿, 𝜇, and 𝑘 are uniquely expressed by

𝛿 =
√

(𝑢2 − 𝛾)2 + 𝜂2√
(𝑢1 − 𝛾)2 + 𝜂2

,

𝜇 = 4
√

[(𝑢1 − 𝛾)2 + 𝜂2][(𝑢2 − 𝛾)2 + 𝜂2],

2𝑘2 = 1 −
(𝑢1 − 𝛾)(𝑢2 − 𝛾) + 𝜂2√

[(𝑢1 − 𝛾)2 + 𝜂2][(𝑢2 − 𝛾)2 + 𝜂2]
.

The periodic solution 𝜉(𝑥) in (6.8) is located in the interval [𝑢2, 𝑢1]

and has period 𝐿 = 4𝐾(𝑘)𝜇−1. It follows from the phase portraits
on Figures 3, 4, and 5 for 𝜔 ∈ (−∞, 0) that the mapping 𝑥 ↦ 𝜃(𝑥)

is periodic for the periodic orbits inside the heteroclinic orbits.
The values of 𝜃(𝑥) can be computed from the same formula (6.7).

Remark 6.3. As 𝑏 → (1 − 𝜔)2 or 𝑏 → (1 + 𝜔)2, the point inside
the existence region IIB approaches the boundary given by the red
line in the former limit and by the blue line in the latter limit in
Figure 1. At each boundary, bifurcations of the roots of 𝑃(𝜆) occur
as follows:
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FIGURE 18 The same as Figure 10 but for 𝛼1 = 0.95 and 𝛽2 = 1.5 at point I.

∙ If 𝑏 → (1 − 𝜔)2, then 𝛽1 → 0 which implies that 𝜆1 → 1.
In this limit, there still exist two pairs of purely imagi-
nary eigenvalues symmetrically reflected about ±𝑖 but the
complex quadruplet becomes a pair of double real eigen-
values at ±1. The solution cannot be continued inside
region IV.

∙ If 𝑏 → (1 + 𝜔)2, then 𝛼1 → 0 which implies that 𝜆1 → 𝑖. In
this limit, there still exist two pairs of purely imaginary
eigenvalues symmetrically reflected about ±𝑖 but the complex
quadruplet becomes a pair of double purely imaginary eigen-
values at ±𝑖. For the solution continued inside region III, the
roots of 𝑃(𝜆) form four pairs of purely imaginary eigenvalues
symmetrically reflected about ±𝑖.

Figure 18 shows numerically computed Lax and stability spectra
at point I, for which we take 𝛼1 = 0.95 and 𝛽2 = 1.5. The Lax
spectrum includes ℝ, bands on 𝑖ℝ between four roots of 𝑃(𝜆)

and 𝜆 = 0, and two bands on 𝕊1 between the complex quadruplet
of roots of 𝑃(𝜆). The stability spectrum includes a segment
on the real axis related to the bands of the Lax spectrum
on 𝕊1.

We summarize that every standing periodic wave in region IIB is
spectrally unstable due to the instability band on ℝ.

6.4 Standing Periodic Waves in Region III

By Proposition 6.2, roots of 𝑃(𝜆) form four pairs of purely
imaginary eigenvalues symmetrically reflected about ±𝑖. Hence,
we write 𝜆1 = 𝑖𝛽1 and 𝜆2 = 𝑖𝛽2 with 𝛽2 > 𝛽1 > 1 so that Equations
(6.2) yield

𝜔 = −1

4

(
𝛽2

1 + 𝛽−2
1 + 𝛽2

2 + 𝛽−2
2

)
and

𝑏 = 1

16

(
𝛽2

1 + 𝛽−2
1 − 𝛽2

2 − 𝛽−2
2

)2
.

By using (6.3), we obtain

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑢1 =
1

4

(
𝛽1 − 𝛽−1

1 + 𝛽2 − 𝛽−1
2

)2
,

𝑢2 =
1

4

(
𝛽1 + 𝛽−1

1 + 𝛽2 + 𝛽−1
2

)2
,

𝑢3 =
1

4

(
𝛽1 − 𝛽−1

1 − 𝛽2 + 𝛽−1
2

)2
,

𝑢4 =
1

4

(
𝛽1 + 𝛽−1

1 − 𝛽2 − 𝛽−1
2

)2
,

which satisfy the ordering 0 ≤ 𝑢4 ≤ 𝑢3 ≤ 𝑢2 ≤ 𝑢1. Two periodic
solutions of the first-order invariant (6.1) exist for this ordering
of roots of 𝑅(𝜉). One solution is given by (6.6) with 𝜉(𝑥) located
in the interval [𝑢2, 𝑢1]. Another solution is obtained from (6.6) by
exchanging 𝑢1 with 𝑢3 and 𝑢2 with 𝑢4,

𝜉(𝑥) = 𝑢2 +
(𝑢2 − 𝑢3)(𝑢2 − 𝑢4)

(𝑢2 − 𝑢4) + (𝑢3 − 𝑢4)sn
2(𝜈𝑥; 𝑘)

, (6.9)

where 𝜈 and 𝑘 are exactly the same. The periodic solution 𝜉(𝑥)

in (6.9) is located in the interval [𝑢4, 𝑢3] and has the same period
𝐿 = 2𝐾(𝑘)𝜈−1 as (6.6).

It follows from the phase portraits on the left panel of Figure 3
that the mapping 𝑥 ↦ 𝜃(𝑥) is monotonically increasing for the
solution (6.6) and decreasing for the solution (6.9). The values of
𝜃(𝑥) can be computed from the same formula (6.7).

Figure 19 shows numerically computed Lax and stability spectra
at point J, for which we take 𝛽1 = 1.1 and 𝛽2 = 1.4. The Lax
spectrum includesℝ and bands on 𝑖ℝ between eight roots of𝑃(𝜆).
The stability spectrum is located on 𝑖ℝ.

We summarize that every standing periodic wave in region III is
spectrally stable.

7 Conclusion

We have studied the spectral stability of the standing periodic
waves for the MTM system (1.1). The standing waves are written
in the form (1.6) with the wave frequency 𝜔 ∈ ℝ and they can be
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FIGURE 19 The same as Figure 10 but for 𝛽1 = 1.1 and 𝛽2 = 1.4 at point J.

extended as the traveling waves with the wave speed 𝑐 ∈ (−1, 1)

under the Lorentz transformation (1.3). The existence of standing
periodic waves with the reduction𝑉 = 𝑈̄ was obtained in regions
I, II, and III of the parameter plane (𝑏, 𝜔) shown inFigure 1,where
𝑏 is the constant value of the Hamiltonian function for the spatial
Hamiltonian system.

The Lax spectrum was obtained numerically as the Floquet
spectrum of the spectral problem in the Lax pair (1.2). The
spectral bands which determine stability or instability of the
standing periodic waves are located between eight roots of the
characteristic function 𝑃(𝜆). Depending on the point in each
region of the parameter plane (𝑏, 𝜔), roots of 𝑃(𝜆) appear either
as two quadruplets of complex eigenvalues outside the unit circle
𝕊1, or as two quadruplets of complex eigenvalues on 𝕊1, or as one
quadruplet on 𝕊1 and two pairs of purely imaginary eigenvalues,
or as four pairs of purely imaginary eigenvalues.

We have proved analytically and confirmed numerically that the
standing periodic waves are spectrally stable either if the two
quadruplets are located at the diagonals of the complex 𝜆 plane
or if all roots of 𝑃(𝜆) are purely imaginary. In other cases, the
standing periodic waves are spectrally unstable either because of
the figure-eight instability band or because of the instability band
on the real axis. The stability conclusion relies on the relation
Λ = ±𝑖

√
𝑃(𝜆) between Lax and stability spectra.

In the particular limits, periodic solutions degenerate to the
constant-amplitude solutions and we have proved analytically
and confirmednumerically that the constant-amplitude solutions
for the saddle points of the spatial Hamiltonian system are
spectrally stable. Related to this fact, the solitary wave solutions
associated with the heteroclinic orbits of the spatial Hamiltonian
system to the saddle points are found to be spectrally stable.
However, the constant-amplitude solutions for the center points
of the spatial Hamiltonian system are spectrally unstable.
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Appendix A: Numerical Method for Calculating the Lax Spectrum

Let us consider the first equation of the Lax pair (3.2) rewritten as the
spectral problem

𝜓𝑥 = 𝐿(𝑈, 𝑉, 𝜆)𝜓, (A.1)

where

𝐿 = 𝑖

4

(
𝜆2 − 1

𝜆2

)
𝜎3 −

𝑖𝜆

2

(
0 𝑉̄

𝑉 0

)
+ 𝑖

2𝜆

(
0 𝑈̄

𝑈 0

)
+ 𝑖

4
(|𝑈|2 − |𝑉|2)𝜎3.

The spectral problem (A.1) is transformed into a linear eigenvalue
problem with the help of the following auxiliary variables:

𝜓0 = 𝜆𝜓, 𝜓1 = 1

𝜆
𝜓 and 𝜓2 = 1

𝜆
𝜓1. (A.2)

For the extended choice of variables, the spectral problem (A.1) is written
as the following linear eigenvalue problem:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2𝑉̄ −𝐹 − 4𝑖𝜕𝑥 0 0 −2𝑈̄ 1 0

−2𝑉 0 0 −𝐹 + 4𝑖𝜕𝑥 2𝑈 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
𝜓0

𝜓

𝜓1

𝜓2

⎞⎟⎟⎟⎟⎠
= 𝜆

⎛⎜⎜⎜⎜⎝
𝜓0

𝜓

𝜓1

𝜓2

⎞⎟⎟⎟⎟⎠
,

(A.3)
where 𝐹 = |𝑈|2 − |𝑉|2. Indeed, multiplying both sides of (A.1) by 4𝜎3 and
using (A.2), we have

4𝜎3𝜕𝑥𝜓 = 𝑖(𝜆2 − 1

𝜆2
)𝜓 + 2𝑖𝜆

(
0 −𝑉̄

𝑉 0

)
𝜓 + 2𝑖

𝜆

(
0 𝑈̄

−𝑈 0

)
𝜓 + 𝑖𝐹𝜓

= 𝑖𝜆𝜓0 − 𝑖𝜓2 + 2𝑖

(
0 −𝑉̄

𝑉 0

)
𝜓0 + 2𝑖

(
0 𝑈̄

−𝑈 0

)
𝜓1 + 𝑖𝐹𝜓,

which yields

𝜓2 − 4𝑖𝜎3𝜕𝑥𝜓 + 2

(
0 𝑉̄

−𝑉 0

)
𝜓0 + 2

(
0 −𝑈̄

𝑈 0

)
𝜓1 − 𝐹𝜓 = 𝜆𝜓0. (A.4)

Combining (A.2) and (A.4) yields (A.3).

RemarkA.1. Assume that𝑈 and𝑉 are periodic in 𝑥 with the same period
𝐿 and

𝐹 = |𝑈|2 − |𝑉|2 = 0.

According to Floquet’s theorem, the bounded solutions of the linear
equation (A.3) can be represented in the following form:

⎛⎜⎜⎜⎜⎝
𝜓0(𝑥)

𝜓(𝑥)

𝜓1(𝑥)

𝜓2(𝑥)

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

𝜓̂0(𝑥)

𝜓̂(𝑥)

𝜓̂1(𝑥)

𝜓̂2(𝑥)

⎞⎟⎟⎟⎟⎟⎠
e𝑖𝜇𝑥,

where 𝜓̂(𝑥) = 𝜓̂(𝑥 + 𝐿) and 𝜇 ∈ [− 𝜋

𝐿
,

𝜋

𝐿
]. The linear eigenvalue problem

is now rewritten in the following form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2𝑉̄ −4𝑖(𝜕𝑥 + 𝑖𝜇) 0 0 −2𝑈̄ 1 0

−2𝑉 0 0 4𝑖(𝜕𝑥 + 𝑖𝜇) 2𝑈 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

𝜓̂0

𝜓̂

𝜓̂1

𝜓̂2

⎞⎟⎟⎟⎟⎟⎠
= 𝜆

⎛⎜⎜⎜⎜⎜⎝

𝜓̂0

𝜓̂

𝜓̂1

𝜓̂2

⎞⎟⎟⎟⎟⎟⎠
.

(A.5)
The Fourier collocation method, see [59, Chapter 2, p. 45], can be used
to solve the linear eigenvalue problem (A.5) with the Floquet parameter
𝜇. Tracing the set of eigenvalues 𝜆 for 𝜇 ∈ [− 𝜋

𝐿
,

𝜋

𝐿
] gives the band of the

Floquet spectrum in the 𝜆 plane.

Remark A.2. The Fourier collocation method from [59] is similar to Hill’s
method used in [63, 64]. Both of them use Fourier series to approximate
𝑈, 𝑉 and the eigenfunctions.
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Remark A.3. For given functions 𝑈 and 𝑉 defined on ℝ, the Chebyshev
collocationmethod [65] can be used to solve the linear eigenvalue problem
(A.3). However, this method seems to be not applicable to the periodic
domain. On the other hand, the finite difference method can also be used
to calculate the linear eigenvalue problem (A.3), see [38] for a similar
study. However, the accuracy of the finite difference method is poor.
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