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Abstract. Exponential small splitting of separatrices in the singular perturbation
theory leads generally to nonvanishing oscillations near a center–saddle point and
to nonexistence of a true homoclinic orbit. It was conjectured long ago that the
oscillations may vanish at a countable set of small parameter values if there exist a
quadruplet of singularities in the complex extension of the limiting homoclinic orbit.
The present paper gives a rigorous proof of this conjecture for a particular fourth-
order equation relevant to the traveling wave reduction of the modified Korteweg–de
Vries equation with the fifth-order dispersion term. The main technical difficulty in
the proof is to obtain estimates of the exponentially small terms in the complex plane
between the two symmetric pairs of singularities.
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1. Introduction

Homoclinic orbits arise in dynamical systems at the intersections of stable and unsta-
ble manifolds (also known as the separatrices) associated to a saddle equilibrium point.
They represent spatial profiles of traveling solitary waves in nonlinear dispersive wave
equations from which spatial dynamical systems are obtained in the traveling reference
frame. Existence of a homoclinic orbit connected at a saddle point is a generic phe-
nomena in a planar Hamiltonian system if there exists a center point near the saddle
point.

The phase space of many spatial dynamical systems has the dimension higher than
two, in which case the equilibrium point may admit a center manifold in addition
to the stable and unstable manifolds. For such a saddle-center point, intersection
of the separatrices is not generic and homoclinic orbits do not generally exist. The
corresponding traveling solitary waves are not fully decaying since their spatial profiles
approach the oscillatory tails spanned by orbits along the center manifold.

It is rather common in analysis of solitary waves to consider an asymptotic limit when
a higher-dimensional spatial dynamical system with a saddle-center point formally
reduces to the planar Hamiltonian dynamical system with a homoclinic orbit. This
leads to the main question of the singular perturbation theory if the homoclinic orbit
persists under the perturbation. The standard answer to this question is negative
because the exponentially small splitting of the separatrices generally occurs due to
the singular perturbations.

First examples of the exponentially small (beyond-all-order) phenomena and the
relevant asymptotic analysis can be found in [13, 16, 27, 29, 33, 44]. Rigorous mathe-
matical analysis and the proof of the existence of oscillatory tails near the saddle-center
point in four-dimensional spatial dynamical systems was later developed in [36, 47].
The oscillatory tails are present if a certain constant (called the Stokes constant) is
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nonzero, the proof of which usually relies on numerical computations. The numerical
data in [48] for a particular model of the fifth-order Korteweg–de Vries (KdV) equation
suggest that the Stokes constant is generally nonzero but may vanish along bifurcations
of co-dimension one if another parameter is present in the spatial dynamical system.

Compared to the standard setting of the non-vanishing oscillatory tails in the beyond-
all-order expansions, a rather novel mechanism of obtaining a countable number of true
homoclinic orbits was proposed in [3]. The mechanism is related to the location of sin-
gularities of the truncated homoclinic orbit in a complex plane. If there is only one
symmetric pair of singularities in the complex plane nearest to the real line, then the
Stokes constant is generally nonzero and no true homoclinic orbit persists in the singu-
lar perturbation theory. However, if there exist a quadruplet with two symmetric pairs
of singularities at the same distance from the real line, then the singular perturbation
theory exhibits a countable set of true homoclinic orbits as the small parameter goes
to zero.

The theory from [3] was illustrated on a number of other mathematical models
involving nonlocal integral equations [2], lattice advance-delay equations [1, 41], and
differential advance-delay equations for traveling waves in lattices [19, 20, 37, 38]. The
spatial profiles of solitary waves in such models must generally exhibit oscillatory tails
(in which case, they are usually called generalized solitary waves or nanoptera), see
analysis in [21, 23] and numerical results in [22, 38, 50]. However, the tails miraculously
vanish along a countable set of bifurcation points if the singular limit admits a real
analytic solution with a quadruplet of complex singularities nearest to the real line.
A similar idea for homoclinic orbits in symplectic discrete maps has been discussed in
[24] some time before [3].

Despite a number of examples supporting the conjecture from [3], no mathematically
rigorous proof was developed in the literature. The purpose of this paper is to give
a proof of this conjecture for the simplest four-dimensional dynamical system with a
saddle-center equilibrium point.

1.1. Main model. Let γ, ε ∈ R be parameters and consider the fourth-order equation
for some u ∈ C∞(R,R),

ε2u′′′′ + (1− ε2)u′′ − u+ u2 + 2γu3 = 0. (1)

If ε is a small parameter, then the formal limit ε→ 0 yields the second-order equation

u′′ − u+ u2 + 2γu3 = 0 (2)

with (0, 0) being a saddle point of the planar Hamiltonian system{
u′ = w,
w′ = u− u2 − 2γu3.

(3)

The second-order equation (2) appears in the traveling wave reduction of the modified
Korteweg–de Vries (KdV) equation

∂η

∂t
+ 2η

∂η

∂x
+ 6βη2 ∂η

∂x
+
∂3η

∂x3
= 0, (4)
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where η = η(x, t) is real and β is a parameter. Traveling waves of the modified KdV
equation (4) correspond to the form η(x, t) = ηc(x− ct) with the wave speed c and the
wave profile ηc found from the third-order equation

η′′′c (x)− cη′c(x) + 2ηcη
′
c(x) + 6βη2

cη
′
c(x) = 0. (5)

If c > 0, the scaling transformation ηc(x) = cu(
√
cx) and integration of (5) with zero

integration constant for solitary wave solutions yields equation (2) with γ := βc.
If γ > 0, there exist two families of periodic solutions and two solitary wave solutions

of equation (2), see, e.g., [14, 35]. If γ < 0, there exists only one family of periodic
solutions and only one solitary wave solution of equation (2), see, e.g., [42]. This also
follows from the phase portraits for the dynamical system (3) on the phase plane (u,w)
shown in Figure 1 for γ = 1 (left) and γ = −0.1 (right).
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Figure 1. Phase portraits of (3) for γ = 1 (left) and γ = −0.1 (right).

The fourth-order equation (1) is the traveling wave reduction of the modified KdV
equation with the fifth-order dispersion term, also known as the Kawahara equa-
tion [32],

∂η

∂t
+ 2η

∂η

∂x
+ 6βη2 ∂η

∂x
+
∂3η

∂x3
+ α

∂5η

∂x5
= 0, (6)

where α is another parameter. Traveling waves of the form η(x, t) = ηc(x − ct) sat-
isfy the fifth-order equation, which can be integrated once with the zero integration
constant. The scaling transformation ηc(x) = cu(

√
c(1− ε2)x) yields (1) with γ := βc

and ε2 found from the equation

ε2

(1− ε2)2
= αc.

This is always possible for small ε if αc is small.
For β = 0, the Kawahara equation (6) has been one of the main toy model of the

shallow water wave theory to study periodic oscillations arising at the exponential tails
of the solitary wave profiles, see recent works [15, 31, 46]. Since the true homoclinic
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orbits are known not to exist for β = 0 [29, 44], the main motivation for our study is to
show the existence of a sequence of true homoclinic orbits in the modified Kawahara
equation for β 6= 0.

The homoclinic orbit of the second-order system (3) with γ = 0 is known in the
exact analytical form:

u0(x) =
3

2
sech2

(x
2

)
.

It has double poles on the imaginary axis with the nearest singularities at x = ±πi. If
γ 6= 0, the double poles split into pairs of simple poles and the splitting is different for
γ > 0 and γ < 0. The homoclinic orbit for γ = 0 is continued in the exact analytical
form for every 1 + 9γ > 0 as

u0(x) =
3√

1 + 9γ cosh(x) + 1
. (7)

For γ > 0, the double poles nearest to the real axis split along the imaginary axis as
simple poles at

x = ±iπ ± i arccos

(
1√

1 + 9γ

)
,

with four independent choices of signs. For γ ∈ (−1
9
, 0) the double poles split off the

imaginary axis as simple poles at

x = ±iπ ± cosh−1 1√
1 + 9γ

, (8)

again with four independent choices of signs. This is precisely the case which fits the
theory from [3] and coincides with Example 1 in [3]. The numerical data on Figure
1 in [3] already provide a convining evidence of the existence of a countable sequence
{εn(γ)}n∈N for every γ ∈ (−1

9
, 0) such that εn(γ) → 0 as n → ∞ with the homoclinic

orbits persisting in the full equation (1) for ε = εn(γ) and with u(x) being close to
u0(x) in (7).

Hence, in what follows we are only interested in the case γ ∈ (−1
9
, 0), when the only

homoclinic orbit with the profile u0 is available in the form (7). For completeness, we
mention that another homoclinic orbit exists for γ > 0, see the left panel of Figure 1,
and its (negative) profile is given by

ũ0(x) = − 3√
1 + 9γ cosh(x)− 1

.

The simple poles of ũ0 are located at the imaginary axis at

x = ±i arccos

(
1√

1 + 9γ

)
+ 2πin, n ∈ Z.

For γ ≤ 0, ũ0 is singular on real line and hence is neglected.
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1.2. Main result and the method of proof. The main result of this paper is the
following.

Theorem 1.1. For any γ ∈
(
−1

9
, 0
)
, there exists N0 ∈ N large enough and a sequence

{εn}n≥N0 of the form

εn =
α

nπ

[
1 +

1

n
O
(

1

log n

)]
, where α = cosh−1 1√

1 + 9γ
, (9)

such that equation (1) with ε = εn has a homoclinic orbit to the origin in R4.

We prove this result by analyzing the stable and unstable invariant manifolds of the
origin in R4 and measuring their distance at a suitable cross-section of R4. To this end,
we rewrite the fourth-order equation (1) as two second-order equations. By introducing

f(u) := u2 + 2γu3 and v := u′′ − u+ f(u), (10)

equation (1) becomes the system{
u′′ = u+ v − f(u)
v′′ = − 1

ε2
v + f ′(u)(u+ v − f(u)) + f ′′(u)(u′)2.

(11)

The phase space of system (11) is written in the variables (u, u′, v, v′) ∈ R4. Moreover,
this system has the first integral

G(u, u′, v, v′) =(1− ε2)
(u′)2

2
− u2

2
+ F (u)

+ ε2

[
u′(v′ + u′ − f ′(u)u′)− (u+ v − f(u))2

2

]
,

(12)

with

F (u) =

∫ u

0

f(v)dv =
u3

3
+
γu4

2
.

We notice that the origin in R4 is a saddle-center equilibrium point of the fourth-
order system (11) with associated eigenvalues

(
− 1, 1, iε−2,−iε−2

)
of different scales.

Therefore, the stable and unstable manifold associated to the origin have dimension
one and, thus, they are just trajectories of the dynamical system.

Since system (11) is autonomous, in order to find homoclinic connections, it is nec-
essary that there exists a time parameterization of the stable and unstable invariant
manifolds, denoted by(

u?(x), (u?)′(x), v?(x), (v?)′(x)
)
, ? = u, s

(which also depend on the parameters ε and γ), such that(
uu(0), (uu)′(0), vu(0), (vu)′(0)

)
=
(
us(0), (us)′(0), vs(0), (vs)′(0)

)
.

In a general setting two curves do not intersect in a four dimensional space, however
system (11) is reversible with respect to the involution

Ψ : (u, u′, v, v′)→ (u,−u′, v,−v′) (13)
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whose symmetry plane is

Π = {(u, u′, v, v′) ∈ R4 : u′ = 0, v′ = 0}. (14)

In other words, if (u(x), u′(x), v(x), v′(x)) is a solution of system (11), then the function
defined by Ψ(u(−x), u′(−x), v(−x), v′(−x)) is also a solution. In particular

us(x) = uu(−x), vs(x) = vu(−x)

and therefore us(0) = uu(0) and vs(0) = vu(0).
As a consequence, a homoclinic orbit exists if the unstable curve to (0, 0, 0, 0) as

x → −∞ intersects the symmetry plane Π. Indeed, if such intersection occurs, then
the unstable curve to (0, 0, 0, 0) as x→ −∞ is reflected by the involution to the stable
curve to (0, 0, 0, 0) as x→ +∞.

It can be seen that the perturbed invariant manifolds can be approximated by the
homoclinic orbit for the unperturbed problem (2),

(u(x), u′(x), v(x), v′(x)) = (u0(x), u′0(x), 0, 0)

with u0 given in (7). Then, we define the section

Σ = {(u, u′, v, v′) ∈ R4 : u′ = 0}. (15)

We observe that the homoclinic orbit (u(x), u′(x)) = (u0(x), 0) of the second-order
system (2) with u0 computed in (7), satisfies u′0(0) = 0 and it intersects transversally
the section Σ with (v, v′) = (0, 0).

Next theorem gives an asymptotic formula for the distance between the stable and
unstable manifolds of the origin in R4 at Σ.

Theorem 1.2. There exist two unique solutions (uu, vu) and (us, vs) of system (11)
such that (uu)′(0) = (us)′(0) = 0 and

lim
x→−∞

(uu(x), vu(x)) = 0, lim
x→+∞

(us(x), vs(x)) = 0.

Moreover, there exists a constant Θ ∈ R, Θ 6= 0, such that

uu(0)− us(0) = 0

vu(0)− vs(0) = 0

(vu)′(0)− (vs)′(0) = − 4Θ√
|γ|ε3

e−
π
ε

(
sin
(α
ε

)
+O

(
1

| log ε|

))
.

Theorem 1.1 is a direct consequence of Theorem 1.2.

Proof of Theorem 1.1. Since the system (11) is reversible it is enough to obtain a point
in the unstable manifold which intersects the symmetry plane Π in (14). Since

(uu(0), (uu)′(0), vu(0), (vu)′(0)) ∈ Σ

it is enough to look for values of ε such that (vu)′(0) = 0.
By reversibility,

(uu(0), (uu)′(0), vu(0), (vu)′(0)) = (us(0),−(us)′(0), vs(0),−(vs)′(0)).
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and therefore

2(vu)′(0) = (vu)′(0)− (vs)′(0) = − 4Θ√
|γ|ε3

e−
π
ε

(
sin
(α
ε

)
+O

(
1

| log ε|

))
.

Since Θ 6= 0, the values of εn are found from roots of

sin
(α
ε

)
+O

(
1

| log ε|

)
= 0,

which yields (9). �

The main steps in the proof of Theorem 1.2 are explained in Section 2. The proof
of each step is deferred to Sections 3–7 and Appendices A–C.

1.3. Exponentially small splitting of separatrices. Theorem 1.2 fits into what is
usually called exponentially small splitting of separatrices. This phenomenon occurs
in dynamical systems which have a hyperbolic behavior whose invariant manifolds are
exponentially close with respect to a small parameter of the system. Here we review
the literature on the topic and explain the main tools to deal with the exponentially
small phenomenon.

The exponentially small splitting of separatrices was first pointed out by Poincaré
(see [43]) and nowadays it is well known that appear in many analytic models with
multiple time scales and a conservative structure (Hamiltonian, volume preserving) or
reversibility. The first rigorous analysis of this phenomenon was not achieved until the
80’s in the seminal work by Lazutkin on the standard map [34], who proposed a scheme
to prove the exponentially small transversality of the invariant manifolds of the saddle
equilibrium point this map possesses. A full proof of this fact was obtained in 1999 by
Gelfreich [25].

The approach proposed by Lazutkin (detailed below in this section) has been im-
plemented in multiple settings in the past decades such as area preserving maps
[17, 39, 40] and integrable Hamiltonian systems with a fast periodic or quasiperiodic
forcing [18, 26, 45, 8]. Note that the approach is extremely sensitive on the analyticity
properties of the model and therefore “implementing” it in different settings is, by no
means, straightforward. Strongly related to the present paper are those dealing with
volume preserving or Hamiltonian Hopf-zero bifurcations. This was first addressed in
[11, 12, 5, 6, 7], and has later been applied to the breakdown of breathers in the Klein-
Gordon equation (which can be seen as an infinite dimensional Hopf-zero bifurcation)
and in the invariant manifolds of L3 in the restricted planar 3 body problem [9, 10].
Note that the exponentially small splitting of separatrices phenomena can be analyzed
by other methods such as the so-called continuous averaging method [49].

Let us explain the main steps of the approach proposed by Lazutkin applied to Hopf-
zero bifurcations. Note first that the unperturbed separatrix is analytic in a complex
strip centered at the real line. Then, in all the mentioned works and in the approach
explained below, one makes the strong assumption that, at each of the boundary lines
of the strip, the separatrix has only one singularity. Then, an asymptotic formula for
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the distance between the perturbed invariant manifolds can be obtained following these
steps.

(1) Choose coordinates which capture the slow-fast dynamics of the model so that
it becomes a (fast) oscillator weakly coupled to an integrable system with a
saddle point and a separatrix associated to it.

(2) Prove the existence of the analytic continuation of suitable parametrizations
of the perturbed invariant manifolds in appropriate complex domains. These
domains contain a segment of the real line and intersect a neighborhood suffi-
ciently close to the singularities of the separatrix.

(3) Derive the inner equation, which gives the first order of the original system
close to the singularities of the separatrix. This equation is independent of the
perturbation parameter.

(4) Study two special solutions of the inner equation which are approximations
of the perturbed invariant manifolds near the singularities and provide an as-
ymptotic formula for the difference between these two solutions of the inner
equation.

(5) By using complex matching techniques, compare the solutions of the inner
equation with the parametrizations of the perturbed invariant manifolds.

(6) Finally, prove that the dominant term of the difference between manifolds is
given by the term obtained from the difference of the solutions of the inner
equation.

This approach and all the aforementioned references rely on several hypotheses one
has to assume on the model. In particular, as already said, one must assume that,
at each of the boundary lines of its analyticity strip, the time-parameterization of the
unperturbed separatrix has only one singularity. This assumption is rather strong and
it is known to be non-generic (see [3, 24]). In particular, the model (1) with γ ∈

(
−1

9
, 0
)

we consider in this paper does not satisfy this hypothesis since the separatrix has two
singularities at each of these lines.

As far as the authors know, no proof of exponentially small splitting of separatrices
for separatrices with multiple singularities with the same imaginary part existed until
now. The reason is that to analytically extend the invariant manifolds to complex
domains one needs to estimate quite sharply certain oscillatory integrals and this is
not so straightforward when one has several singularities with the same imaginary part.
In the present paper we propose a new approach which relies on considering “auxiliary
orbits” of the model. The approach is rather flexible and we expect to be applicable
to a wide set of models withany number of singularities with the same imaginary part
(see Section 1.4 below).

Let us explain the main steps in the proof of Theorem 1.2, comparing them with the
classical Lazutkin’s approach explained above. The singularities of the unperturbed
separatrix closest to the real axis are those given in (8).
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(1) Choose coordinates which capture the slow-fast dynamics of the model. In the
present paper the coordinates in (11) suffice. Note that this system possesses a
first integral (see (12)).

(2) Prove the existence of the analytic continuation of the time-parametrization of
the perturbed unstable invariant manifolds in an appropriate complex domain
(see (24)). This domain contains a segment of the real line and intersects a
neighborhood sufficiently close to the singularities of the separatrix with neg-
ative real part (see (8)). Analogously, extend the perturbed stable invariant
manifold up to the singularities with positive real part. This is done in Theo-
rem 2.2.

(3) Consider an auxiliary solution of (11) which belongs to the same level of the
first integral and that can be defined in a lozenge shaped complex domain which
contains a segment of the real line and domains ε-close to all four singularities of
the unperturbed separatrix (see (27)). This is done in Theorem 2.3. Note that
this solution does not belong to neither the stable nor the unstable invariant
manifold. Instead of measuring the distance between the stable and unstable
invariant manifolds at a given section, we will measure the distance between the
unstable manifold and the auxiliary solution and between the auxiliary solution
and the stable manifold.

(4) Derive the inner equation (see (42)), which gives the first order of the original
system close to the singularities of the separatrix. Note that the same inner
equation appears close to all four singularities in (8).

(5) Study two special solutions of the inner equation and provide an asymptotic
formula for the difference between these two solutions of the inner equation.
This is done in Theorem 2.8.

(6) Close to the singularities with negative real part, by using complex matching
techniques, compare the solutions of the inner equation with the parametriza-
tion of the perturbed unstable invariant manifold and the auxiliary solution
(analogously close to the singularities with positive real part and the auxiliary
solution and the parameterization of the stable invariant manifold). This is
done in Theorem 2.10.

(7) Prove that the dominant term of the difference between the unstable manifold
and the auxiliary solution is given by the term obtained from the difference of
the solutions of the inner equation close to the singularities with negative real
part (analogously for the stable manifold and the auxiliary solution close to
the rightmost singularities). This is done in Propositions 2.7 and 2.11. Joining
the two asymptotic formulas provides the difference between the stable and
unstable invariant manifolds.

1.4. Further directions and applications. Although we have addressed a very par-
ticular model, the fourth-order equation (1), which is relevant for traveling waves of
the modified Kawahara equation (6), the statement and proof of Theorem 1.2 can be
extended to other dynamical systems with the saddle-center points.
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One example where a sequence of homoclinic orbits appears in the singular per-
turbation theory was considered in [1]. The limiting second-order equation is given
by

u′′ − u+
u3

1 + γu2
= 0, (16)

with a parameter γ > 0 and it appears as the standing wave reduction of the focusing
nonlinear Schrödinger (NLS) equation with a saturation term. If γ = 0, the homo-
clinic orbit is given by u0(x) =

√
2sech(x) with the simple pole singularities along the

imaginary axis at

x =
iπ(2n+ 1)

2
, n ∈ Z.

However, for every γ > 0 it was proven in [1, Theorem 2.2] that the nearest singularities
to the real line appear as a quadruplet in the complex plane. Hence, the numerical
approximations in [1, Section 3] showed the existence of a countable sequence of true
homoclinic orbits when the limiting second-order equation (16) is perturbed by the
fourth-order derivative term.

This example is rather striking since the term u3/(1 + γu2) with γ > 0 does not
change the number and types of the critical points in the dynamical system on the real
line, but only change the number and types of singularities in the complex plane.

Another example appears in the cubic–quintic NLS equation

u′′ − u+ u3(1 + 3γu2) = 0 (17)

with another parameter γ ∈ R. The homoclinic orbit is given by

u0(x) =
2√

1 +
√

1 + 16γ cosh(2x)
.

The simple pole singularity for γ = 0 at x = iπ
2

splits vertically along the imaginary axis
for γ > 0 and horizontally for γ < 0 with the square root branch point singularities.
In the latter case, we have a quadruplet of square root singularities in the complex
plane which lead to a sequence of homoclinic orbit if the second-order equation (17) is
perturbed by the fourth-order derivative term.

For both models (16) and (17), the singularities in the complex plane are more
complicated than poles and involve branching points, see [1].

The analytical proof of Theorem 1.2 can be extended from fourth-order dynamical
systems to other finite-dimensional dynamical systems. It is nevertheless an open
direction to extend the analysis to the infinite-dimensional dynamical systems such as
the differential advance-delay equations. Such situations with the saddle-center points
and the quadruplets of singularities in the complex plane are well-known in the context
of traveling solitary waves in diatomic Fermi–Pasta–Ulam (FPU) systems [19, 37]. If
the center manifold is still two-dimensional and the stable and unstable manifolds are
infinite-dimensional, we conjecture that a similar sequence of true homoclinic orbits
exist in the singular limit of the diatomic FPU system, in agreement with the numerical
results in [22, 38, 50]. However, the proof of this conjecture is left for further studies.
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2. Details of the proof

We devote this section to prove Theorem 1.2. First in Section 2.1 we provide an-
alytic properties of the unperturbed solution (7). Then, in Section 2.2 we study the
analytic continuation of the perturbed solutions in suitable complex domains and we
also analyze the auxiliary solution. In Section 2.3 we give exponential upper bounds
for the difference between two solutions for the stable and unstable invariant manifolds
at a given transverse cross-section. To provide an asymptotic formula for this differ-
ence we analyze the first order of the perturbed solutions close to the singularities of
the unperturbed solution. This is done in Section 2.4 by means of an inner equation
and complex matching techniques. Finally, in Section 2.5 we obtain the asymptotic
formula for the difference between two solutions for the stable and unstable invariant
manifolds.

Notations. We will use the notation ′ and ∂x to indicate the derivative with respect
to x. In addition, when defining functional operators, we usually omit the dependence
of some known functions such as u0 on x.

2.1. Properties of the unperturbed solution. The first step in the proof of Theo-
rem 1.2 is to analyze the analytic properties of the unperturbed solution u0 introduced
in (7). This is contained in the following lemma, the proof of which can be found in
Appendix A.

Lemma 2.1. For γ ∈ (−1
9
, 0), the function u0 in (7) has the following properties:

• At the line =x = π u0 has exactly two singularities at

x± = ±α + πi, α = cosh−1 1√
1 + 9γ

(18)

and at =x = −π u0 has singularities at the conjugate points x±
• u0 is real analytic in C\{x± + i2kπ, x± − i2kπ}k∈N.
• In a neighborhood of x±, u0 satisfies

u0(x) =
c±1

x− x±
+O(1) as x→ x±,

with

c±1 = ∓ 1√
|γ|
. (19)
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• The second derivative of u0 has exactly eight zeros, x±j , j = 1, 2, 3, 4 with

|=x±j | ≤ π of the form

x±1 = ±ib, x±2 = ±a, x±3 = ±a + iπ, x±4 = ±a− iπ
with

b ∈
(π

2
, π
)
, a > α, a ∈ (0, α).

2.2. The outer scale. The second step in the proof of Theorem 1.2 is to look for
parameterizations of the one-dimensional stable and unstable invariant manifolds in
the system (11). We parameterize them as solutions of equation (11) by fixing the
initial condition at Σ defined in (15).

We analyze the invariant manifolds by a perturbative approach close to (u0, 0) where
u0 is the solution of (2) introduced in (7) that satisfies u′0(0) = 0. To this end, we write

u = u0 + ξ, v = η,

which yields the following system{
L1ξ = F1[ξ, η],
L2η = F2[ξ, η],

(20)

where the linear operators are defined by{
L1 = −∂2

x + 1− 2u0(x)− 6γu2
0(x),

L2 = ∂2
x + 1

ε2
,

(21)

and {
F1[ξ, η] = −η + (1 + 6γu0)ξ2 + 2γξ3,
F2[ξ, η] = f ′(u0 + ξ) (u0 + ξ + η − f(u0 + ξ)) + f ′′(u0 + ξ)(u′0 + ξ′)2,

(22)

with f defined in (10). Now, since

η′ = u′′′ − u′ + f ′(u)u′,

the first integral (12) becomes

G̃(ξ, ξ′, η, η′, x) =
1

2
(1− ε2)

[
(u′0)2 + 2u′0ξ

′ + (ξ′)2
]
− 1

2

[
u2

0 − 2u0ξ − ξ2
]

+ F (u0 + ξ)

+ ε2
[

(u′0 + ξ′) (η′ + u′0 + ξ′ − f ′(u0 + ξ)(u′0 + ξ′)) (23)

− 1

2
(η + u0 + ξ − f(u0 + ξ))2

]
,

which is constant along solutions of (20).
The following theorem, whose proof is given in Section 3, provides two solutions

of (20) which decay exponentially as <x → +∞ and <x → −∞ respectively. They
correspond to the parameterizations of the invariant manifolds. Moreover, we prove
that they can be analytically extended to the so-called outer domains defined as

Dout,u
κ = {x ∈ C : |Im(x)| ≤ − tan θRe(x− x−) + Im x− − κε} ,

Dout,s
κ = {x ∈ C : |Im(x)| ≤ tan θRe(x− x+) + Im x+ − κε} ,

(24)
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where 0 < θ < atan
(
π
3α

)
, with α defined in (18), is a fixed angle independent of ε and

κ ≥ 1 (see Figure 2). Observe that Dout,?
κ , ? = u, s, reach domains at a κε–distance of

the singularities x = x− and x = x+ of u0 respectively.

Figure 2. The outer domain Dout,u
κ introduced in (24).

Theorem 2.2. Fix 0 < θ < atan
(
π
3α

)
. There exists κ0, ε0 > 0, such that, if ε ∈ (0, ε0)

and κ > κ0, then there exist real-analytic functions (ξ?, η?), ? = u, s, defined in the
domain Dout,?

κ which are solutions of (20) satisfying

lim
<x→−∞

(ξu, ηu) = (0, 0), lim
<x→∞

(ξs, ηs) = (0, 0)

and

∂xξ
?(0) = 0, G̃(ξ?, ∂xξ

?, η?, ∂xη
?, x) = 0,

where G̃ is the first integral introduced in (23).
Moreover, there exists M1 > 0, depending only on θ, κ0, ε0, such that ξ? and η?,

? = u, s, satisfy the following estimates.

• For x ∈ Dout,?
κ ∩ {|Re(y)| ≥ 2α},

|ξ?(x)| ≤ M1ε
2e−|<x|, |η?(x)| ≤ M1ε

2e−|<x|

and

|∂xξ?(x)| ≤ M1ε
2e−|<x|, |∂xη?(x)| ≤ M1ε

2e−|<x|.
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• For x ∈ Dout,?
κ ∩ {|Re(y)| ≤ 2α},

|ξ?(x)| ≤ M1ε
2

|x− x−|3|x− x−|3|x− x+|3|x− x+|3
,

|η?(x)| ≤ M1ε
2

|x− x−|5|x− x−|5|x− x+|5|x− x+|5
,

|∂xξ?(x)| ≤ M1ε
2

|x− x−|4|x− x−|4|x− x+|4|x− x+|4
,

|∂xη?(x)| ≤ M1ε

|x− x−|5|x− x−|5|x− x+|5|x− x+|5
.

Finally,
ξs(x) = ξu(−x), ηs(x) = ηu(−x)

or, in other words, the unstable curve is reflected by the involution Ψ in (13) to the
stable one.

To prove Theorem 1.2, we analyze the difference

∆ = (∆ξ,∆η) = (ξu − ξs, ηu − ηs). (25)

However, since its difference is exponentially small, to obtain an asymptotic formula,
we would need to analyze this difference in ε-neighborhoods of the singularities x = x±.
Note that Theorem 2.2 does not provide the analytic continuation of (ξs, ηs) to points
κε-close to x− (and same happens for (ξu, ηu) and x+).

Instead of performing the analytic extension of the invariant manifolds in the κε-
neighborhood of the points x±, we rely on auxiliary functions (ξaux, ηaux). These func-
tions will be solutions of the same equation (20) and will also belong to the same energy

level with respect to G̃ as (ξu,s, ∂xξ
u,s, ηu,s, ∂xη

u,s). Then, the analysis of the difference
(25) will be deduced by the differences

∆u = (∆ξu,∆ηu) = (ξu − ξaux, ηu − ηaux),

∆s = (∆ξs,∆ηs) = (ξaux − ξs, ηaux − ηs).
(26)

The following theorem, whose proof is given in Section 4, provides the existence of
the functions (ξaux, ηaux) in the domain

Daux
κ = {x ∈ C : |Im(x)| ≤ tan θRe(x− x−) + π − κε}

∩ {x ∈ C : |Im(x)| ≤ − tan θRe(x− x+) + π − κε}
(27)

with κ, θ > 0. The domain is shown in Figure 3.

Theorem 2.3. Let 0 < θ < arctan
(
π
α

)
. There exists κ0, ε0 > 0, such that, if ε ∈ (0, ε0)

and κ > κ0, then there exist real-analytic functions (ξaux, ηaux) defined in the domain
Daux
κ which are a solution of (20) and satisfy

∂xξ
aux(0) = 0 and G̃(ξaux, ∂ξaux, ηaux, ∂xη

aux, x) = 0

where G̃ is the first integral introduced in (23).
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Figure 3. The auxiliary domain Daux
κ introduced in (27).

Moreover, there exists M2, depending on θ, κ0, ε0 such that, for x ∈ Daux
κ ,

|ξaux(x)| ≤ M2ε
2

|x− x−|3|x− x−|3|x− x+|3|x− x+|3

|ηaux(x)| ≤ M2ε
2

|x− x−|5|x− x−|5|x− x+|5|x− x+|5

|∂xξaux(x)| ≤ M2ε
2

|x− x−|4|x− x−|4|x− x+|4|x− x+|4

|∂xηaux(x)| ≤ M2ε

|x− x−|5|x− x−|5|x− x+|5|x− x+|5

In addition (ξaux(x), ηaux(x)) = (ξaux(−x), ηaux(−x).

2.3. Exponentially small estimates. The next step in the proof of Theorem 1.2 is
to analyze the differences ∆u, ∆s defined in (26). Since (ξ?, η?), ? = u, s, aux are all
solutions of (20), we can conclude in the following lemma that the differences ∆? are
solutions of a linear system in the following domains

Eout,u
κ = {x ∈ C : |Im(x)| ≤ − tan θRe(x− x−) + Im x− − κε,<x ≥ <x−} ,
Eout,s
κ = {x ∈ C : |Im(x)| ≤ tan θRe(x− x+) + Im x+ − κε,<x ≤ <x−} ,

(28)

(see Figure 4). Note that these domains, with θ such that 0 < θ < atan
(
π
3α

)
, satisfy

Eout,?
κ ⊂ Dout,?

κ ∩Daux
κ , ? = u, s.

Lemma 2.4. The functions ∆? = (∆ξ?,∆η?), ? = u, s, in (26) are defined in the
domains Eout,?

κ in (28) and are solutions of the linear system{
L1∆ξ = N1[∆ξ,∆η],
L2∆η = N2[∆ξ,∆ξ′,∆η],

(29)

where {
N1[∆ξ,∆η](x) = −∆η(x) + a(x)∆ξ(x),
N2[∆ξ,∆ξ′,∆η](x) = b(x)∆ξ(x) + c(x)∆ξ′ + d(x)∆η(x),

(30)
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Figure 4. The intersection domain Eout,u
κ introduced in (28).

for some functions a, b, c and d, which satisfy that, for x ∈ Eout,?
κ ,

|a(x)| ≤ M3ε
2

|x− x−|4|x− x−|4|x− x+|4|x− x+|4
,

|b(x)| ≤ M3

|x− x−|4|x− x−|4|x− x+|4|x− x+|4
,

|c(x)| ≤ M3

|x− x−|3|x− x−|3|x− x+|3|x− x+|3
,

|d(x)| ≤ M3

|x− x−|2|x− x−|2|x− x+|2|x− x+|2
,

for some constant M3 independent of ε and κ.

To obtain the exponentially small estimates for the difference ∆, we use the existence

of the first integral G̃(ξ, ξ′, η, η′, x). The first integral gives us an extra relation for the
components of the difference ∆, which allows us to get rid of analyzing ∆ξ.

The following lemma is straightforward taking into account Lemma 2.1 and Theo-
rems 2.2 and 2.3.

Lemma 2.5. The functions ∆? = (∆ξ?,∆η?), ? = u, s, defined in (26) satisfy

(−u′′0(x) +m(x)) ∆ξ + (u′0(x) + n(x)) ∆ξ′ + p(x)∆η + q(x)∆η′ = 0
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for some functions m, n, p and q, which satisfy that, for x ∈ Eout,?
κ ,

|m(x)| ≤ M4ε
2

|x− x−|5|x− x−|5|x− x+|5|x− x+|5
,

|n(x)| ≤ M4ε
2

|x− x−|4|x− x−|4|x− x+|4|x− x+|4
,

|p(x)| ≤ M4ε
2

|x− x−|3|x− x−|3|x− x+|3|x− x+|3
,

|q(x)| ≤ M4ε
2

|x− x−|2|x− x−|2|x− x+|2|x− x+|2
,

with M4 > 0 a constant independent of ε and κ.

By using Lemma 2.5, we reduce the system of two second-order equations (29) to
a third-order system imposed on ∆ζ = ∆ξ′, ∆η and ∆η′. The following lemma is
obtained directly from Lemmas 2.4 and 2.5.

Lemma 2.6. The functions ∆ζ? = ∂x∆ξ
?, ∆η?, ? = u, s, are defined in Eout,? in (28)

and are solutions of the linear equation{
L̂1∆ζ = N̂1[∆ζ,∆η,∆η′],

L2∆η = N̂2[∆ζ,∆η,∆η′],
(31)

where

L̂1 = −∂x +
u′′′0
u′′0
, (32)

and {
N̂1[∆ζ,∆η,∆η′] = −∆η + r̂(x)∆ζ + ŝ(x)∆η + t̂(x)∆η′,

N̂2[∆ζ,∆η,∆η′] = ĉ(x)∆ζ + d̂(x)∆η + ê(x)∆η′,

for some functions r̂, ŝ, t̂, ĉ, d̂ and ê, which satisfy that, for x ∈ Eout,?
κ ,

|r̂(x)| ≤ M5ε
2

|x− x−|3|x− x−|3|x− x+|3|x− x+|3
,

|ŝ(x)| ≤ M5ε
2

|x− x−|2|x− x−|2|x− x+|2|x− x+|2
,

|t̂(x)| ≤ M5ε
2

|x− x−||x− x−||x− x+||x− x+|
,

|ĉ(x)| ≤ M5

|x− x−|3|x− x−|3|x− x+|3|x− x+|3
,

|d̂(x)| ≤ M5

|x− x−|2|x− x−|2|x− x+|2|x− x+|2
,

|ê(x)| ≤ M5ε
2

|x− x−|3|x− x−|3|x− x+|3|x− x+|3
,
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with M5 a constant independent of ε and κ.

By using Lemma 2.6, we provide an asymptotic formula for ∆? at x = 0. Note that,
by Theorem 2.2 and 2.3, ∆ζ?(0) = ∂x∆ξ

?(0) = 0 (and that ∆ξ(0) can be obtained
by Lemma 2.5 once the other components are known). Therefore, in order to prove
Theorem 1.2, it is sufficient to look for an asymptotic formula for ∆η?(0) and ∂x∆η

?(0).
Assume for a moment that ∆η? satisfy

L2∆η = 0

(that is, assume that ĉ = d̂ = ê = 0). Then, ∆η? would be of the form

∆η?(x) = C?
1e

ix
ε + C?

2e
− ix
ε . (33)

We introduce

ρ− = x− − iκε and ρ+ = x+ − iκε (34)

with x± = ±α + πi and α defined in Lemma 2.1. We observe that, by Theorems 2.2
and Theorem 2.3, ∆ηu is defined at ρ−, ρ− and ∆ηs is defined at ρ+, ρ+. Evaluating

∆ηu in (33) at x = ρ− and x = ρ−, using that e
iρ−
ε and e−

iρ−
ε are of size e−

π
ε , one

obtains that Cu
1 and Cu

2 must satisfy

Cu
1 = ∆ηu(ρ−)e−

iρ−
ε + h.o.t. and Cu

2 = ∆ηu(ρ−)e
iρ−
ε + h.o.t.. (35)

An analogous formula follows for Cs
1,2 changing ρ− by ρ+.

Now, the equation for ∆η?, ? = u, s, in (29) has a right hand side (30) with nonzero

ĉ, d̂, ê and therefore one has to proceed more carefully than in the arguments above.
The following proposition gives the needed result.

Proposition 2.7. The functions ∆η?, ? = u, s, introduced in (26) are defined in Eout,?

given by (28) and are of the form

∆η?(x) = C?
1e

ix
ε + C?

2e
− ix
ε +R?(x) (36)

where

• The constants C?
1 and C?

2 satisfy

∆ηu(ρ−) = Cu
1 e

iρ−
ε + Cu

2 e
− iρ−

ε

∆ηu(ρ−) = Cu
1 e

iρ−
ε + Cu

2 e
− iρ−

ε

∆ηs(ρ+) = Cs
1e

iρ+
ε + Cs

2e
− iρ+

ε

∆ηs(ρ+) = Cs
1e

iρ+
ε + Cs

2e
− iρ+

ε .

(37)

• The functions R? satisfy that

Ru(ρ−) = 0, Ru(ρ−) = 0, Rs(ρ+) = 0, Rs(ρ+) = 0, (38)
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and that, for x ∈ Eout,?
κ ,

|R?(x)| ≤ M6

κ
e

1
ε
|=x| (|Cu

1 |+ |Cu
2 |)

|∂xR?(x)| ≤ M6

εκ
e

1
ε
|=x| (|Cu

1 |+ |Cu
2 |) ,

(39)

for some constant independent M6 > 0 independent of ε and κ.

Note that the properties of C?
j are a direct consequence of evaluating (36) at x = ρ±

and x = ρ± and the properties of R?. That is, to prove Proposition 2.7 boils down to
prove the properties stated for the functions R?. This is done in Section 7.

By Proposition 2.7, proceeding as for (33), we have that indeed, Cu
1,2 is of the form

in (35) and analogous formula are also true for Cs
1,2. As a consequence, of this analysis

and using also that, by Theorems 2.2 and 2.3

|∆η∗(ρ±)|, |∆η∗(ρ±)| ≤M
1

κ5ε3
,

we have that

|C?
1,2| ≤M

1

ε3
e−

π
ε .

However, in order to prove the asymptotic formula in Theorem 1.2, we need to perform
a more accurate analysis of the functions η? (and ξ?) around the points ρ± and ρ±.
This is done in the following subsections by means of the inner equation (Theorem 2.8)
and complex matching techniques (Theorem 2.10).

2.4. The inner scale. We perform the change of coordinates to the inner variables.
We consider the new variables

z = ε−1(x− x±) (40)

and, recalling the definition of c±1 in (19), we define the functions

φ(z) =
ε

c±1

ξ(x± + εz), ψ(z) =
ε3

c±1

η(x± + εz). (41)

Recall that γ < 0 and therefore c2
±1γ = −1. Applying the change of coordinates to

equation (20) and letting ε→ 0 we obtain the limiting inner equation,{
Lin

1 φ = J in
1 [φ, ψ],

Lin
2 ψ = J in

2 [φ, ψ],
(42)

with {
Lin

1 = −∂2
z + 6

z2
,

Lin
2 = ∂2

z + 1,
(43)

and {
J in

1 [φ, ψ] = −ψ − 6
z
φ2 − 2φ3,

J in
2 [φ, ψ] = −6

(
1
z

+ φ
)2
(
ψ + 2

(
1
z

+ φ
)3
)
− 12

(
1
z

+ φ
) (
− 1
z2

+ ∂zφ
)2
.

(44)
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This equation is reversible with respect to the symmetry

(φ, ψ)→ (−φ,−ψ), z → −z. (45)

We analyze this equation in the inner domains (see Figure 5)

Du,in
θ,κ = {z ∈ C : |=(z)| > tan θ<(z) + κ},

Ds,in
θ,κ = {z ∈ C : −z ∈ Du,in

θ,κ },
(46)

for 0 < θ < π/2 and κ > 0.

Figure 5. The inner domain Du,in
θ,κ introduced in (46).

The following theorem, which is proved in Section 5, provides an asymptotic formula
for the difference between the two solutions of the inner equation.

Theorem 2.8. Let 0 < θ < π
2

be fixed. There exists κ0 ≥ 1 big enough such that, for
each κ ≥ κ0,

(1) Equation (42) has two real-analytic solutions (φ0,?, ψ0,?) : D?,inθ,κ → C2, ? = u, s,

which, for every z ∈ D?,inθ,κ , satisfy∣∣φ0,?(z)
∣∣ ≤ M7

|z|3
,
∣∣ψ0,?(z)

∣∣ ≤ M7

|z|5
,

for some M7 > 0 independent of κ. Moreover, they satisfy that, for z ∈ Du,in
θ,κ ,

(φ0,u(z), ψ0,u(z)) = (−φ0,s(−z),−ψ0,s(−z)). (47)
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(2) The differences ∆φ0(z) = φ0,u(z)−φ0,s(z), ∆ψ0(z) = ψ0,u(z)−ψ0,s(z) are given
by

∆φ0(z) = Θe−iz (−1 + χ1(z))

∆ψ0(z) = Θe−iz (1 + χ2(z))

∂z∆φ
0(z) = −iΘe−iz (−1 + χ̂1(z))

∂z∆ψ
0(z) = −iΘe−iz (1 + χ̂2(z))

(48)

for z ∈ Rin
θ,κ = Du,in

θ,κ ∩ D
s,in
θ,κ ∩ {z : iR,=z < 0}, where Θ ∈ R is a constant, and

χ1, χ2, χ̂1, χ̂2 are analytic in z and satisfy that, for z ∈ Rin
θ,κ,

|χ1(z)| ≤ M8

|z|
, |χ2(z)| ≤ M8

|z|
, |χ̂1(z)| ≤ M8

|z|
|χ̂2(z)| ≤ M8

|z|
,

for some M8 > 0 independent of κ.
(3) The constant Θ satisfies Θ 6= 0 if and only if there exists z0 ∈ Rin

θ,κ such that

∆φ0(z0) 6= 0.

Theorem 2.8 does not ensure that the first-order constant Θ is non-zero. This is
stated in the next proposition, whose proof is deferred to Appendix B.

Proposition 2.9. The constant Θ ∈ R introduced in Theorem 2.8 satisfies Θ 6= 0.

Once we have obtained the solutions of the inner equation and analyzed their differ-
ence, the next step is to “measure” how well they approximate the functions obtained
in Theorems 2.2 and 2.3. This is done through what is usually called complex matching
techniques.

We first define the matching domains where these differences are analyzed. Let
0 < ν < 1 and 0 < θ2 < θ < θ1 <

π
2
, where θ is the angle introduced in (24). We

denote

ρ− = −iκε+ x−, x−1 = −iκε− ενeiθ1 + x−, x−2 = −iκε+ ενeiθ2 + x−.

and

ρ+ = −iκε+ x+. x+
1 = −iκε+ ενe−iθ1 + x+, x+

2 = −iκε− ενe−iθ2 + x+.

Notice that ρ+ = −ρ−, x+
1 = −x−1 , x+

2 = −x−2 , where we have denoted by z the complex
conjugate of z. We define the matching domains as

D−,match
θ1,θ2,ν

= ̂ρ−, x
−
1 , x

−
2 , −D+,match

θ1,θ2,ν
= ̂ρ+, x

+
1 , x

+
2 (49)

that is, D−,match
θ1,θ2,ν

as the triangle with vertexs ρ−, x
−
1 , x

−
2 while D−,match

θ1,θ2,ν
is the triangle

with vertexs −ρ+, x
+
1 , x

+
2 (see Figure 6).

We also introduce

ξ0,u
− (x) =

c−1

ε
φ0,u
(
ε−1(x− x−)

)
, η0,u

− (x) =
c−1

ε3
ψ0,u

(
ε−1(x− x−)

)
,

ξ0,s
+ (x) =

c1

ε
φ0,s
(
ε−1(x− x+)

)
, η0,s

+ (x) =
c1

ε3
ψ0,s
(
ε−1(x− x+)

) (50)
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Figure 6. The matching domain D−,match
θ1,θ2,ν

introduced in (49).

and

ξ0,aux
− (x) =

c−1

ε
φ0,s
(
ε−1(x− x−)

)
, η0,aux

− (x) =
c−1

ε3
ψ0,s
(
ε−1(x− x−)

)
,

ξ0,aux
+ (x) =

c1

ε
φ0,u
(
ε−1(x− x+)

)
, η0,aux

+ (x) =
c1

ε3
ψ0,u

(
ε−1(x− x+)

)
.

(51)

The following theorem, which is proved in Section 6, provides estimates between
(ξ0,∗
± , η0,∗

± ) and (ξ∗, η∗) with ? = u, s, aux in the corresponding matching domains.

Theorem 2.10. Let θ > 0, κ0 be fixed as in Theorems 2.8, 2.3 and θ as in Theorem 2.2.
Take 0 < θ2 < θ < θ1 < atan

(
π
3α

)
and ν ∈ (0, 1).

We introduce the functions(
δξu
−, δη

u
−
)

=
(
ξu − ξ0,u

− , ηu − η0,u
−
)
,(

δξs
+, δη

s
+

)
=
(
ξs − ξ0,s

+ , ηs − η0,s
+

)
,(

δξaux
± , δηaux

±
)

=
(
ξaux − ξ0,aux

± , ηaux − η0,aux
±

)
.

Then there exist κ1 ≥ κ0 and a constant M9 > 0 such that for all κ ≥ κ1 and x ∈
D±,match
θ1,θ2,ν ∣∣δξu

−(x)
∣∣, ∣∣δξs

+(x)
∣∣, ∣∣δξaux

± (x)
∣∣ ≤M9| log ε| ε2−ν

|x− x±|2
,

∣∣∂xδξu
−(x)

∣∣, ∣∣∂xδξs
+(x)

∣∣, ∣∣∂xδξaux
± (x)

∣∣ ≤M9| log ε| ε2−ν

|x− x±|3∣∣δηu
−(x)

∣∣, ∣∣δηs
+(x)(x)

∣∣, ∣∣δηaux
± (x)

∣∣ ≤M9| log ε| ε2−ν

|x− x±|4
,

∣∣∂xδηu
−(x)

∣∣, ∣∣∂xδηs
+(x)

∣∣, ∣∣∂xδηaux
± (x)

∣∣ ≤M9| log ε| ε1−ν

|x− x±|4
.
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2.5. The asymptotic formula. Now, to prove Theorem 1.2 it only remains to provide
an asymptotic formula for the constants C?

1 and C?
2 . This is done in the following

proposition, which is proved in Section 2.6. From now on we take

κ = c| log ε| (52)

for some suitable constant c > 0 to be chosen later.

Proposition 2.11. The constants C?
1 and C?

2 introduced in Proposition 2.7 satisfy

Cu
1 =

1√
|γ|ε3

e−
ix−
ε

(
Θ +O

(
1

| log ε|

))
Cu

2 =
1√
|γ|ε3

e
ix−
ε

(
Θ +O

(
1

| log ε|

))
Cs

1 = − 1√
|γ|ε3

e−
ix+
ε

(
Θ +O

(
1

| log ε|

))
Cs

2 = − 1√
|γ|ε3

e
ix+
ε

(
Θ +O

(
1

| log ε|

))
.

Evaluating at x = 0 the formula for ∆? in (36) together with Propositions 2.7
and 2.11 lead to the asymptotic formulas

∆ηu(0) =
1√
|γ|ε3

e−
π
ε

(
2Θ cos

(α
ε

)
+O

(
1

| log ε|

))
∂x∆η

u(0) =
1√
|γ|ε4

e−
π
ε

(
−2Θ sin

(α
ε

)
+O

(
1

| log ε|

))
∆ηs(0) = − 1√

|γ|ε3
e−

π
ε

(
2Θ cos

(α
ε

)
+O

(
1

| log ε|

))
∂x∆η

s(0) = − 1√
|γ|ε4

e−
π
ε

(
2Θ sin

(α
ε

)
+O

(
1

| log ε|

))
,

where α is the constant introduced in (18).
To complete the proof of Theorem 1.2 we recall that ∆η = ∆ηu + ∆ηs and that

by the symmetry properties in Theorem 2.2 and 2.3 of ηu, ηs, ηaux one has that, for
x ∈ Daux

κ ∩ R

∆ηu(x) = ηu(x)− ηaux(x) = ηs(−x)− ηaux(−x) = −∆ηs(−x)

and therefore ∆ηu(0) = −∆ηs(0). This completes the proof of Theorem 1.2.

Remark 2.12. Notice that we could argue by symmetry that ∆ηs(x) = −∆ηu(−x) and
skip the constants Cs

1,2 of our analysis. However we have preferred to keep all constants
in order to emphasize that the method does not depend on the symmetries of the system.
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2.6. Proof of Proposition 2.11. To prove Proposition 2.11, the first step is to provide
an asymptotic formula for ∆ηu(ρ−),∆ηu(ρ−) and ∆ηs(ρ+),∆ηs(ρ+).

Lemma 2.13. Let ν ∈ (0, 1) and consider the points x = ρ− and x = ρ− introduced
in (34) with κ as in (52) and c ∈ (0, 1− ν) .

Then, the functions ∆ηu,∆ηs in (26) satisfy

∆ηu(ρ−) =
c−1

ε3
e−κ

(
Θ +O

(
1

| log ε|

))
∆ηu(ρ−) =

c−1

ε3
e−κ

(
Θ +O

(
1

| log ε|

))
,

and

∆ηs(ρ+) =
c+1

ε3
e−κ

(
Θ +O

(
1

| log ε|

))
∆ηs(ρ+) =

c+1

ε3
e−κ

(
Θ +O

(
1

| log ε|

))
,

where c±1 and Θ are the constants introduced in (19) and Theorem 2.8 respectively.

Proof. We provide the proof for ∆ηu(ρ−). The other formula can be proven analogously.
Note that ∆ηu can be written as

∆ηu(x) = ηu(x)− η0,u
− (x) + η0,u

− (x)− η0,aux
− (x) + η0,aux

− (x)− ηaux(x)

=
c−1

ε3
∆ψ0

(
x− x−
ε

)
+ δηu

−(x)− δηaux
− (x)

where η0,?
− , ? = u, aux are defined in (50), (51),∆ψ0 is the function analyzed in The-

orem 2.8 (recall the inner change of variables (40)) and δηu
−, δηaux

− are the functions
introduced in Theorem 2.10. Then, it is enough to use the asymptotic formula (48)
and the estimates in Theorem 2.10. Indeed, using that ρ− − x− = −iκε, we obtain

∆ηu(ρ−) =
c−1

ε3

(
Θe−κ

(
1 + χ(−iκ)

)
+O

(
ε1−ν

| log ε|3

))
=
c−1

ε3
e−κ

(
Θ +O

(
1

| log ε|

)
+ eκO

(
ε1−ν

| log ε|3

))
and therefore, from eκ = ε−c ≤ εν−1, we obtain the result. Notice that

∆ηs(x) = ηaux(x)− η0,aux
+ (x) + ηaux,0

+ (x)− η0,s
+ (x) + η0,s

+ (x)− ηs(x)

=
c+1

ε3
∆ψ0

(
x− x+

ε

)
+ δηaux

+ (x)− δηs
+(x)

so the result for ∆ηs follows analogously as the one for ∆ηu. �
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To complete the proof of Proposition 2.11, it suffices to solve the linear system (37).
Indeed, we have that, the linear system for Cu

1,2 can be rewritten as(
1 e−

2iρ−
ε

e
2iρ−
ε 1

)(
Cu

1

Cu
2

)
=

(
e−

iρ−
ε ∆ηu(ρ−)

e
iρ−
ε ∆ηu(ρ−)

)
.

Thus, using that ε−1i(ρ− − ρ−) = −ε−12π, that ρ− = x− − iκε and Lemma 2.13

Cu
1 =

c−1

ε3
e−

ix−
ε

(
Θ +O

(
1

| log ε|

))
Cu

2 =
c−1

ε3
e
ix−
ε

(
Θ +O

(
1

| log ε|

))
.

Proceeding analogously for Cs
1,2 we obtain

Cs
1 =

c+1

ε3
e−

ix+
ε

(
Θ +O

(
1

| log ε|

))
Cs

2 =
c+1

ε3
e
ix+
ε

(
Θ +O

(
1

| log ε|

))
.

Since c∓1 = ±(
√
|γ|)−1 is given in (19), this completes the proof of Proposition 2.11.

2.7. Notation and preliminaries. Here we set some standard notations used in our
work and to provide (and prove) a general result improving the classical fixed point
equation. We will use the following notation and conventions:

• For g, h : Ω ⊂ C → C, a function defined in a complex set Ω, we will say
that |g(x)| . |h(x)| if there exists a constant M such that for all x ∈ Ω,
|g(x)| ≤M |h(x)|.
• Let X be a Banach space endowed with the norm ‖ · ‖X . We will use the

notation B(%) ⊂ X for the closed ball of radius % centered at the origin of X,
namely

B(%) = {x ∈ X : ‖x‖X ≤ %}.
• From now on, κ0, ε > 0 will be fixed; κ0 is as large and we need and ε0 > 0 is as

small as necessary. All the constants appearing in the results are uniform with
respect to ε ∈ (0, ε0] and κ ≥ κ0. Moreover, when we say in the statement of
a result, that ε is small enough (resp. κ is big enough) we mean that we are
choosing ε0 > 0 small enough (resp. κ0 big enough) such that the statement
hold for ε ∈ (0, ε0] (resp. κ ≥ κ0).

We present now a result which is a consequence of the Banach fixed point theorem.
We will use it several times along the work.

Theorem 2.14. Let (X‖ · ‖X), (Y, ‖ · ‖Y ) be Banach spaces and take any (x0,y0) ∈
X × Y . Consider F : X × Y → X × Y an operator, F = (FX ,FY ), satisfying that,
there exist positive constants c,

% ≥ 3(c + 1)max{‖FX [x0,y0]− x0‖X , ‖FY [x0,y0]− y0)‖Y },
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L1, L2 and L3 such that

‖FX [x,y]− FX [x̃, ỹ]‖X ≤ c‖y − ỹ‖Y + L1‖x− x̃‖X
‖FY [x,y]− FY [x̃, ỹ]‖Y ≤ L2‖x− x̃‖X + L3‖y − ỹ‖Y

(53)

for any (x− x0,y − y0), (x̃− x0, ỹ − y0) ∈ B(%)×B(%) ⊂ X × Y . Then, if

L1 + c(L2 + L3), L2 + L3 ≤
1

3
, (54)

the fixed point equation (x,y) = F[x,y] restricted to B(%)×B(%) has a unique solution.

Proof. We endow X × Y with the norm ‖(x,y)‖× = max{‖x‖X , ‖y‖Y }. We notice
that B(%)×B(%) ⊂ X × Y is indeed the ball of radius % centered at the origin.

We first claim that, if (x− x0,y − y0) ∈ B(%) ⊂ X × Y , then

(x− x0,FY [x,y]− y0) ∈ B(%) ⊂ X × Y.
Indeed, it is clear that

‖FY [x,y]− y0‖Y ≤ ‖FY [x,y]− FY [x0,y0]‖Y + ‖FY [x0,y0]− y0‖Y

≤ %

(
L2 + L3 +

1

3(c + 1)

)
≤ %

where we have used that L2 + L3 ≤ 1
3
.

Consider the operator

F̂[x,y] =
(
FX(x,FY [x,y]),FY [x,y]

)
,

which has the same fixed points that F, and we compute the Lipschitz constant of the

operator F̂. By hypothesis we have that

‖F̂X [x,y]− F̂X [x̃, ỹ]‖X ≤ c‖FY [x,y]− FY [x̃, ỹ]‖Y + L1‖x− x̃‖X
≤ cL3‖y − ỹ‖Y + (L1 + cL2)‖x− x̃‖X .

Then, denoting L = max{L1 + cL2 + cL3, L2 + L3}

‖F̂[x,y]− F̂[x̃, ỹ]‖× ≤ L‖(x,y)‖×
and hence, the Lipschitz constant of F̂ is L ≤ 1

3
by hypothesis.

In addition, for (x− x0,y − y0) ∈ B(%) ⊂ X × Y ,

‖F̂[x,y]− (x0,y0)‖× ≤‖F̂[x,y]− F̂[x0,y0]‖× + ‖F̂[x0,y0]− (x0,y0)‖×
≤L‖(x,y)− (x0,y0)‖× + ‖F̂[x0,y0]− F[x0,y0]‖×

+ ‖F[x0,y0]− (x0,y0)‖×

≤L%+ ‖FX [x0,FY [x0,y0]]− FX [x0,y0]‖X +
%

3(c + 1)

≤%
(
L+

1

3(c + 1)
+

c

3(c + 1)

)
≤ %.
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Therefore, the map F̂ is a contraction from B(%) ⊂ X ×Y to itself and the fixed point
theorem implies the existence of an unique fixed point belonging to B(%) ⊂ X×Y . �

3. The invariant manifolds in the outer domain

Here we prove Theorem 2.2 with a fixed point argument. Then the first step of the
proof, done in Section 3.1, is to reformulate Theorem 2.2 as a fixed point problem. In
Section 3.2 we prove that the fixed point operator is a contraction in a suitable closed
ball of a Banach space.

We prove Theorem 2.2 for the unstable manifold and we obtain the corresponding
result for the stable manifold taking advantage of the symmetries of the system. Indeed,
by definition (24) of Dout,?

κ , x ∈ Dout,s
κ if and only if −x ∈ Dout,u

κ and using that the
system is reversible with respect to the involution Ψ in (13), we deduce that, if (ξu, ηu)
satisfy the conditions in Theorem 2.2, then

ξs(x) := ξu(−x), ηs(x) := ηu(−x)

satisfy the corresponding properties.

3.1. The fixed point approach. For given κ > 0 and θ ∈
(
0, arctan

(
π
3α

))
we recall

definition (24) (see also Figure 2) of the complex domains Dout,u
κ . From now on we fix

θ and we do not write explicitly the dependence of the domains on θ. The role of κ,
as we will see, is completely different.

We introduce, for a real-analytic function h : Du,out
κ → C, the norm

‖h‖m,` = sup
x∈Du,out

κ ∩{<(x)≤−2α}
| coshx|m|h(x)|

+ sup
x∈Du,out

κ ∩{<(x)≥−2α}
|x− x−|`|x− x−|`|h(x)|

with `,m ∈ R. Then, we define the associated Banach space

Em,` = {h : Du,out
κ → C is real-analytic with ‖h‖m,` <∞},

DEm,` = {h : Du,out
κ → C is real-analytic with ‖h‖m,` + ‖h′‖m,`+1 <∞},

and the product Banach space

E× = DE1,3 × E1,5,

with the product norm

‖(h1, h2)‖× = max
{
‖h1‖1,3 + ‖h′1‖1,4, ‖h2‖1,5

}
.

We have the following lemma, whose proof is straightforward.

Lemma 3.1. There exists M > 0 depending only on θ, such that, for any κ > 0 and
g, h : Dout,u

κ → C, it holds

(1) If `2 ≥ `1 ≥ 0, then

‖h‖m,`2 ≤M‖h‖m,`1 and ‖h‖m,`1 ≤
M

(κε)`2−`1
‖h‖m,`2 .
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(2) If `1, `2 ≥ 0 and ‖g‖m1,`1 , ‖h‖m2,`2 <∞, then

‖gh‖m1+m2,`1+`2 ≤ ‖g‖m1,`1‖h‖m2,`2 .

(3) If m2 ≥ m1, ` ≥ 0 and ‖g‖m2,` <∞ then

‖g‖m1,` ≤M‖g‖m2,`.

In this functional setting, Theorem 2.2 (for the unstable solution) is a straightforward
consequence of the following result.

Proposition 3.2. Consider the system (20), that is

L1ξ = F1[ξ, η], L2η = F2[ξ, η] (55)

with L1,L2 and F = (F1,F2) defined in (21) and (22) respectively. There exists κ0, ε0

and a constant M1 such that for ε ∈ (0, ε0) and κ > κ0, system (55) has solutions
(ξu, ηu) ∈ E× satisfying ‖(ξu, ηu)‖× ≤M1ε

2 and ∂xξ
u(0) = 0.

Remark 3.3. By definition of the Banach space E×, since (ξu, ηu) ∈ E×, it satisfies
the boundary conditions

lim
<x→−∞

(ξu(x), ηu(x)) = (0, 0). (56)

Therefore, by Cauchy’s theorem, it is also true for x on R that

lim
x→−∞

(∂xξ
u(x), ∂xη

u(x)) = (0, 0).

Then,

lim
x→−∞

G̃(ξu(x), ∂xξ
u(x), ηu(x), ∂xη

u(x), x) = G̃(0, 0, 0, 0) = 0,

with G̃ the first integral defined in (23), and therefore, for x ∈ Dout,u
κ ,

G̃(ξu(x), ∂xξ
u(x), ηu(x), ∂xη

u(x), x) = 0.

In addition, for x ∈ Dout,u
κ , we have |x− x+|, |x− x+| ≥ M for some constant M > 0

and hence the estimates in Theorem 2.2 in the domain Dout,u
κ ∩ {<x ≥ −2α} hold

trivially.

The remaining part of this section is devoted to prove Proposition 3.2. In order to
do so, we seek a fixed point formulation of (55) in a suitable ball of E×. Therefore, the
next step in our analysis is to look for suitable right inverses of the operators L1 and
L2.

We start with L1. The homogeneous equation L1ξ = 0 has two linearly independent
solutions ζ1 and ζ2, where the odd function ζ1(x) = u′0(x) is a solution due to the trans-
lation symmetry and the even function ζ2(x) is uniquely defined by the normalization

ζ1(x)ζ ′2(x)− ζ ′1(x)ζ2(x) = 1, x ∈ R, (57)

which follows from the Wronskian identity. The following lemma gives the second
solution ζ2 and it is proved in Appendix C.
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Lemma 3.4. For a given κ > 0, there exists a unique real analytic even function
ζ2 : Dout,u

κ → C satisfying (57). In addition, ζ2(0) 6= 0 and ‖ζ2‖−1,2 + ‖ζ ′2‖−1,3 ≤M for
some constant independent of κ ≥ 1.

Remark 3.5. We notice that ζ1 = u′0 ∈ DE1,2.

The classical theory of second-order differential equations implies that we can con-
struct right inverses of the operator L1 as

L−1
1 [h](x) = ζ1(x)

[
C1 +

∫ x

x1

ζ2(s)h(s)ds

]
+ ζ2(x)

[
C2 −

∫ x

x2

ζ1(s)h(s)ds

]
(58)

for any given x1, x2, C1, C2 ∈ R. However, we are interested in solutions (ξu, ηu) satis-
fying the boundary conditions ∂xξ(0) = 0 and the decay behavior (56). Therefore, we
impose the same conditions on the solutions of L1ξ = h and we easily obtain that the
right inverse is formally given by

Gout
1 [h](x) = ζ1(x)

∫ x

0

ζ2(s)h(s)ds− ζ2(x)

∫ x

−∞
ζ1(s)h(s)ds (59)

where the (complex) integration path is, in the first integral, the segment between 0
and x and, in the second integral, corresponds to the path parameterized by s = x+ t,
with t ∈ (−∞, 0].

In addition, it is straightforward to check that a right inverse of the operator L2 can
be formally expressed as

Gout
2 [h] = −iε

2
eiε
−1x

∫ x

−∞
e−iε

−1sh(s)ds+
iε

2
e−iε

−1x

∫ x

−∞
eiε
−1sh(s)ds, (60)

where the integration path is the horizontal line s = x+ t, t ∈ (−∞, 0].
The following lemma describes how the operators Gout

1 and Gout
2 act on functions

belonging to DE1,3 and E1,5 respectively. Its proof follows the same lines as the ones of
Proposition 4.3 in [28] and we sketch the main steps of the proof in Appendix C.

Lemma 3.6. The operators Gout
1 and Gout

2 introduced in (59) and (60) have the follow-
ing properties.

(1) Gout
i ◦ Li = Li ◦ Gout

i = Id.
(2) For any m > 1 and ` ≥ 5, there exists a constant M > 0 independent of ε and

κ such that, for every h ∈ Em,`,∥∥Gout
1 [h]

∥∥
1,`−2

≤M‖h‖m,` and
∥∥∂xGout

1 [h]
∥∥

1,`−1
≤M‖h‖m,`

and
∂xGout

1 [h](0) = 0.

In addition, if h is real analytic, then G1[h] is also real analytic.
(3) For any m ≥ 1, ` ≥ 0, there exists M > 0 such that for h ∈ Em,`,∥∥Gout

2 [h]
∥∥
m,`
≤Mε2‖h‖m,`

Moreover, when h is real analytic, Gout
2 [h] is also real analytic.
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In order to prove Proposition 3.2, we use Lemma 3.6 and look for solutions of (55)
belonging to E×, satisfying ∂xξ(0) = 0 as fixed points of the operator

Fout =
(
Gout

1 ◦ F1,Gout
2 ◦ F2

)
(61)

where Fi are the operators defined in (22).

3.2. The contracting mapping. We prove Proposition 3.2 using Theorem 2.14. To
do so, we study Fout[0, 0] (Lemma 3.7) and the Lipschitz constant of Fout in a suitable
ball B(Rε2) ⊂ E× (Lemma 3.8).

Lemma 3.7. There exists a constant b1 > 0 independent of ε and κ such that

‖Fout[0, 0]‖× ≤ b1ε
2.

Proof. From definition (22) of F ,

F [0, 0] = (0, f ′(u0)(u0 − f(u0)) + f ′′(u0)(u′0)2).

Since u0 ∈ E1,1, see (7) and Lemma 2.1, and f(u) = u2 + 2γu3, F2[0, 0] ∈ E2,5 ⊂ E1,5

with ‖F2[0, 0]‖1,5 . 1 and from Lemma 3.6 the result holds true. �

Lemma 3.8. There exists C1 > 0 such that for all R > 0, if (ξ, η), (ξ̃, η̃) ∈ B(Rε2) ⊂
E×, then the operator Fout in (61) satisfies∥∥∥Fout

1 [ξ, η]−Fout
1 (ξ̃, η̃)

∥∥∥
1,3
≤ C1‖η − η̃‖1,5 +

C

κ2
‖(ξ, η)− (ξ̃, η̃)‖×∥∥∥∂xFout

1 [ξ, η]− ∂xFout
1 [ξ̃, η̃]

∥∥∥
1,4
≤ C1‖η − η̃‖1,5 +

C

κ2
‖(ξ, η)− (ξ̃, η̃)‖×∥∥∥Fout

2 [ξ, η]−Fout
2 [ξ̃, η̃]

∥∥∥
1,5
≤ C

κ2
‖(ξ, η)− (ξ̃, η̃)‖×.

for some constant C = C(R) > 0 independent of ε and κ.

Proof. Let (ξ, η), (ξ̃, η̃) ∈ B(Rε2). We define ζλ = (ξλ, ηλ) = (ξ̃, η̃) + λ
(
(ξ, η)− (ξ̃, η̃)

)
.

Then, using the mean value theorem

F1[ξ, η](x)−F1[ξ̃, η̃](x) =

∫ 1

0

DF1[ζλ](x)
(
ξ(x)− ξ̃(x), η(x)− η̃(x)

)>
dλ

with

DF1[ζλ](x) =
(
∂ξF1[ζλ](x), ∂ηF1[ζλ](x)

)
=
(
12γu0(x)ξλ(x) + 2ξλ(x) + 6γξ2

λ(x),−1
)

and satisfying

‖∂ξF1[ζλ]‖1,2 .
ε2

(εκ)2
+
ε2

εκ
+

ε4

(εκ)4
.

1

κ2
,
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where we have used Lemma 3.1, that κ is big enough and that ε is small enough. Then
by the second item in Lemma 3.6 and recalling that Fout

1 = Gout
1 ◦ F1

‖Fout
1 [ξ, η]−Fout

1 [ξ̃, η̃]‖1,3 ≤M‖F1[ξ, η]−F1[ξ̃, η̃]‖1,5

≤M‖η̃ − η‖1,5 +
C

κ2
‖ξ − ξ̃‖1,3

where M is the constant provided in item 2 of Lemma 3.6, which is independent on R.
In addition, using again item 2 in Lemma 3.6

‖∂xFout
1 [ξ, η]− ∂xFout

1 [ξ̃, η̃]‖1,4 ≤M‖η̃ − η‖1,5 +
C

κ2
‖ξ − ξ̃‖1,3.

With respect to the second component, we define

M[ξ, η, ξ′] = f ′(u0 + ξ) (u0 + ξ + η − f(u0 + ξ)) + f ′′(u0 + ξ)(u′0 + ξ′)2

which satisfiesM[ξ, η, ξ′] = F2[ξ, η]. We note that ‖u0 + ξλ‖1,1, ‖u′0 + ξ′λ‖1,2 . 1. Then,
computing

∂ξ′M[ξλ, ηλ, ξ
′
λ] = 2f ′′(u0 + ξλ)(u

′
0 + ξ′λ),

we have that

‖∂ξ′M[ξλ, ηλ, ξ
′
λ]‖2,1 .

1

(κε)2
.

In addition

‖∂ηM[ξλ, ηλ, ξ
′
λ]‖2,0 .

1

(κε)2
, ‖∂ξM[ξλ, ηλ, ξ

′
λ]‖2,2 .

1

(κε)2
.

Then, using the mean’s value theorem as Lemma 3.1, we obtain

‖F2[ξ, η]−F2[ξ̃, η̃]‖1,5 .
1

(κε)2
‖(ξ, η)− (ξ̃, η̃)‖×,

from which the last bound in Lemma 3.8 follows by applying the third item of Lemma 3.6.
�

End of the proof of Proposition 3.2. We apply now Theorem 2.14 to the operator Fout.
Indeed, using Lemmas 3.7 and 3.8, we take (with the notation in Theorem 2.14)
(x0,y0) = (0, 0), c = C1,

% = 3(C1 + 1)b1ε
2 ≥ 3(C1 + 1)‖Fout[0, 0]‖×

and L1 = L2 = L3 = C
κ2

. Hence the conditions (53) and (54) in Theorem 2.14 are
trivially satisfied taking κ big enough. Therefore, Fout has a unique fixed point which
belongs to B(3(C1 + 1)b1ε

2). This completes the proof of Proposition 3.2. �
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4. An auxiliary solution

Here we prove Theorem 2.3 by constructing a real-analytic solution (ξaux, ηaux) of
equation (20) defined in the domain Daux

κ , see (27) and Figure 3. As we have done in
Section 3, we fix θ ∈

(
0, arctan

(
π
α

))
and we omit the dependence on it along the proof.

We will run the fixed point argument similar to that of Section 3. Note however that
we have to modify some arguments in a suitable way so that

• The integrals defining the right inverse of the linear operators L1,L2 have to
be over paths within the new domain Daux

κ , see (59) and (60).
• We have to ensure that the solutions belongs to the 0 level curve of the first

integral G̃ given by (23).

4.1. The fixed point approach. We first define the Banach space where the fixed
point argument is carried out. Given κ > 0, we define for a real-analytic function
h : Daux

κ → C the norm

‖h‖` = sup
x∈Daux

κ

|(x− x−)`(x− x−)`(x− x+)`(x− x+)`h(x)|, (62)

with the associated Banach spaces

Y` = {h : Daux
κ → C is real-analytic with ‖h‖` <∞},

DY1
` = {h : Daux

κ → C is real-analytic with ‖h‖` + ‖h′‖`+1 <∞},
DY2

` = {h : Daux
κ → C is real-analytic with ‖h‖` + ε‖h′‖` <∞}.

(63)

Then, we define the product Banach space

Y× = DY1
3 ×DY2

5

with the norm

‖(ξ, η)‖× = max
{
‖ξ‖3 + ‖ξ′‖4, ‖η‖5 + ε‖η′‖5

}
.

The counterpart of Lemma 3.1 for the Banach spaces Y` is the following result whose
proof is left to the reader.

Lemma 4.1. There exists M > 0, such that, for any κ > 0 and g, h : Daux
κ → C, it

holds that

(1) If `2 ≥ `1 ≥ 0, then

‖h‖`2 ≤M‖h‖`1 and ‖h‖`1 ≤
M

(κε)`2−`1
‖h‖`2 .

(2) If `1, `2 ≥ 0 and ‖g‖`1 , ‖h‖`2 <∞, then

‖gh‖`1+`2 ≤ ‖g‖`1‖h‖`2 .

We rephrase Theorem 2.3 as the following proposition.
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Proposition 4.2. There exist κ0, ε0 > 0 and M2 > 0, such that, if ε ∈ (0, ε0) and
κ > κ0, the system (20) has real-analytic solutions (ξaux, ηaux) ∈ Y× satisfying

G̃(ξaux, ∂xξ
aux, ηaux, ∂xη

aux, x) = 0, ∂xξ
aux(0) = 0,

where G̃ is the first integral introduced in (23), and ‖(ξaux, ηaux)‖× ≤M2ε
2. In addition,

ξaux(x) = ξaux(−x) and ηaux(x) = ηaux(−x).

To prove Proposition 4.2, we recall that system (20) is

L1ξ = F1[ξ, η], L2η = F2[ξ, η]

with L1,L2 and F = (F1,F2) defined in (21) and (22) respectively. Therefore, in
order to set up the fixed point equation, we first introduce the suitable right inverses
of the linear operators L1,L2. We use the fundamental set of solutions ζ1 = u′0 and the
analytic continuation of ζ2 (see Lemma 3.4). The following lemma specifies another
suitable property for ζ2, and it is proved in Appendix C.

Lemma 4.3. The even function ζ2 in Lemma 3.4 has an even analytic continuation
to Daux

κ . In addition, ζ2 ∈ DY1
2 .

We define now the linear operators

Gaux
1 [h](x) = ζ1(x)

∫ x

0

ζ2(s)h(s)ds− ζ2(x)

∫ x

0

ζ1(s)h(s)ds,

Gaux
2 [h](x) = −iε

2
eiε
−1x

∫ x

−iρ
e−iε

−1sh(s)ds+
iε

2
e−iε

−1x

∫ x

iρ

eiε
−1sh(s)ds,

(64)

where ρ = ρ(θ) = α+ tan θ + π − κε with α+ = <x+, the superior vertex of Daux
κ .

The following lemma gives estimates for the linear operators Gaux
1 ,Gaux

2 . Its proof
follows the same lines as the one of Lemma 3.6 and it is deferred to Appendix C.

Lemma 4.4. The operators Gaux
1 and Gaux

2 introduced in (64) have the following prop-
erties.

(1) Li ◦ Gaux
i [ξ] = ξ.

(2) For any ` ≥ 5, there exists a constant M > 0 independent of ε and κ such that,
for every h ∈ Y`,

‖Gaux
1 [h]‖`−2 ≤M‖h‖` and ‖∂xGaux

1 [h]‖`−1 ≤M‖h‖`.
In addition, if h is real analytic, Gaux

1 [h] is real analytic.
(3) For any ` ≥ 0, there exists M > 0 such that for every h ∈ Y`,

‖Gaux
2 [h]‖` ≤Mε2‖h‖`, ‖∂xGaux

2 [h]‖` ≤Mε‖h‖`
When h is real analytic, Gaux

2 [h] is also real analytic.

Now, to set up the fixed point argument we proceed in two steps so that we fix the

G̃ level curve. For the η component, we just impose that it satisfies

η = Gaux
2 ◦ F2[ξ, η].
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Note that, then in particular,

η(0) = Gaux
2 ◦ F2[ξ, η](0).

We use this equality to fix G̃ at x = 0. Indeed, as we claimed in (58), L1 in (21) has
several right inverses

L−1
1 [h] = ζ1(x)

[
C1 +

∫ x

0

ζ2(s)h(s)ds

]
− ζ2(x)

[
C2 +

∫ x

0

ζ1(s)h(s)ds

]
.

The condition ξ′(0) = 0 implies that one has to impose C1 = 0 (recall that ζ2 is an
even function, see Lemma 3.4). We choose a suitable C2 so that the solution lies in

G̃ = 0. Indeed, we have

G̃ (−ζ2(0)C2, 0, η(0), η′(0), 0) = 0.

The following lemma ensures that, for a given η and ξ in a suitable Banach space,
there exists a unique C2 satisfying this equality.

Lemma 4.5. Fix R > 0. There exists ε0 such that for ε ∈ (0, ε0), there is a function
I : B(Rε2) ⊂ DY2

5 → C such that, for any η ∈ B(Rε2),

G̃ (−ζ2(0)I[η], 0, η(0), η′(0), 0) = 0 (65)

and ∣∣I[η]
∣∣ . ε2.

Moreover, for any η, η̃ ∈ B(Rε2) ⊂ DY2
5 ,

|I[η]− I[η̃]| . ε2‖η − η̃‖5.

Proof. The proof follows by an implicit function theorem. Take η ∈ B(Rε2) ⊂ Y5 and
denote η0 = η(0) which satisfies |η0| . ε2. Then, since u′0(0) = 0, see (7), equation (65)
is equivalent

0 = G(ξ0, ε; η0) = −u′′0(0)ξ0 −
ε2

2
(η0 + u0(0) + ξ0 − f(u0(0) + ξ0) + G̃(ξ0)

with |G̃(ξ0)| . |ξ0|2. It is clear that G(0, 0; η) = 0, then, recalling that u′′0(0) 6= (see
Lemma 2.1), the implicit function theorem assures, for ε small enough, the existence
of ξ0 = ξ0(ε; η0), satisfying |ξ0| . ε2. In addition, since |∂η0ξ0(ε; η0)| . ε2, |ξ0(ε; η0) −
ξ0(ε; η̃0)| . ε2|η0 − η̃0| for any |η0|, |η̃0| . ε2. Taking I[η] = −ξ0(ε; η(0))(ζ2(0))−1, the
result follows provided |η(0)| . ‖η‖5. �

Based on the results of Lemmas 4.4 and 4.5, we look for the functions (ξaux, ηaux) in
Proposition 4.2 as fixed points of the operator

Faux[ξ, η] =

(
Faux

1 [ξ, η]
Faux

2 [ξ, η]

)
=

(
−ζ2 · I[η] + Gaux

1 ◦ F1[ξ, η]
Gaux

2 ◦ F2[ξ, η]

)
(66)

with Gaux
1 ,Gaux

2 defined in (64), ζ2 defined by Lemma 4.3 and F = (F1,F2) is given
in (22).
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4.2. The contracting map. The following two lemmas analyze the operator Faux

defined in (66).

Lemma 4.6. There exists a constant b2 > 0 independent of ε and κ such that

‖Faux[0, 0]‖× ≤ b2ε
2.

Lemma 4.7. There exists C2 such that for all R > 0, if (ξ, η), (ξ̃, η̃) ∈ B(Rε2) ⊂ Y×,
the operator Faux in (66) satisfies∥∥∥Faux

1 [ξ, η]−Faux
1 [ξ̃, η̃]

∥∥∥
3
≤ C2‖η − η̃‖5 +

C

κ2
‖(ξ, η)− (ξ̃, η̃)‖×,∥∥∥∂xFaux

1 [ξ, η]− ∂xFaux
1 [ξ̃, η̃]

∥∥∥
4
≤ C2‖η − η̃‖5 +

C

κ2
‖(ξ, η)− (ξ̃, η̃)‖×,∥∥∥Faux

2 [ξ, η]− F̂aux
2 [ξ̃, η̃]

∥∥∥
5
≤ C

κ2
‖(ξ, η)− (ξ̃, η̃)‖×,∥∥∥∂xFaux

2 [ξ, η]− ∂xFaux
2 [ξ̃, η̃]

∥∥∥
5
≤ C

εκ2
‖(ξ, η)− (ξ̃, η̃)‖×,

for some constant C = C(R) > 0 independent of ε and κ.

The proofs of Lemmas 4.6 and 4.7, using Lemmas 4.4 and 4.5 follow exactly the
same lines as Lemma 3.7 and 3.8 and are left to the reader.

As in Section 3, the Lipschitz constant for Faux obtained in Lemma 4.7 is not smaller
than one. To overcome this problem we use Theorem 2.14 to establish that Faux has
a unique fixed point (ξaux, ηaux) belonging to the ball B(3(C2 + 1)b2ε

2).

Let ξ̃aux, η̃aux be such that

ξ̃aux(x) = ξaux(−x), η̃aux(x) = ηaux(−x).

It is clear that (ξ̃aux, η̃aux) ∈ B(3(C2 + 1)b2ε
2) provided the auxiliary domain Daux

κ is
symmetric with respect to {<x = 0} and {=x = 0}. Therefore, by uniqueness of the
solution of the fixed point equation (ξ, η) = Faux[ξ, η], in the ball B(3(C2 + 1)b2ε

2), in

order to finish the proof of Proposition 4.2, we only need to argue that (ξ̃aux, η̃aux) is
also a solution of this fixed point equation. For that we emphasize that

Faux
1 [ξ̃aux, η̃aux](x) = Faux

1 [ξaux, ηaux](−x).

Indeed, from definition (22),

F1[ξ̃aux, η̃aux](x) = F1[ξaux, ηaux](−x), F2[ξ̃aux, η̃aux](x) = F2[ξaux, ηaux](−x)

and from definition (64) of Gaux
1 ,Gaux

2 and Lemma 4.3, denoting h̃(x) = h(−x), we
easily prove that

Gaux
1 [h̃](x) = Gaux

1 [h](−x), Gaux
2 [h̃](x) = Gaux

2 [h](−x).

In addition, it follows from definition (23) of G̃ and Lemma 4.5 that I[η̃aux] = I[ηaux]
provided

G̃(ξ0, 0, η0, η
′
0, 0) = G̃(ξ0, 0, η0,−η′0, 0), ∀ξ0, η0, η

′
0 ∈ R.
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This completes the proof of Proposition 4.2.

5. The inner equation

Here we prove Theorem 2.8 with item 1 proved in Section 5.1 and item 2 proved in
Section 5.2.

5.1. The solutions of the inner equation. Given ` ≥ 0 and an analytic function
f : Du,in

θ,κ → C, where Du,in
θ,κ is given in (46), consider the norm

‖f‖` = sup
z∈Du,in

θ,κ

|z`f(z)|, (67)

and the Banach spaces

X` = {f : Du,in
θ,κ → C; f is a real-analytic function and ‖f‖` <∞},

DX ` = {f : Du,in
θ,κ → C; f is a real-analytic function and ‖f‖` + ‖f ′‖`+1 <∞}.

We also define the product space

X× = DX3 ×X5

endowed with the norm

‖(φ, ψ)‖× = max
{
‖φ‖3 + ‖φ′‖4, ‖ψ‖5

}
.

The proof of the following lemma can be found in [4].

Lemma 5.1. Given analytic functions g, h : Du,in
θ,κ → C, the following statements hold

for some constant M > 0 depending only on θ,

(1) If `1 ≥ `2 ≥ 0, then

‖h‖`1−`2 ≤
M

κ`2
‖h‖`1 .

(2) If `1, `2 ≥ 0, and ‖g‖`1 , ‖h‖`2 <∞, then

‖gh‖`1+`2 ≤ ‖g‖`1‖h‖`2 .

(3) If h ∈ X` (with respect to the inner domain Du,in
θ,κ ), then ∂zh ∈ X`+1 (with respect

to the inner domain Du,in
2θ,4κ), and

‖∂zh‖`+1 ≤M‖h‖`.

The first item in Theorem 2.8 is now rewritten as the following proposition.

Proposition 5.2. Consider system (42), namely

Lin
1 [φ] = J in

1 [φ, ψ], Lin
2 [ψ] = J in

2 [φ, ψ] (68)

with Lin
1 ,Lin

2 defined in (43) and J in
1 ,J in

2 in (44). There exists κ0 big enough and a
constant M7 > 0 such that for κ > κ0, equations (68) have solutions (φ0,u, ψ0,u) ∈ X×
with ‖(φ0,u, ψ0,u)‖× ≤M7.
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As in Sections 3 and 4, the suitable right inverse of the linear operators Lin
1 ,Lin

2 are
given by the linear operators

G in
1 [h](z) =

z3

5

∫ z

−∞

h(s)

s2
ds− 1

5z2

∫ z

−∞
s3h(s)ds

G in
2 [h](z) =

1

2i

∫ z

−∞
e−i(s−z)h(s)ds− 1

2i

∫ z

−∞
ei(s−z)h(s)ds.

(69)

The following lemma provides bounds for the linear operator G in
1,2. Its proof is straight-

forward from Proposition 5.2 in [28] (see also [4, 9, 12]).

Lemma 5.3. Consider κ ≥ 1 big enough. Given ` > 2, the operators G in
1 : X`+2 → X`

and G in
2 : X` → X` are well defined and the following statements hold.

(1) G in
i ◦ Lin

i [h] = Lin
i ◦ G in

i [h] = h, i = 1, 2.
(2) For any ` > 4, there exists a constant M > 0 independent of κ such that, for

every h ∈ X`, ∥∥G in
1 [h]

∥∥
`−2
≤M‖h‖`,∥∥∂zG in

1 [h]
∥∥
`−1
≤M‖h‖`.

(3) For any ` > 1, there exists a constant M > 0 independent of κ such that, for
every h ∈ X`, ∥∥G in

2 [h]
∥∥
`
≤M‖h‖`.

We use the integral operators in (69) in order to obtain solutions of (68) with certain

decay as |z| → ∞ (within D?,in
θ,κ , ? = u, s). Indeed, such solutions must be fixed points

of the operator
F in =

(
G in

1 ◦ J in
1 ,G in

2 ◦ J in
2

)
, (70)

where the operators J in
1 ,J in

2 are those introduced in (44).
The following two lemmas give properties of the operator F in when analyzed in the

Banach space X× = DX 3 × X5. The proofs of these two lemmas are straightforward
using the definition of J in

1 and J in
2 in (44), see (70), and Lemmas 5.3 and 5.1.

Lemma 5.4. There exists a constant b3 > 0 independent of κ such that

‖F in[0, 0]‖× ≤ b3.

Lemma 5.5. There exists C3 > 0 such that for all R > 0, if (φ, ψ), (φ̃, ψ̃) ∈ B(R) ⊂
X×, the operator F in in (70) satisfies∥∥∥F in

1 [φ, ψ]−F in
1 [φ̃, ψ̃]

∥∥∥
3
≤ C3‖ψ − ψ′‖5 +

C

κ2
‖(φ, ψ)− (φ̃, ψ̃)‖in,∥∥∥∂zF in

1 [φ, ψ]− ∂zF in
1 [φ̃, ψ̃]

∥∥∥
4
≤ C3‖ψ − ψ′‖5 +

C

κ2
‖(φ, ψ)− (φ̃, ψ̃)‖in,∥∥∥F in

2 [φ, ψ]−F in
2 [φ̃, ψ̃]

∥∥∥
5
≤ C

κ2
‖(φ, ψ)− (φ̃, ψ̃)‖in,
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for some constant C = C(R) > 0 independent of κ.

We use again Theorem 2.14 to conclude the existence of a fixed point of (φ, ψ) =
F in[φ, ψ] belonging to B(3(C3 + 1)b3) ⊂ X×. This fixed point is the function given in
item 1 of Theorem 2.8. Moreover, by construction it satisfies the stated estimates and
they are real analytic functions. The symmetry is a consequence of the reversibility of
equation (42) with respect to (45)

5.2. The difference between the solutions of the inner equation. To complete
the proof of Theorem 2.8, we analyze the differences

∆φ0(z) = φ0,u(z)− φ0,s(z), ∆ψ0(z) = ψ0,u(z)− ψ0,s(z),

for z ∈ Rin,+
θ,κ with

Rin,+
θ,κ = Du,in

θ,κ ∩D
s,in
θ,κ ∩ {z ∈ iR and =(z) < 0}.

Given an analytic function f : Rin,+
θ,κ → C, we define the norm

‖f‖`,exp = sup
z∈Rin,+

θ,κ

|z`eizf(z)|

and the Banach spaces

Z`,exp =
{
f : Rin,+

θ,κ → C; ‖f‖`,exp <∞
}
,

DZ`,exp =
{
f : Rin,+

θ,κ → C; ‖f‖`,exp + ‖f ′‖`,exp <∞
}
.

We will consider the product Banach space

Z×,exp = DZ0,exp ×Z0,exp

and denote by ‖ · ‖×,exp the associated norm:

‖(φ, ψ)‖×,ε = max{‖φ‖0,exp + ‖φ′‖0,exp, ‖ψ‖0,exp}.
It can be easily seen that, if f ∈ X`1 and g ∈ Z`2,exp, then fg ∈ Z`1+`2,exp and
‖fg‖`1+`2,exp ≤ ‖f‖`1‖g‖`2,exp.

The second item in Theorem 2.8 can be rewritten as the following proposition, which
will be proved in the rest of this section.

Proposition 5.6. There exist Θ ∈ R and κ0,M8 > 0 such that for κ > κ0, ∆φ0,∆ψ0 ∈
DZ0,exp and they satisfy

‖∆φ0 + Θe−iz‖1,exp + ‖∂z∆φ0 − iΘe−iz‖1,exp ≤M8|Θ|,
‖∆ψ0 −Θe−iz‖1,exp + ‖∂z∆ψ0 + iΘe−iz‖1,exp ≤M8|Θ|.

Since both the stable and unstable solutions satisfy equation (68), applying the mean
value theorem, one can see that the functions ∆φ0, ∆ψ0 satisfy a linear homogeneous
equation of the form {

L̃in
1 ∆φ0 = P1[∆φ0,∆ψ0],
Lin

2 ∆ψ0 = P2[∆φ0,∆ψ0],
(71)
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where L̃in
1 = −∂2

z , Lin
2 is the operator introduced in (43) and P1, P2 are defined by{

P1[∆φ0,∆ψ0](z) = a11(z)∆φ0(z)−∆ψ0(z),
P2[∆φ0,∆ψ0](z) = a21(z)∆φ0(z) + a22(z)∆ψ0(z) + a23(z)∂z∆φ

0(z),
(72)

where, introducing Φ0,? = (φ0,?, ψ0,?), ? = u, s and defining N as the functional such
that the operator J in

2 [φ, ψ] in (44) can be written as

J in
2 [φ, ψ] = N [φ, ψ, ∂zφ],

ai,j is defined as

a11(z) =− 6

z2
+

∫ 1

0

D1J in
1 [Φ0,s(z) + σ(Φ0,u(z)− Φ0,s(z))]dσ,

a2j(z) =

∫ 1

0

DjN
[
Φ0,s(z) + σ(Φ0,u(z)− Φ0,s(z)),

∂zφ
0,s(z) + σ(∂zφ

0,u(z)− ∂zφ0,s(z))
]
dσ.

Using the norm introduced in (67), these functions satisfy

‖a11‖2 . 1, ‖a21‖4 . 1, ‖a22‖2 . 1, ‖a23‖3 . 1. (73)

We now write equation (71) as an integral fixed point equation. On the one hand,

∂z∆φ
0(z) = C1 −

∫ z

z1

P1[∆φ0,∆ψ0](s)ds

with C1 = ∂z∆φ
0(z1). Since lim=z→−∞ ∂z∆φ

0(z) = 0, we conclude that

∂z∆φ
0(z) = −

∫ z

−i∞
P1[∆φ0,∆ψ0](s)ds

and as a consequence, reasoning analogously,

∆φ0(z) =

∫ z

−i∞

∫ s

−i∞
P1[∆φ0,∆ψ0](σ)dσ. (74)

On the other hand, recalling that Lin
2 [∆ψ0] = ∂2

z∆ψ
0 + ∆ψ0, we have

∆ψ0(z) = eiz
(
C1 +

1

2i

∫ z

z1

e−ish(s)ds

)
+ e−iz

(
C2 −

∫ z

z2

eish(s)ds

)
with

2ieiz1C1 = i∆ψ0(z1) + ∂z∆ψ
0(z1), 2ie−iz2C2 = i∆ψ2(z2)− ∂z∆ψ0(z2),

Using (73), taking z2 = −iκ and imposing that lim=z→−∞∆ψ0(z) = 0, we obtain

∆ψ0(z) =

∫ z

−i∞

e−i(s−z)

2i
P2[∆φ0,∆ψ0](s)ds+ Θ0e

−iz

−
∫ z

−iκ

ei(s−z)

2i
P2[∆φ0,∆ψ0](s)ds

(75)
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with

Θ0 = Θ0(κ) =
1

2i
eκ
(
i∆ψ0(−iκ)− ∂z∆ψ0(−iκ)

)
. (76)

We emphasize that, from item 1 of Theorem 2.8, |∆φ0(z)| . |z|−3, |∆ψ0(z)| . |z|−5

uniformly on the domain Rin
θ,κ and hence, using also bounds (73) of aij, the improper

integrals in (74) and (75) are well defined. Therefore, (∆φ0,∆ψ0) satisfies the fixed
point equation {

∆φ0(z) = G̃ in
1 ◦ P1[∆φ0,∆ψ0](z),

∆ψ0(z) = Θ0e
−iz + G̃ in

2 ◦ P2[∆φ0,∆ψ0](z).
(77)

where the constant Θ0 = Θ0(κ) is defined in (76), P in (72) and G̃ in = (G̃ in
! , G̃ in

2 ) is the

integral linear operator defined on functions h : Rin,+
θ,κ → C, as

G̃ in
1 [h](z) = −

∫ z

−i∞

∫ s

−i∞
h(σ)dσ ds,

G̃ in
2 [h](z) =

∫ z

−i∞

e−i(s−z)h(s)

2i
ds−

∫ z

−iκ

ei(s−z)h(s)

2i
ds.

Denoting ∆Φ0 = (∆φ0,∆ψ0), equation (77) can be rewritten as

∆Φ0 = ∆Φ0
0 + P̃ [∆Φ0], ∆Φ0

0(z) =

(
0

Θ0e
−iz

)
,

where P̃ is the linear operator defined by

P̃ =
(
P̃1, P̃2

)
=
(
G̃ in

1 ◦ P1, G̃ in
2 ◦ P2

)
. (78)

Notice that, if the operator Id − P̃ were invertible, then we could write ∆Φ0 =
(
Id −

P̃
)−1

[∆Φ0
0] and study ∆Φ0 through P̃ and ∆Φ0.

The following lemma specifies properties of the linear operator P̃ . Its proof is
straightforward using the estimates in (73) and the definition of the operators in (78),
where we also recall that Rin

θ,κ is a subset of iR.

Lemma 5.7. The linear operator P̃ : Z×,exp → Z×,exp given in (78), is well defined.
Moreover, there exists a constant M such that for each κ ≥ 1,

(1) The linear operators P̃1, ∂zP̃1 : Z×,exp → Z0,exp satisfy

‖P̃1[∆φ0,∆ψ0]‖0,exp ≤
M

κ2
‖∆φ0‖0,exp +M‖∆ψ0‖0,exp,

‖∂zP̃1[∆φ0,∆ψ0]‖0,exp ≤
M

κ2
‖∆φ0‖0,exp +M‖∆ψ0‖0,exp.

(2) The linear operator P̃2 : Z×,exp → Z0,exp satisfy

‖P̃2[∆φ0,∆ψ0]‖0,exp ≤
M

κ
‖(∆φ0,∆ψ0)‖0,exp.
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This result of Lemma 5.7 does not lead to check that P̃ has small norm so that Id−P̃
is invertible. Hence we proceed in a similar way as in the proof of Theorem 2.14. We
emphasize that ∆Φ0 is also a solution of

∆Φ0 = ∆̂Φ0
0 + P̂ [∆Φ0], ∆̂Φ0

0(z) = ∆Φ0
0(z) +

(
P̃1[∆Φ0

0]
0

)
, (79)

where P̂ is the linear operator defined by{
P̂1[∆φ0,∆ψ0] = P̃1

[
∆φ0, P̃2[∆φ0,∆ψ0]

]
,

P̂2[∆φ0,∆ψ0] = P̃2[∆φ0∆ψ0].

Lemma 5.7 implies that P̂ satisfies∥∥∥P̂ [∆φ0,∆ψ0]
∥∥∥
×,exp

.
1

κ

∥∥∆φ0,∆ψ0
∥∥
×,exp

.

Then we conclude that, taking κ big enough, Id − P̂ is invertible in Z×,exp. On the

other hand, using that ∆0
0(z) = (0,Θ0e

−iz)>, formula (72) of P1 and that P̃1 = G̃ in
1 ◦P1,

we obtain that

∆̂Φ0
0(z) =

(
P̃1[∆Φ0

0](z)
Θ0e

−iz

)
=

(
−Θ0e

−iz

Θ0e
−iz

)
∈ Z×,exp. (80)

As a consequence, it follows from equation (79) that
(
Id − P̂

)
∆Φ0 = ∆̂Φ0

0 ∈ Z×,exp

and we conclude
∆Φ0 =

(
Id− P̂

)−1
[∆̂Φ0

0] ∈ Z×,exp.

In addition, this implies that, for z ∈ Rin,+
θ,κ ,(

∆φ0(z)
∆ψ0(z)

)
= Θ0e

−iz
(
−1 +O

(
1
κ

)
1 +O

(
1
κ

) ) .
Note that this asymptotic formula is not the one given in Proposition 5.6. Indeed, the
asymptotics here is given with respect to κ−1 whereas the one in Proposition 5.6 is
given in terms of z−1. To improve the asymptotics, we need to define a new constant
Θ which is κ−1 close to Θ0.

We define the constant

Θ = Θ0 −
∫ −i∞
−iκ

eizP2[∆φ0,∆ψ0](z)

2i
dz. (81)

Note that the fact that (∆φ0,∆ψ0) ∈ Z×,exp implies that the integral is convergent and
the constant Θ is well-defined.

Proposition 5.6 (and hence the second statement of Theorem 2.8) is a direct conse-
quence of the following lemma.

Lemma 5.8. The functions (∆φ0,∆ψ0) satisfy that, for z ∈ Rin,+
θ,κ ,(

∆φ0(z)
∆ψ0(z)

)
= Θe−iz

(
−1 +O

(
1
z

)
1 +O

(
1
z

) ) ,
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for some constant Θ ∈ R.

Proof. We exploit the fact that we already have proven that (∆φ0,∆ψ0) ∈ Z×,exp. We
obtain the asymptotic formula for each component. From (77) and using definition (81)
of Θ, we note that, the second component can be written as

∆ψ0(z) = Θe−iz + Ǧ in
2

[
P2[∆φ0,∆ψ0]

]
(z),

with

Ǧ in
2 [h](z) =

∫ z

−i∞

e−i(s−z)h(s)

2i
ds−

∫ z

−i∞

ei(s−z)h(s)

2i
ds.

Since (∆φ0,∆ψ0) ∈ Z×,exp, estimates (73) imply that P2[∆φ0,∆ψ0] ∈ Z2,exp and∥∥P2[∆φ0,∆ψ0]
∥∥

2,exp
. 1.

Then, it is a straightforward computation to see that ∆ψ0 −Θe−iz ∈ Z1,exp and∥∥∆ψ0 −Θe−iz
∥∥

1,exp
=
∥∥Ǧ in

2

[
P2[∆φ0,∆ψ0]

]∥∥
1,exp
. 1.

This completes the proof of the asymptotic formula for ∆ψ0. Analogous computations
lead to the asymptotic formula for ∂z∆ψ

0.
Now we prove the asymptotic formula for the first component. To this end, using

that we rewrite the identity (see (79) and (80))

∆φ0(z) = P̃1[∆Φ0
0](z) + P̂1[∆φ0,∆ψ0](z) = −Θ0e

−iz + P̃1

[
∆φ0, P̃2[∆φ0,∆ψ0]

]
(z)

as
∆φ0(z) = −Θe−iz + P̃1

[
∆φ0, Ǧ in

2

[
P2[∆φ0,∆ψ0]

]]
(z),

where we have used

∆ψ0(z) = Θ0e
−iz + P̃2[∆φ0,∆ψ0](z) = Θe−iz + Ǧ in

2

[
P2[∆φ0,∆ψ0]

]
(z).

Then, it can be easily seen that

∆φ0(z) + Θe−iz = P̃1

[
∆φ0, Ǧ in

2

[
P2[∆φ0,∆ψ0]

]]
∈ Z1,exp

and ∥∥∆φ0 + Θe−iz
∥∥

1,exp
. 1.

This completes the asymptotic formula for the first component and analogously we
have the one for its derivative.

It only remains to show that the constant Θ is real. This is a direct consequence
of the fact that the solutions (φ0,?, ψ0,?), ? = u, s are real-analytic and satisfy (47).

Indeed these two properties imply that, for z ∈ Rin,+
θ,κ (recall that Rin,+

θ,κ ⊂ iR),

∆ψ0(z) ∈ R.
This implies that eiz∆ψ0(z) ∈ R and therefore Θ ∈ R since it can be defined as

lim
=z→−∞,z∈iR

eiz∆ψ0(z).

This completes the proof of Lemma 5.8. �
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Finally, the fact that Θ 6= 0 if and only if ∆φ0 does not vanish at one point is a direct
consequence of the asymptotic formula. This proves the third item of Theorem 2.8.

6. Matching around singularities

Here we prove Theorem 2.10. We will give the proof only for the − case, being the
+ case is analogous. Due to this reason, we omit the sign ± in our notation and we
provide estimates for (ξu, ηu) and (ξaux, ηaux) around the singularity x−.

It is convenient to work with inner variables, see (40) and (41), namely,

z = ε−1(x− x−), φ(z) =
ε

c−1

ξ(x− + εz), ψ(z) =
ε3

c−1

η(x− + εz). (82)

We define now the matching domain D−,match
θ1,θ2,ν

by (49) in the inner variable. We fix
0 < ν < 1 and 0 < θ2 < θ < θ1 <

π
2
, where θ is the angle introduced in (24), and we

define

Dmatch
θ1,θ2,ν

= ̂−iκ, z1, z2,

the triangle with vertices −iκ, z1, z2, with

z1 = −iκ+
1

ε1−ν e
−iθ1 , z2 = −iκ− 1

ε1−ν e
−iθ2 .

In addition, if we define

û0(z) = u0(x− + εz),

we notice that, if z ∈ Dν,match
θ1,θ2

, then |εz| . εν and therefore

εc−1
−1û0(z) =

1

z
+ ε

∑
k≥0

ck(εz)k =
1

z
+O(ε),

εc−1
−1û

′
0(z) = − 1

z2
+O(ε2).

(83)

Moreover, defining

φ?(z) =
ε

c−1

ξ?(x− + εz), ψ?(z) =
ε3

c−1

η?(x− + εz), ? = u, aux (84)

with (ξu, ηu) and (ξaux, ηaux), given in Theorems 2.2 and 2.3 respectively, we have that∣∣φ?(z)
∣∣ . 1

|z|3
,

∣∣∂zφ?(z)
∣∣ . 1

|z|4
,

∣∣ψ?(z)
∣∣ . 1

|z|5
. (85)

Now we rephrase Theorem 2.10 in the inner variables as follows.

Theorem 6.1. Let θ > 0, κ0 be fixed as in Theorems 2.2, 2.3 and 2.8. Take 0 < θ2 <
θ < θ1 <

π
2

and ν ∈ (0, 1). We introduce the functions

δφ?(z) =
ε

c−1

δξ?−(x− + εz), δψ?(z) =
ε3

c−1

δη?−(x− + εz), ? = u, aux,



HOMOCLINIC ORBITS ARISING NEAR A SADDLE-CENTER POINT 45

with δξ?−, δη
?
− defined in Theorem 2.10. Then there exist κ1 ≥ κ0 and a constant M > 0

such that for all κ ≥ κ1 and z ∈ Dmatch
θ1,θ2,ν∣∣δφ?(z)

∣∣ ≤M | log ε|ε
1−ν

|z|2
,

∣∣∂zδφ?(x)
∣∣ ≤M | log ε|ε

1−ν

|z|3
,

∣∣δη?(x)
∣∣ ≤M | log ε|ε

1−ν

|z|4
,

∣∣∂zδη?−(x)
∣∣ ≤M | log ε|ε

1−ν

|z|4
.

Remark 6.2. We emphasize that we already know the existence of δφ?, δψ? in the
matching domain and that, using (85) and Theorem 2.8∣∣δφ?(z)

∣∣ ≤ ∣∣φ?(z)
∣∣+
∣∣φ0,?(z)

∣∣ . 1

|z|3
,

∣∣δψ?(z)
∣∣ ≤ ∣∣φ?(z)

∣∣+
∣∣φ0,?(z)

∣∣ . 1

|z|5
,

and also
∣∣∂zδφ?∣∣ . |z|−4. However, these estimates do not imply that, when ε = 0,

δφ?, δψ? = 0.

The remaining part of this section is devoted to prove Theorem 6.1. The prove for
? = u, aux are identical and, therefore, we only present the first one.

6.1. Reformulation of the problem. To prove Theorem 6.1 we look for differential
equations which have (δξu, δηu), as a solutions. To this end, let (ξu, ηu) be the solution
of equation (20) provided in Theorem 2.2 and consider the function (φu, ψu) defined
in (84). Applying the change of coordinates to equation (20) we have that{

Lin
1 [φu] = J match

1 [φu, ψu; ε] := J in
1 [φu, ψu] +A1[φu, ψu; ε],

Lin
2 [ψu] = J match

2 [φu, ψu; ε] := J in
2 [φu, ψu] +A2[φu, ψu; ε],

where Lin
j and J in

j , j = 1, 2 are introduced in (43) and (44).
We introduce the notation Φ = (φ, ψ), A[Φ; ε] = (A1[Φ; ε],A2[Φ; ε]),

Lin[Φ] = (Lin
1 [φ],Lin

2 [ψ]), J in[Φ] = (J in
1 [Φ],J in

2 [Φ]),

and

J match[Φ; ε] = (J match
1 [Φ; ε],J match

2 [Φ; ε]) = J in[Φ] +A[Φ; ε].

Since, by Theorem 2.8, Φ0,u = (φ0,u, ψ0,u) is a solution of Lin[Φ0,u] = J in[Φ0,u] and
Φu satisfies Lin[Φu] = J in[Φu] +A[Φu; ε], using the mean value theorem, we have that
δΦu = Φu − Φ0,u satisfies

Lin[δΦu] =Lin[Φu](z)− Lin[Φ0,u](z)

=

∫ 1

0

DΦJ in[Φ0,u + λ(Φu − Φ0,u)](z) · (Φu(z)− Φ0,u(z)) dλ+A[Φu; ε](z)

+

∫ 1

0

D∂zφJ in[Φ0,u + λ(Φu − Φ0,u)](z) ·
(
∂zφ

u(z)− ∂zφ0,u(z)
)
dλ.
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We denote

Bu
1(z) =

∫ 1

0

DΦJ in[Φ0,u + λ(Φu − Φ0,u)](z) dλ−
(

0 −1
0 0

)
,

Bu
2(z) =

∫ 1

0

D∂zφJ in[Φ0,u + λ(Φu − Φ0,u)](z) dλ,

B3(z) =

(
0 −1
0 0

)
,

(86)

and Au(z) = A[Φu; ε](z). We emphasize that Bu
1 ,Bu

2 and Au are known functions that
depend on the solutions Φu = (φu, ψu) and Φ0,u = (φ0,u, ψ0,u), which have already
been constructed above. We then obtain that δΦu = (δφu, δψu) satisfies the non-
homogeneous linear equation

Lin[δΦu](z) = Bu
1(z)δΦu(z) + Bu

2(z)∂zδφ
u(z) + B3(z)δΦu(z) + Au(z). (87)

The following lemma characterizes the solutions of Lin[Φ] = h with given initial
conditions. Its proof is straightforward and is omitted.

Lemma 6.3. Let Φ be a solution of Lin[Φ] = h defined in Dmatch
θ1,θ2,ν

. Then, Φ = (φ, ψ)
is given by

Φ(z) =

(
z3aφ + 1

z2
bφ

ei(z−z1)aψ + e−i(z−z2)bψ

)
+ Gmatch[h],

where

aφ =
1

5z3
1

(
2δφ(z1) + ∂zδφ(z1)z1

)
, bφ =

z2
1

5

(
3δφ(z1)− ∂zδφ(z1)z1

)
,

aψ =
1

2

(
δψ(z1)− i∂zδψ(z1)

)
, bψ =

1

2

(
δψ(z2) + i∂zδψ(z2)

)
,

(88)

and Gmatch[h] = (Gmatch
1 [h1],Gmatch

2 [h2]) is the linear operator (compare with (69)) de-
fined by

Gmatch
1 [h](z) =

z3

5

∫ z

z1

h(s)

s2
ds− 1

5z2

∫ z

z1

s3h(s)ds,

Gmatch
2 [h](z) =

1

2i

∫ z

z1

e−i(s−z)h(s)ds− 1

2i

∫ z

z2

ei(s−z)h(s)ds.

(89)

Since δΦu is a solution of (87), Lemma 6.3 implies that δΦu satisfies the following
fixed point (affine) equation

δΦu(z) =

(
z3aφu + 1

z2
bφu

ei(z−z1)aψu + e−i(z−z2)bψu

)
+ Gmatch[Au](z)−

(
Gmatch

1 [δψu](z)
0

)
(90)

+ Gmatch[Bu
1 · δΦu](z) + Gmatch[Bu

2 · ∂zδΦu](z),
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where aφu , bφu , aψu , bψu are defined by (88) and we have used definition (86) of B3. To
shorten the notation we introduce

δΦu
0(z) =

(
δφu

0(z)
δψu

0 (z)

)
=

(
z3aφu + 1

z2
bφu

ei(z−z1)aψu + e−i(z−z2)bψu

)
+ Gmatch[Au](z),

Fmatch[δΦ] =

(
Fmatch

1 [δΦ]
Fmatch

2 [δΦ]

)
= Gmatch[Bu

1 · δΦ](z) + Gmatch[Bu
2 · ∂zδΦ](z),

(91)

after which we rewrite equation (90) as

δΦu = δΦu
0 −

(
Gmatch

1 [δψu](z)
0

)
+ Fmatch[δΦu]. (92)

Using that δΦu is a solution of (92), we observe that δΦu must be also a solution of

δΦu = δ̂Φu
0 + F̂match[δΦu], (93)

with

δ̂Φu
0 = δΦu

0 −
(
Gmatch

1 [δψu
0 ](z)

0

)
,

F̂match[δΦ] = −
(
Gmatch

1

[
Fmatch

2 [δΦ]
]
(z)

0

)
+ Fmatch[δΦ].

(94)

6.2. The matching error. For fixed ` ∈ R, we introduce the norm

‖f‖` = sup
z∈Dmatch

θ1,θ2,ν

∣∣z`f(z)
∣∣

and the Banach spaces

Y` = {f : Dmatch
θ1,θ2,ν

→ C; f is an analytic function and ‖f‖` <∞},
DY` = {f : Dmatch

θ1,θ2,ν
→ C; f is an analytic function and ‖f‖` + ‖f ′‖`+1 <∞}.

These Banach spaces satisfy the following properties.

Lemma 6.4. Let `1, `2 ∈ R. Then

(1) If f ∈ Y`1, then f ∈ Y`2, for all `2 ∈ R. Moreover for `1 > `2

‖f‖`2 . κ`2−`1‖f‖`1
and for `1 < `2,

‖f‖`2 . ε(`1−`2)(1−ν).

(2) If f ∈ Y`1 and g ∈ Y`2, then ‖fg‖`1+`2 ≤ ‖f‖`1‖g‖`2.

We define the product Banach space Y× = DY2 × Y4 endowed with the product
norm

‖(φ, ψ)‖× = max{‖φ‖2 + ‖∂zφ‖3, ‖ψ‖4}. (95)
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We note that, as claimed in Remark 6.2, δφu ∈ DY3, δψu ∈ Y5 with ‖δφu‖3 +
‖∂zδφu‖4, ‖δψu‖5 . 1 and therefore, by Lemma 6.4,

‖δΦu‖× = max{|δφu‖2 + ‖∂zδφu‖3, ‖δψu‖4} .
1

κ
. (96)

We now start estimating all the elements in the fixed point equation (92). The
following lemma, whose proof is given in Section 6.3, deals with the operators Gmatch

and Fmatch defined in (89) and (91) respectively.

Lemma 6.5. If κ is big enough, the following statements are satisfied:

(1) If h ∈ Y` with ` > 4, then Gmatch
1 [h] ∈ Y`−2 and

‖Gmatch
1 [h]‖`−2 . ‖h‖`, ‖∂zGmatch

1 [h]‖`−1 . ‖h‖`.

(2) If h ∈ Y` with ` > 0, then Gmatch
2 [h] ∈ Y` and ‖Gmatch

2 [h]‖` . ‖h‖`.
(3) If h ∈ Y4, then Gmatch

1 [h] ∈ Y2 and ‖Gmatch
1 [h]‖2 . | log ε|‖h‖2.

(4) If h ∈ DY2 × Y4, then Fmatch[h] =
(
Fmatch

1 [h],Fmatch
2 [h]

)
∈ DY4 × Y6 with

‖Fmatch
1 [h]‖4 + ‖∂z

(
Fmatch

1 [h]
)
‖5 + ‖Fmatch

2 [h]‖6 . ‖h‖×.

As a consequence, by definition (95) of ‖ · ‖×, we have ‖Gmatch[h]‖× . 1
κ2
‖h‖×.

We claim now that the operator F̂match : Y× → Y× defined in (94) satisfies that, for
κ big enough,

‖F̂match[h]‖× .
1

κ2
‖h‖×. (97)

Indeed, by item 4 in Lemma 6.5, if h ∈ Y×, then Fmatch
2 [h] ∈ Y6. Therefore, Gmatch

1 [Fmatch
2 [h]] ∈

DY4 and the estimates in item 1 of Lemma 6.5 apply. By Lemma 6.4, we have

‖Gmatch
1 [Fmatch

2 [h]]‖2 + ‖∂zGmatch
1 [Fmatch

2 [h]]‖3 .
1

κ2
‖h‖×.

Then, the claim follows from item 4 of Lemma 6.5 and definition (91) of F̂match.
It follows from (93) that (

Id− F̂match
)
δΦu = δ̂Φu

0.

Therefore, using that δΦ∗ ∈ Y× (see (96)) and that, by (97), Id− F̂match : Y× → Y× is
invertible, we obtain that

δΦu =
(
Id− F̂match

)−1
[δ̂Φu

0] and ‖δΦu‖× . ‖δ̂Φu
0‖×.

Theorem 6.1 is then a consequence of the following lemma whose proof is given in
Section 6.4.

Lemma 6.6. Let ν ∈ (0, 1). If κ is big enough, then ‖δ̂Φu
0‖× . | log ε|ε1−ν.

It remains to prove Lemmas!6.5 and 6.6.
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6.3. Proof of Lemma 6.5. The proof of the three first items of Lemma 6.5 can be
found in the proof of Lemma 6.2 in [28] (see also [5]).

Now we prove item 4. We first note that, from definition (44) of J in
1 ,J in

2 ,

DΦJ in[Φ](z) =

(
−12

z
φ− 6φ2 −1

g[Φ] −6
(

1
z

+ φ
)2

)
,

D∂zφJ in[Φ](z) =

(
0,−24

(
1

z
+ φ

)(
− 1

z2
+ ∂zφ

))>
,

where

g[Φ](z) = −12

(
1

z
+ φ

)(
ψ + 2

(
1

z
+ φ

)3
)
− 36

(
1

z
+ φ

)4

− 12

(
− 1

z2
+ ∂zφ

)2

.

Let us denote

P (z) = DΦJ in[Φ](z)−
(

0 −1
0 0

)
, Q(z) = D∂zφJ in[Φ](z).

Then, P = (Pij)i,j is a 2× 2 matrix and, for Φ ∈ Y3 × Y3, its coefficients satisfy

|P11(z)| . 1

|z|4
, P12(z) = 0, |P21(z)| . 1

|z|4
, |P22(z)| . 1

|z|2
,

whereas Q is a 2-dimensional vector which, for Φ ∈ Y3 × Y3, satisfies

Q1(z) = 0, |Q2(z)| . 1

|z|3
.

Finally, by definition (86) of Bu
1(z),Bu

2(z), if h ∈ DY2 × Y4, then we have

‖Bu
1 · h‖6, ‖Bu

2 · h‖6 . ‖h‖×,
and by item 1 and item 2 of Lemma 6.5, Fmatch[h] ∈ DY4 × Y6 with bounded norm.
This completes the proof of Lemma 6.5.

6.4. Proof of Lemma 6.6. We introduce

δ̃φu
0 = z3aφu +

1

z2
bφu , δ̃ψu

0 = ei(z−z1)aψu + e−i(z−z2)bψu ,

where aφu , bφu , aψu and bψu are defined by (88) with φ = φu and ψ = ψu. From (94),

we have that δ̂Φu
0 =

(
δ̂φu

0, δ̂ψ
u
0

)
is defined by

δ̂φu
0(z) = δφu

0(z)− Gmatch
1 [δψu

0 ] = δ̃φu
0(z) + Gmatch

1 [Au
1](z)− Gmatch

1 [δψu
0 ],

δ̂ψu
0 (z) = δψu

0 (z) = δ̃ψu
0 (z) + Gmatch

2 [Au
2](z),

where Au =
(
Au

1, A
u
2

)
is defined by

Au(z) = A[Φu](z) = J match
1 [Φu](z)− J in

1 [Φu](z). (98)

We recall that φu ∈ DY3 and ψu ∈ Y5, see (85). The following lemma estimates δ̃φu
0(z).
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Lemma 6.7. Fix ν ∈ (0, 1). If ε > 0 is small enough, then we have for all z ∈ Dmatch
θ1,θ2,ν

, ∣∣z2δ̃φu
0(z)

∣∣+
∣∣z3∂z δ̃φu

0(z)
∣∣+
∣∣z4δ̃ψu

0 (z)
∣∣ . ε1−ν .

Proof. By definition (88), we have

|au
φ| .

1

|z1|6
. ε6(1−ν), |bu

φ| .
1

|z1|
. ε1−ν , |au

ψ|, |bu
ψ| . ε5(1−ν).

Then, for z ∈ Dν,match
θ1,θ2

, using that |z| . min{|z1|, |z2|} . ε−(1−ν), we obtain∣∣z2δφu
0(z)

∣∣ =
∣∣z5aφ + bφ

∣∣ . |z|5ε6(1−ν) + ε1−ν . ε1−ν ,∣∣z4δψu
0 (z)

∣∣ . ε5(1−ν)|z|4
(
e−=(z−z1) + e=(z−z2)

)
. ε1−ν ,

where in the last inequality we have used that =z2 > =z > =z1. �

Next we analyze Gmatch[Au]. To do so, we look for an explicit expression of J match.

Lemma 6.8. The fixed point equation (20) in the inner variables (82) can be written
as {

Lin
1 φ = J match

1 [φ, ψ; ε],
Lin

2 ψ = J match
2 [φ, ψ; ε],

with {
J match

1 [φ, ψ; ε](z) = J in
1 [φ, ψ](z) +A1[φ, ψ; ε](z),

J match
2 [φ, ψ; ε](z) = J in

1 [φ, ψ](z) +A2[φ, ψ; ε](z),

where, for z ∈ Dmatch
θ1,θ2,ν

,∣∣A1[φu, ψu; ε](z)
∣∣ . ε

|z|4
,

∣∣A2[φu, ψu; ε](z)
∣∣ . ε

|z|4
. (99)

Proof. An straightforward computation shows that in the inner variables, the fixed
point equation (20) can be expressed as{

Lin
1 φ = J match

1 [φ, ψ; ε],
Lin

2 ψ = J match
2 [φ, ψ; ε],

with 
J match

1 [φ, ψ; ε](z) = ε2φ(z) [−1 + 2u0(x− + εz)]
+φ(z)

[
6γε2u2

0(x− + εz) + 6
z2

]
+ε3c−1

−1F1[ε−1c−1φ, ε
−3c−1ψ](x− + εz),

J match
2 [φ, ψ; ε](z) = ε5c−1

−1F2[ε−1c−1φ, ε
−3c−1ψ](x− + εz).

Using the expression (22) of F = (F1,F2) we obtain

J match
1 [φ, ψ; ε](z) =− ψ − 6

z
φ2 − 2φ3 +A1[φ; ε](z)

=J in
1 [φ, ψ](z) +A1[φ, ψ; ε](z),
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with

A1[φ, ψ; ε](z) =ε2φ(z) [−1 + 2û0(z)] + φ(z)

[
6γε2û2

0(z) +
6

z2

]
+

(
c−1ε+ 6εγc−1û0(z) +

6

z

)
φ2.

Analogously, tedious but easy computations lead to

J match
2 [φ, ψ; ε](z) =− 6

(
1

z
+ φ

)2
(
ψ + 2

(
1

z
+ φ

)3
)
− 12

(
1

z
+ φ

)(
− 1

z2
+ ∂zφ

)2

− 6

(
1

z
+ φ

)2

C[φ, ψ; ε](z) +

(
ψ + 2

(
1

z
+ φ

)3
)
B[φ; ε](z)

+B[φ; ε](z) · C[φ, ψ; ε](z) +D[φ, ψ; ε](z)

=J in
2 [φ, ψ](z) +A2[φ, ψ; ε](z)

with

B[φ; ε](z) =− 6

(
εc−1
−1û0 −

1

z

)(
1

z
+ 2φ+ εc−1

−1û0

)
+ 2εc−1(εc−1

−1û0 + φ),

C[φ, ψ; ε](z) =ε2(εc−1
−1û0 + φ)− εc−1(εc−1

−1û0 + φ)2

+ 2

(
εc−1
−1û0 −

1

z

)[(
εc−1
−1û0 + φ

)2
+
(
εc−1
−1û0 + φ

)(1

z
+ φ

)
+

(
1

z
+ φ

)2
]
,

D[φ, ψ; ε](z) =2c−1ε(εc
−1
−1û

′
0 + ∂zφ)2 − 12

(
εc−1
−1û0 −

1

z

)(
εc−1
−1û

′
0 + ∂zφ

)2

− 12

(
1

z
+ φ

)(
εc−1
−1û

′
0 +

1

z2

)(
2∂zφ+ εc−1

−1û
′
0 −

1

z2

)
.

To prove the bounds for A1[φu, ψu; ε],A2[φu, ψu; ε], we recall that c−1
−1 =

√
|γ| with

γ < 0 and take into account (83) and (85), to obtain∣∣∣∣1z + φu(z)

∣∣∣∣ . 1

|z|
,

∣∣∣∣εc−1
−1û0 −

1

z

∣∣∣∣ . ε,

∣∣∣∣εc−1
−1û

′
0 +

1

z2

∣∣∣∣ . ε2.

The proof of (99) follows from these bounds and the explicit expressions of the functions
involved. �

Lemma 6.8, together with items 1 and 2 of Lemma 6.5, implies that, for all z ∈
Dmatch
θ1,θ2,ν

, we have∣∣z2Gmatch
1 [Au

1](z)
∣∣+
∣∣z3∂zGmatch

1 [Au
1](z)

∣∣+ |z4Gmatch
2 [Au

2](z)
∣∣ . ε| log ε|,

where we recall that Au(z) = A[φu, ψu] (see (98)). This estimate and Lemma 6.7 imply
that for all z ∈ Dmatch

θ1,θ2,ν
, we have∣∣z2δφu

0(z)
∣∣+
∣∣z3∂zδφ

u
0(z)

∣∣+
∣∣z4δψu

0 (z)
∣∣ . ε1−ν ,
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To estimate δ̂φu
0(z), it only remains to analyze Gmatch

1 [δψu
0 ]. To this end, it is enough

to recall that
∣∣z4δψu

0 (z)
∣∣ . ε1−ν and Lemma 6.5 imply∣∣z2Gmatch

1 [δψu
0 ](z)

∣∣ . | log ε|ε1−ν .

Therefore, we conclude that, for all z ∈ Dmatch
θ1,θ2,ν

, we have∣∣z2δ̂φu
0(z)

∣∣+
∣∣z3∂z δ̂φu

0(z)
∣∣+ |z4ψ̂u

0 (z)
∣∣ . ε1−ν | log ε|.

This completes the proof of Lemma 6.6.

7. The difference between the invariant manifolds

Here we prove Proposition 2.7 for ∆ηu. The proof for ∆ηs is analogous. We define
first the following Banach spaces with norms with exponential weights

E` = {h : Eout,u
κ → C; h real-analytic, ‖h‖`,exp <∞},

where

‖h‖`,exp = sup
x∈Eout,u

κ

∣∣∣(x− x−)`(x− x+)`(x− x̄−)`(x− x̄+)`e
1
ε

(π−|=x|)h(x)
∣∣∣ . (100)

We also consider the Banach space

E× = {h = (h1, h2) : Eout,u
κ → C2; h real-analytic, ‖h‖× <∞},

where

‖h‖× = max
{
ε−1‖h1‖0,exp, ‖h2‖0,exp + ε‖∂xh2‖0,exp

}
. (101)

We look for an integral equation in these Banach spaces which has as a unique solution

(∆ζu,∆ηu). The following lemma presents suitable inverses of the operators L̂1 and
L2 defined by (32) and (21) respectively. Its proof follows the same lines as the proof
of Lemma 7.1 in [28].

Lemma 7.1. The operators

∗Ĝ1[h](x) = u′′0(x)

∫ x

0

1

u′′0(s)
h(s)ds

and

Ĝ2[h](x) =− iε

2
eiε
−1x

∫ x

ρ−

e−iε
−1sh(s)ds+

iε

2
e−iε

−1x

∫ x

ρ−

eiε
−1sh(s)ds

+
iε sin

(
ρ−−x
ε

)
2 sin

(
ρ−−ρ−

ε

)eiε−1ρ−

∫ ρ−

ρ−

e−iε
−1sh(s)ds

−
iε sin

(
ρ−−x
ε

)
2 sin

(
ρ−−ρ−

ε

)eiε−1ρ−

∫ ρ−

ρ−

eiε
−1sh(s)ds,

with ρ− = x− − iκε, have the following properties.
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• Fix ` ∈ R. The operator Ĝ1 is well defined from E` to E` and satisfies∥∥∥Ĝ1[h]
∥∥∥
`,exp
≤Mε‖h‖`,exp.

It is also well-defined from E` to E0 and satisfies∥∥∥Ĝ1[h]
∥∥∥

0,exp
≤ Mε

(κε)`
‖h‖`,exp.

Furthermore, L̂1 ◦ Ĝ1 = Id and, for h ∈ E`,

Ĝ1(h)(0) = 0.

• Fix ` > 1. The operator Ĝ2 is well defined from E` to E0 and satisfies∥∥∥Ĝ2[h]
∥∥∥

0,exp
≤ Mε

(κε)`−1
‖h‖`,exp,∥∥∥∂xĜ2[h]

∥∥∥
0,exp
≤ M

(κε)`−1
‖h‖`,exp.

Furthermore, L2 ◦ Ĝ2 = Id and, for h ∈ E`

Ĝ2[h](ρ−) = 0 and Ĝ2[h](ρ−) = 0.

The functions (∆ζu,∆ηu) introduced in Lemma 2.6 satisfy equation (31). Now, by

the properties of the operators Ĝ1 and Ĝ2 introduced in Lemma 7.1, the functions
(∆ζu,∆ηu) must be a fixed point of the operator

P
[
∆ζ,∆η

]
(x) =

(
Ĝ1 ◦ N̂1

[
∆ζ,∆η,∆η′

]
(x)

Cu
1 e

ix
ε + Cu

2 e
− ix
ε + Ĝ2 ◦ N̂2

[
∆ζ,∆η,∆η′

]
(x)

)
(102)

for some constants Cu
1 , Cu

2 satisfying (37).
Note that by Lemma 7.1, the function Ru introduced in Lemma 2.7 is given by

Ru = Ĝ2 ◦ N̂2

[
∆ζu,∆ηu, ∂x∆η

u
]
.

and it satisfies the properties in (38). Therefore, it only remains to obtain the estimates
in (39).

To this end, we use a fixed point argument relying on (102). However, the operator
P is not contractive and, therefore, proceeding as in Section 3, we consider the operator

P̂
[
∆ζ,∆η

]
=

(
P1

[
∆ζ,P2

[
∆ζ,∆η

]]
P2

[
∆ζ,∆η

]
,

)
which has the same fixed points as P and is contractive. Note that both operators P
and P̂ are affine. The following lemma gives the Lipschitz constant of the operator P .
Its proof is a direct consequence of Lemmas 2.6 and 7.1.
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Lemma 7.2. There exists M > 0 such that, for any (∆ζ1,∆η1), (∆ζ2,∆η2) ∈ E×, the
operator P satisfies∥∥P1

[
∆ζ1,∆η1

]
− P1

[
∆ζ2,∆η2

]∥∥
0,exp
≤Mε ‖∆η1 −∆η2‖0,exp

+
Mε

κ
‖(∆ζ1,∆η1)− (∆ζ2,∆η2)‖× ,∥∥P2

[
∆ζ1,∆η1

]
− P2

[
∆ζ2,∆η2

]∥∥
0,exp
≤M
κ
‖(∆ζ1,∆η1)− (∆ζ2,∆η2)‖× ,∥∥∂xP2

[
∆ζ1,∆η1

]
− ∂xP2

[
∆ζ2,∆η2

]∥∥
0,exp
≤M
εκ
‖(∆ζ1,∆η1)− (∆ζ2,∆η2)‖× .

Lemma 7.2 implies that P̂ satisfies∥∥∥P̂1

[
∆ζ1,∆η1

]
− P̂

[
∆ζ2,∆η2

]∥∥∥
×
≤ M

κ
‖(∆ζ1,∆η1)− (∆ζ2,∆η2)‖× .

Therefore, taking κ > 0 large enough, P̂ is contractive and has the unique fixed point
(∆ζu,∆ηu).

We use P̂ to obtain estimates of the fixed point with respect to the norm introduced
in (101). Indeed, since it is a fixed point, it can be written as

(∆ζu,∆ηu) = P̂ [0, 0] +
[
P̂
[
∆ζu,∆ηu

]
− P̂ [0, 0]

]
and, therefore,

‖(∆ζu,∆ηu)‖× ≤
∥∥∥P̂(0, 0)

∥∥∥
×

+
∥∥∥P̂(∆ζu,∆ηu)− P̂(0, 0)

∥∥∥
×

≤
∥∥∥P̂(0, 0)

∥∥∥
×

+
M

κ
‖(∆ζu,∆ηu)‖× .

Taking κ large enough implies that

‖(∆ζu,∆ηu)‖× ≤ 2
∥∥∥P̂(0, 0)

∥∥∥
×
.

Therefore, it only remains to estimate

P̂ [0, 0](x) =

(
P̂1[0, 0](x)
P2[0, 0](x)

)
=

(
P1[0,P2[0, 0]](x)

Cu
1 e

ix
ε + Cu

2 e
− ix
ε

)
,

where Cu
1 , Cu

2 are constants satisfying (37).
By the definition of the norm (100), we have

‖P2[0, 0]‖0,exp ≤ (|Cu
1 |+ |Cu

2 |) e
π
ε ,

which by Lemma 7.2, implies

‖P1[0,P2[0, 0]]‖0,exp . (|Cu
1 |+ |Cu

2 |) e
π
ε .

Therefore, we obtain

‖(∆ζu,∆ηu)‖× ≤ 2
∥∥∥P̂ [0, 0]

∥∥∥
×
. (|Cu

1 |+ |Cu
2 |) e

π
ε .
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Finally, by definition

Ru = P̂2

[
∆ζu,∆ηu

]
− P̂2[0, 0],

we obtain

‖Ru‖0,exp ≤
M

κ
‖(∆ζu,∆ηu)‖× .

1

κ
(|Cu

1 |+ |Cu
2 |) e

π
ε ,

which concludes the proof of Proposition 2.7.

Appendix A. Proof of Lemma 2.1

We take β =
√

1 + 9γ ∈ (0, 1). It is straightforward to check that u′′0(x) = 0 if and
only if

β cosh2 x− coshx− 2β = 0

so that

coshx =
1

2β

(
1±

√
1 + 8β2

)
∈ R.

Writing x = a+ ib, we have that

cosh a cos b+ i sinh a sin b =
1

2β

(
1±

√
1 + 8β2

)
.

Therefore, sinh a sin b = 0. If a = 0, then

cos b = g±(β) :=
1

2β

(
1±

√
1 + 8β2

)
.

We impose

|1±
√

1 + 8β2| ≤ 2β

and obtain the condition
±
√

1 + 8β2 ≤ −1− 2β2

that it is always true, taking the negative sign and β ∈ (0, 1). This implies that, for
β ∈ (0, 1),

−1 <
1

2β

(
1±

√
1 + 8β2

)
< 0

and therefore b = acos(g−β)) ∈
(
π
2
, π
)
. Then u′′0(±ib) = 0.

On the other hand, if b = 0, then

cosh a = g±(β) =
1

2β

(
1±

√
1 + 8β2

)
.

Since g−(β) < −1, we need to study the zeros of cosh a = g+(β). We notice that, since
β ∈ (0, 1),

cosh a = g+(β) >
1

β
> 1

and that implies that a = acosh(g+(β)) > α and u′′0(±a) = 0.
Finally, when b = ±iπ, then

cosh a = −g±(β) =
1

2β

(
±
√

1 + 8β2 − 1
)
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so that

cosh a = −g+(β) =
1

2β

(√
1 + 8β2 − 1

)
<

1

β
.

Appendix B. Proof of Proposition 2.9

Here we prove that the constant Θ is not zero. To this end, it is convenient to work
with just one function instead of two, as in the inner equation (42). Indeed, note that
it is easy to check that if one defines

Φ =
1

z
+ φ,

it satisfies the fourth order equation

∂4
zΦ + ∂2

zΦ = 2Φ3. (B.1)

We have the following lemma.

Lemma B.1. The functions

Φ?(z) =
1

z
+ φ0,?(z),

where φ0,? are the functions obtained in Theorem 2.8, are asymptotic to the same series
at z =∞ (within their domain of definition), which is of the form

Φ̂(z) =
∑
n≥0

an
z2n+1

,

with coefficients satisfying that an ∈ R,

an(−1)n > 0 (B.2)

and
|an| ≥ (2n)!. (B.3)

Proof. To prove the lemma, we look for a recurrence to define the coefficients of Φ.
First note that by Theorem 2.8 it must be of the form

Φ̂(z) =
1

z
+O

(
1

z3

)
Tt is straightforward to see from (B.1) that the series has only odd powers. We obtain
that

an+1 =
1

(2n+ 3)(2n+ 4)− 6

[
− (2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)an

+ 6
∑

k1,k2≥1
k1+k2=n+1

ak1ak2 + 2
∑

k1,k2,k3≥1
k1+k2+k3=n+1

ak1ak2ak3

]
,

which, by induction, implies an ∈ R and (B.2).
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Moreover, for all n ≥ 0,

|an+1| ≥
(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)

(2n+ 3)(2n+ 4)− 6
|an|

≥(2n+ 1)(2n+ 2)|an|,

which implies (B.3). �

The fact that Θ 6= 0 is a direct consequence of Lemma B.1. By the third statement
of Theorem 2.8, it is enough to prove that there exists z0 ∈ Rin

θ,κ such that ∆φ0(z0) 6= 0,
or equivalently

Φu(z0)− Φs(z0) 6= 0.

We argue by contradiction. Assume that Φu(z) = Φs(z) for all z ∈ Rin
θ,κ. Since, by

Theorem 2.8, Φu, Φs are real-analytic, they must coincide also in

Rin

θ,κ =
{
z : z ∈ Rin

θ,κ

}
.

Therefore, the functions Φu, Φs can be analytically extended to the neighborhood of
infinity |z| ≥ κ and, thus, are analytic at infinity. This contradicts the fact that the
asymptotic series of these functions at infinity have coefficients growing faster than a
factorial.

Appendix C. The right inverses of L1

Here we prove Lemmas 3.4, 3.6, 4.3, and 4.4.

C.1. Proof of Lemmas 3.4 and 4.3. We first prove Lemma 3.4 in Section C.1.1.
Then, we prove Lemma 4.3 in Section C.1.2 as an straightforward consequence of
Lemma 3.4.

C.1.1. Proof of Lemma 3.4. Let ζ1(x) = u′0(x). In Dout,u
κ , it only vanishes at x = 0

(see 7). We rewrite (57) as (
ζ2

ζ1

)′
=

1

ζ2
1

,

which is equivalent at the domain Dout,u
κ \{0}. For x ∈ Br ⊂ C, the open ball centered

at the origin of radius r,

ζ1(x) =
∞∑
k=1

ckx
2k−1, c1 6= 0.

Therefore, writing ζ̂2 = ζ2ζ
−1
1 we have that

ζ̂ ′2(x) =
1

ζ2
1 (x)

=
1

c1x2

∞∑
k=0

dkx
2k
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which implies that

ζ̂2(x) = − 1

c1x
+ c0 +

∞∑
k=1

dk
2k
x2k−1, x ∈ Br. (C.1)

As a consequence, taking c0 = 0 yields

ζ2(x) = ζ̂2(x)ζ1(x) = −1 +
∑
k=1

ĉkx
2k, x ∈ Br, (C.2)

which defines an even real analytic function in Br. Notice that ζ2(0) = −1 6= 0. For
x ∈ Dout,u

κ \Br, we define ζ2(x) as

ζ2(x) =

ζ1(x)
[
ζ̂2(r) +

∫ x
r

1
ζ21 (s)

ds
]

if <x ≥ 0,

ζ1(x)
[
ζ̂2(−r) +

∫ x
−r

1
ζ21 (s)

ds
]

if <x < 0,
(C.3)

with ζ̂2 defined in (C.1), which is the even analytic extension at Dout,u
κ of ζ2 defined

in (C.2).
We notice that since ζ1 = u′0 ∈ E1,2, then for x ∈ Dout,u

κ ∩ {<x ≤ −10},

|ζ2(x)| . 1

| coshx|

[
1 +

∫ −r
<x

cosh2 s ds

]
. cosh<x . | coshx|,

where we have used cosh<s . | cosh s| . cosh<s.
When x ∈ Dout,u

κ ∩ {<x ≥ −10}, |ζ2(x)| . |ζ1(x)| and we conclude that ζ2 ∈ E−1,2.

C.1.2. Proof of Lemma 4.3. On Daux
κ , see (27) and Figure 3, ζ1 has simple zeroes at

0, iπ,−iπ. Then, denoting x0 = 0, iπ,−iπ, one has ζ1(x) = ζ ′1(x0)(x−x0) +O(x−x0)2

with ζ ′1(x0) 6= 0, and, as a consequence, when x goes to x0 in definition (C.3) of ζ2, we
have

lim
x→x0

ζ2(x) = lim
x→x0

ζ1(x)

∫ x

±r

1

ζ2
1 (s)

ds = − 1

ζ ′1(x0)
.

In addition, x0 do not belong to the segment between x ∈ Daux
κ and ±r and then we

conclude that ζ2 defined in (C.3) is, in fact, well defined and real analytic also at Daux
κ .

Finally, using that ζ1 = y′0 ∈ DY1
2 , where DY1

` ) is defined by (63), we obtain the result.

C.2. Fundamental solutions of L1[ζ] = 0. Here we provide new sets of fundamental
solutions of the linear second order differential equation L1[ζ] = 0, where L1 is defined
in (21). We mainly follow the strategy in [28], being the first result below an adaptation
of Lemma A.1 in [28].

We fix the complex rectangle

R = {x ∈ C : −10 ≤ <x ≤ 0, |=x| ≤ 2π} (C.4)

and we emphasize that, by Lemma 2.1 ζ1 = u′0 is analytic in R\{x−, x−}.
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Lemma C.1. Let

ζ+(x) = ζ1(x)

∫ x

x−

1

ζ2
1 (s)

ds, ζ−(x) = ζ1(x)

∫ x

x−

1

ζ2
1 (s)

ds.

Then,

• ζ± are analytic solutions of L1[ζ] = 0 in the domain R\{x−, x−} satisfying

W (ζ+, ζ−) = ζ+ζ
′
− − ζ ′+ζ− =

∫ x−

x−

1

ζ2
1 (s)

ds 6= 0.

• They satisfy, for x ∈ R with R defined in (C.4),

ζ+(x) =
(x− x−)3

(x− x−)2
ζ̂+(x), ζ−(x) =

(x− x−)3

(x− x−)2
ζ̂−(x) (C.5)

where ζ̂± are analytic functions in R and |ζ̂±(x)| ≤ M for some constant M
(independent on x).
• For some constant c, we have

ζ1(x) =
1

W (ζ+, ζ−)

(
ζ+(x)− ζ−(x)

)
, ζ2(x) = cζ1(x) + ζ−(x). (C.6)

Proof. On the rectangle R in (C.4), the function ζ1(x) = u′0(x), see (7), has simple
zeroes only at x = 0,±iπ,±i2π, that is, writing x0 = 0, iπ,−π, ζ1(x) = ζ ′1(x0)(x −
x0) + O(x − x0)2 when x is close to x0. Moreover, for all x ∈ R, the segments x, x−
and x, x− do not cross x0. Then, since ζ ′1(x0) 6= 0,

lim
x→x0

ζ±(x) = − 1

ζ ′1(x0)

that implies that ζ± are well defined at the set R. In addition, the fact that ζ−2
1 has

zeroes of order 4 at x−, x− and it is uniformly bounded at R, implies that the estimates
in (C.5) follow immediately and hence the second item of Lemma C.1 is already proven.

From the definition of ζ±, one can easily compute W (ζ+, ζ−). We check that it is
not zero. Indeed, we define

ũ0(t) = u0(−α + it) =
3

cos t+ 1− 3
√
|γ|i sin t

and, after some tedious computations, we have that

1

(u′0(−α + it))2
= − 1

(ũ′0(t))2
=

(cos t+ 1− 3
√
|γ|i sin t)4

9(sin t+ 3
√
|γ|i cos t)2

.

Then, again performing some tedious but straightforward computations, we obtain∫ x−

x−

1

ζ2
1 (s)

ds = −i
∫ −π
π

1

(ũ0(t))2
dt = 3πi

(
|γ| − 5

9

)
.

This ends the proof of the first item of Lemma C.1.
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Finally, we prove the third item of Lemma C.1. By the first item, ζ+, ζ− are inde-
pendent solutions of L1[ζ] = 0, so that ζ1 = c1ζ− + c2ζ+. Evaluating at x−, x− we
obtain the coefficients c1, c2 and the formula for ζ1. On the other hand, ζ2 is a linear
combination of ζ+, ζ−, which yields (C.6) since W (ζ1, ζ2) 6= 0. �

Now we study

J±(x) :=

∣∣∣∣ζ±(x)

∫ x

0

ζ∓(s)h(s) ds

∣∣∣∣ , (C.7)

which play a key role when bounding the norm of the linear operators G1, G̃1 defined
in (59) and (64) respectively. Since these operators are defined over analytic functions
in different domains, we introduce a new class of domains that posses the minimal
properties we need to be able to bound J±.

Definition C.2. Let D ⊂ R, with R defined in (C.4), be a closed bounded domain
satisfying that

• 0 ∈ int(D), x−, x− /∈ D,
• if x ∈ D, then <x ∈ D and the segments 0, x ∈ D, x,<x ⊂ D,
• there exists a constant ϑ ∈ (0, 1) such that if x ∈ D either |=x| < π, or

|<x+ α| ≥ ϑmin{|x− x−|, |x− x−|}.

Remark C.3. Notice that Dout,u
κ ∩ {−10 < < < 0} in (24) and Daux

κ in (27) satisfy
the conditions in Definition C.2.

Lemma C.4. Let D be a domain satisfying the conditions in Definition C.2 and fix
` ≥ 5. If h : D → C, then

|J±(x)| . bhc`
|x− x−|`−2|x− x−|`−2

, x ∈ D,

where J± has been introduced in (C.7) and

bhc` = sup
x∈D
|h(x)||x− x−|`|x− x−|`.

Proof. We recall that x− = −α + iπ with α > 0. We only provide the details for J+

being the corresponding for J− analogous. When x ∈ D ∩ {x ∈ C : <x ≥ −α
2
}, then,

using the second item in Lemma C.1,∣∣∣∣ζ+(x)

∫ x

0

ζ−(s)h(s) ds

∣∣∣∣ . |x− x−|3|x− x−|2

∫ x

0

bhc`
|s− x−|`+2|s− x−|`−3

.
bhc`

|x− x−|`−2|x− x−|`−2
.
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Now we deal with x ∈ D ∩ {x ∈ C : <x < −α
2
}. Since, by Lemma C.1, ζ± and h are

analytic functions in D ⊂ R, we write

ζ+(x)

∫ x

0

ζ−(s)h(s) ds = ζ+(x)

[∫
γ1

ζ−(s)h(s) ds+

∫
γ2

ζ−(s)h(s) ds

]
=: G1(x) +G2(x),

with γ1(t) = −t, for t ∈ [0,−<x] and γ2(t) = <x + it, for t ∈ 0,=x. Notice that, by
Definition C.2 of D, the paths γ1, γ2 ⊂ D. Then, we obtain

|G1(x)| =
∣∣∣∣ζ+(x)

∫
γ1

ζ−(s)h(s) ds

∣∣∣∣ . |x− x−|3|x− x−|2

∣∣∣∣∣
∫ |<x|

0

bhc`
|t+ x−|`+2|t+ x−|`−3

∣∣∣∣∣
.

bhc`
|x− x−|`−2|x− x−|`−2

,

where we have used that |t+ x−|, |t+ x−| ≥ π and that |x| . 1.
With respect to G2, we have that

|G2(x)| . bhc`
|x− x−|3

|x− x−|2

∣∣∣∣∫ =x
0

1

|<x+ it− x−|`+2|<x+ it− x−|`−3
dt

∣∣∣∣ .
Then, if =x ≥ 0, since |<x+ it− x−| ≥ π, for t ∈ [0,=x], we have that

|G2(x)| . bhc`
|x− x−|3

|x− x−|2

∫ =x
0

1(
(<x+ α)2 + (t− π)2

) `+2
2

dt.

In the case |<x+ α| ≥ ϑ|x− x−|,

|G2(x)| . bhc`
|x− x−|3

|x− x−|2
1

|<x+ α|`+1

∫ +∞

−∞

1

(1 + t2)
`+2
2

dt

. bhc`
1

|x− x−|2|x− x−|`−2
,

and the result follows provided ` ≥ 5. If |<x + α| ≤ ϑ|x − x−|, then 0 ≤ =x < π and
π −=x ≥

√
1− ϑ2|x− x−|. We obtain

|G2(x)| . bhc`
|x− x−|3

|x− x−|2

∫ =x
0

1

(π − t)`+2
dt . bhc`

|x− x−|3

|x− x−|2(π −=x)`+1
,

and the result follows trivially also in this case.
The details in the case =x ≤ 0 are left to the reader. �

C.3. Proof of Lemma 3.6. The result related to G2 defined in (60) is a straightfor-
ward consequence of Lemma 5.5 in [30].

We focus now on proving the results related to G1. To do so we follow the main
ingredients in the proof of Proposition 4.3 in [28]. When x ∈ Dout,u

κ ∩ {<x ≤ −10},
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by Lemma 3.4, |ζ2(x)| . | coshx|. From here, using also that |ζ1(x)| . | coshx|−1 and
following exactly the same steps as the ones in [28], we prove that

| coshx|m
∣∣G1[h](x)

∣∣ . ‖h‖m,`, x ∈ Dout,u
κ ∩ {<x ≤ −10}.

The case x ∈ Dout,u
κ ∩ {<x ≥ −10} is more involved. Indeed, the main obstacle to

overcome is that ζ1, ζ2 have poles of order 2 at x = x−, x−. Following [28] we rewrite
G1 in (59) in terms of ζ+, ζ− in Lemma C.1. Using the third item of this result, we
obtain that

G1[h](x) =
1

W (ζ+, ζ−)

[
ζ+(x)

∫ x

0

ζ−(s)h(s) ds− ζ−(x)

∫ x

0

ζ+(s)h(s) ds

]
− ζ2(x)

∫ 0

−∞
ζ1(s)h(s) ds.

By Remark C.3, we can use the results in Lemma C.4 to bound the two first integrals
defining G1[h]. To bound the third integral, we claim that is a convergent real integral
and that ‖ζ2‖−1,2 . 1. Then,∣∣∣∣ζ2(x)

∫ 0

−∞
ζ1(s)h(s) ds

∣∣∣∣ . |ζ2(x)| ‖h‖m,` .
‖h‖m,`

|x− x−|2|x− x−|2
.

Again, using that ` ≥ 5, the first bound in Lemma 3.6 is proven. To prove ‖∂xG1[h]‖1,`−1

we proceed analogously. Indeed, we have that

∂xG1[h](x) =
1

W (ζ+, ζ−)

[
ζ ′+(x)

∫ x

0

ζ−(s)h(s) ds− ζ ′−(x)

∫ x

0

ζ+(s)h(s) ds

]
− ζ ′2(x)

∫ 0

−∞
ζ1(s)h(s) ds,

where

ζ ′+(x) =
(x− x−)2

(x− x−)3
ζ̃+(x), ζ ′−(x) =

(x− x−)2

(x− x−)3
ζ̃−(x)

for ζ̃± are analytic functions uniformly bounded at R.
To complete the proof of Lemma 3.6, we just recall that, by Lemma 3.4, ζ2 is an

even function.

C.4. Proof of Lemma 4.4. We first notice that using relations (C.6) between ζ1, ζ2

and ζ+, ζ− we have that

G̃1[h](x) =
1

W (ζ+, ζ−)

(
ζ+(x)

∫ x

0

ζ−(s)h(s) ds− ζ−(x)

∫ x

0

ζ+(x)h(s) ds

)
(C.8)

and that by Remark C.3, we can apply the results in Lemma C.1 for x ∈ Daux
κ ∩ {x ∈

C : <x ≤ 0}. Then, we have

|G̃1[h](x)| . ‖h‖`
|x− x−|`−2|x− x−|`−2

,



HOMOCLINIC ORBITS ARISING NEAR A SADDLE-CENTER POINT 63

so that, since 1 . |x− x+|, |x− x+|, for x ∈ Daux
κ ∩ {x ∈ C : <x ≤ 0}, we obtain

|G̃1[h](x)||x− x−|`−2|x− x−|`−2|x−x+|`−2|x− x+|`−2 . ‖h‖`. (C.9)

When x ∈ Daux
κ ∩{x ∈ C : <x ≥ 0}, we only need to define the new set of fundamental

solutions of L1[h] given by

ζ̃+(x) = ζ1(x)

∫ x

x+

1

ζ2
1 (s)

ds, ζ̃−(x) = ζ1(x)

∫ x

x+

1

ζ2
1 (s)

ds

and proceeding in an analogous way as for x ∈ Daux
κ ∩ {x ∈ C : <x ≤ 0} to obtain the

bound (C.9) for x ∈ Daux
κ . By definition (62) of the norm, ‖G̃1[h]‖`−2 . ‖h‖`.

Differentiating (C.8) with respect to x and performing similar bounds as the previous
one, we prove the result for ∂xG1[h].

For the operator G̃2 in (64), we take x ∈ Daux
κ be such that <x ≤ 0 since the case

<x ≥ 0 is analogous. In this case 1 . |x− x+|, |x− x+| and hence we have to prove

|G2(x)| . ε2 ‖h‖`
|x− x−|`|x− x−|`

.

By definition (64) of G2 it is enough to prove that for <x ≤ 0,∣∣∣∣e±iε−1x

∫ x

∓iρ
e∓iε

−1sh(s) ds

∣∣∣∣ . ε
‖h‖`

|x− x−|`|x− x−|`
. (C.10)

We deal with the bound for the integral from−iρ. To prove the second one is analogous.
We write

eiε
−1x

∫ x

−iρ
e−iε

−1sh(s) ds = eiε
−1x

∫
γ1

e−iε
−1sh(s) ds+ eiε

−1x

∫
γ2

e−iε
−1sh(s) ds

=: G1(x) +G2(x),

where the paths γ1, γ2 are defined by

γ1(t) = x+ te−iϑ, t ∈ 0,−secϑ<x, γ2(t) = it, t ∈ tanϑ<x,−ρ

with ϑ > 0 such that γ1(t) ∈ Daux
κ . We recall that <x ≤ 0 and hence 1 . |x−x+|, |x−

x+|. Therefore,

|G1(x)| . ‖h‖`
∫ secϑ|<x|

0

e−ε
−1t sinϑ

|x− x− + te−iϑ|`|x− x− + te−iϑ|`
dt.

The geometry of the set Daux
κ implies that

|x− x− + te−ıϑ| & |x− x−|, |x− x− + te−ıϑ| & |x− x−|,

hence

|G1(x)| . ‖h‖`
|x− x−|`|x− x−|`

∫ ∞
0

e−ε
−1t sinϑ dt . ε

‖h‖`
|x− x−|`|x− x−|`

.
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The bound for G2 follows using the same arguments. It is clear that |x− x− + it| &
|x− x−| and |x− x−| & |x− x−|. Hence,

|G2(x)| . ‖h‖`
∫ − tanϑ|<x|

−ρ

eε
−1t

|x− x− + it|`|x− x− + it|`
dt

.
‖h‖`

|x− x−|`|x− x−|`

∫ 0

−∞
eε
−1t dt . ε

‖h‖`
|x− x−|`|x− x−|`

.

As a consequence, (C.10) is proven.
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[8] I. Baldomá, E. Fontich, M. Guardia, and T. M. Seara. Exponentially small splitting of separatrices
beyond melnikov analysis: rigorous results. Journal of Differential Equations, 253(12):3304–3439,
2012.
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[43] H. Poincaré. Sur le problème des trois corps et les équations de la dynamique. Acta mathematica,
13(1):A3–A270, 1890.

[44] Y. Pomeau, A. Ramani, and B. Grammaticos. Structural stability of the korteweg–de vries soli-
tons under a singular perturbation. Physica D, 31:127–134, 1988.

[45] D. Sauzin. A new method for measuring the splitting of invariant manifolds. Ann. Sci. École
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