
Numerical Modelling of the Dynamical Evolution of
Contact Lines in Fluid Flows

Chengzhu Xu
Supervisor: Dmitry Pelinovsky

April 20, 2013

Abstract

This work is concerned with the recent model proposed by Benilov and Vynnycky
in [1], who examined the behavior of contact lines with a 180◦ contact angle, in the
context of two-dimensional Couette flows. The model is given by a fourth order linear
advection-diffusion equation, with an unknown speed to be determined dynamically
from an additional boundary condition at the contact line.

The main claim of [1] is that for any suitable initial condition, there is a finite
positive time at which the speed of the contact line becomes infinite within this model,
while the profile of the fluid flow remains regular. Additionally, it is claimed that the
speed near the blow-up behaves as the logarithmic function of time.

This paper will present numerical approximations of solutions to the reduced model
from [1], and simulate the blow-up behavior under different initial conditions. We will
confirm the first claim of [1] but show that the blow-up is better approximated by a
power function, compared with the logarithmic function of time.

1 Introduction

Contact lines are defined by the triple-point intersection of the rigid boundary, fluid flow
and the vacuum state. Flows with the contact line at 180◦ contact angle were discussed in
[2, 3], where corresponding solutions of the Navier-Stokes equations were shown to have no
physical meanings. The recent approach proposed by Benilov and Vynnycky in [1] is based
on the lubrication approximation and thin film equations. In particular, the authors of [1]
derived a reduced model, which will be studied in this paper.

Consider the Couette flow described in figure 1, where two horizontal rigid plates are
separated by a distance H, with the upper plate moving to the left with a velocity U1, and
the lower plate moving to the right with a velocity U2. The space between the plates is filled

1

with an incompressible liquid on the left, and vacuum (that is, gas with negligible density)
on the right, separated by a free boundary. When the Couette flow is two-dimensional, the
x-axis is directed along the lower plate, and the contact line is located on the upper plate.
We assume that the liquid-filled region to the right of the contact line decays monotonically,
and is carried away by the lower plate to some non-negative constant as x→∞.

Figure 1: Couette flows with a free boundary, in the reference frame co-moving with the
contact line.

In our reference frame, the position of the contact line is fixed at the point x = 0, by
assuming that the velocity of the upper plate U1 matches that of the contact line V (t), i.e.

U1 = −V (t), U2 = U − V (t),

where U is a constant velocity of the lower plate relative to the upper plate. Note that U is
given, whereas V (t) is an unknown variable to be found for different time t. The shape of
the liquid-vacuum interface at time t is described by the graph of the function y = h(x, t)
for x > 0, where h is the thickness of liquid-filled region.

1.1 The Reduced Model

The reduced model for the interface h(x, t) derived by Benilov and Vynnycky in [1] is given
by the linear advection-diffusion equation

∂h

∂t
+
∂4h

∂x4
= V (t)

∂h

∂x
, x > 0, t > 0, (1)

subject to some suitable initial condition h|t=0 = h0(x) for x ≥ 0, and the boundary condi-
tions at x = 0:

h|x=0 = 1,
∂h

∂x

∣∣∣∣
x=0

= 0,
∂3h

∂x3

∣∣∣∣
x=0

= −1

2
, t ≥ 0. (2)

2

The first boundary condition is used to determine the location of the contact line, with the
assumption H = 1 in Figure 1 for simplicity. The second boundary condition is determined
by the 180◦ contact angle at the contact line. The third boundary condition is used for
normalization of the flux.

As we mentioned before, the profile of h(x, t) decays monotonically to some non-negative
constant as x → ∞, so that x = 0 is a non-degenerate maximum of h, i.e. hxx|x=0 < 0 for
all t ≥ 0. If the solution h(x, t) loses monotonicity in x during the dynamical evolution,
for instance, due to the value of hxx|x=0 crossing zero from the negative side, then the flow
becomes non-physical, and we say that the reduced model blows up.

The main claim of [1] is that for any suitable initial condition, there is a finite positive
time t0 such that as t→ t0, the second derivative hxx|x=0 approaches zero, and V (t) diverges
to negative infinity. Moreover, it is claimed that V (t) behaves near the blow-up time as the
logarithmic function of t:

V (t) ∼ C1 log(t0 − t) + C2, as t→ t0, (3)

where C1, C2 are positive constants.

1.2 Main Results

Several attempts have been made to solve the problem analytically and prove the above facts
rigorously. Explicit solutions in the case of constant velocity V (t) = V0 using an application
of Laplace transform were analysed in [4], and local solutions of the original problem were
shown to exist by using this method as a series in powers of t1/4. Various sufficient conditions
for existence of global solutions were derived in [5], and self-similar solutions for finite-time
singularities were studied. Nevertheless, results of [4, 5] did not provide a proof of the
finite-time blow-up nor the construction of blow-up rates.

In this paper we will simulate numerically the behavior of the velocity V (t) near the
blow-up time under different initial conditions. In particular, the conjecture in [1] that all
initial velocities will result in blow-up of V (t) in finite time is confirmed by our numerical
results. However, the power function

|V (t)| ∼ c

(t0 − t)p
, as t→ t0, (4)

with c > 0 and p ≈ 0.4 is found to fit our numerical data better than the logarithmic function
(3) near the blow-up time t0.

3

2 Reformulation of the Model

In what follows, we shall set u := ∂h/∂x, and reformulate the reduced model (1) - (2) in the
equivalent form. By differentiation of Equation (1) with respect to x, we obtain

∂u

∂t
+
∂4u

∂x4
= V (t)

∂u

∂x
, x > 0, t > 0. (5)

We also rewrite boundary conditions in (2) as

u|x=0 = 0,
∂2u

∂x2

∣∣∣∣
x=0

= −1

2
,

∂3u

∂x3

∣∣∣∣
x=0

= 0, t ≥ 0. (6)

Here the third boundary condition uxxx|x=0 = hxxxx|x=0 = 0 follows from applying the
boundary conditions h|x=0 = 1 and hx|x=0 = 0 to Equation (1) as x → 0. After the
reformulation, the value of V (t) can be determined by the limit x→ 0 in (5):

uxxxx(0, t) = V (t)ux(0, t), t ≥ 0, (7)

provided that the solution u is smooth at the boundary x = 0.
A suitable initial condition u|t=0 = u0(x), x ≥ 0 for the system (5) - (6) can be chosen in

the form

u0(x) = −1

4
e−axx[4 + (4a+ 1)x+ a(2a+ 1)x2 + bx3], (8)

where parameters a > 0 and b ≥ 0 are arbitrary. For simplicity, the constraint hxx|x=0 =
ux|x=0 < 0 is standardized to ux|x=0 = −1 at time t = 0. Note that initial conditions in
this form also satisfy the decay constrains (that is, u(x, t) < 0 for all x > 0, t ≥ 0, and
∂nu/∂xn → 0 as x → ∞ for all n = 0, 1, 2, . . .). Figure 2 shows a particular example of
initial condition with a = 0.5, b = 0:

u0(x) = −1

4
e−x/2x(4 + 3x+ x2). (9)

0 5 10 15 20 25 30
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Figure 2: Plot of the initial function (9) for the reformulated model.

4

3 Numerical Solutions: Finite Difference Method

In this section, the solution over x-axis will be approximated by the second order central
difference method. Consider a set of N+2 equally spaced grid points {xn}N+1

n=0 on the interval
[0, L], for L sufficiently large so that u|x=L is approximately zero. We assume ordering:

0 = x0 < x1 < · · · < xN < xN+1 = L.

For any fixed t > 0, let un(t) denote the numerical approximation of u(x, t) at x = xn, and let
∆x denote the equal step size between adjacent grid points. By applying central difference
formulas (see Sections 6.1 and 6.2 in [6], for example) to Equation (5) at each x = xn, we
have

dun
dt

:= V (t)
un+1 − un−1

2(∆x)
− un+2 − 4un+1 + 6un − 4un−1 + un−2

(∆x)4
+O(∆x2). (10)

Note that since u0 = u(0, t) = 0 and uN+1 = u(L, t) = 0 for all t ≥ 0, the above formula
need only to be applied to N interior points {x1, x2, . . . , xN}, and we need to approximate
u−1 for grid point x1 and uN+2 for grid point xN . The values of u−1 can be found from the
boundary condition:

∂2u

∂x2

∣∣∣∣
x=0

= −1

2
⇒ u−1 − 2u0 + u1

(∆x)2
≈ −1

2
⇒ u−1 = −u1 −

1

2
(∆x)2,

and uN+2 can be found from the decay condition:

∂2u

∂x2

∣∣∣∣
x→∞

= 0 ⇒ uN − 2uN+1 + uN+2

(∆x)2
≈ 0 ⇒ uN+2 = −uN .

The system of N ODEs defined by (10) can be written in the matrix form

duuu

dt
= AAAuuu+ bbb, (11)

where uuu is the N × 1 column vector of {u1, u2, . . . , uN}, AAA is the N ×N matrix whose (i, j)th

entry is given by

ai,j =

− 6

(∆x)4
, j = i

4

(∆x)4
± V (t)

2(∆x)
, j = i± 1

− 1

(∆x)4
, j = i± 2

0, otherwise

5

except that a1,1 = aN,N = − 5

(∆x)4
, and bbb is the N × 1 column vector with

1

2(∆x)2
in the

first entry and zeros in all other entries.
The velocity V (t) can be expressed by applying the same numerical method to (7):

V (t) =
uxxxx|x=0

ux|x=0

≈ 2(u2 − 4u1 + 6u0 − 4u−1 + u−2)

(∆x)3(u1 − u−1)
,

(12)

where u−2 can be found from the third boundary condition in (6):

∂3u

∂x3

∣∣∣∣
x=0

= 0 ⇒ u2 − 2u1 + 2u−1 − u−2

(∆x)3
≈ 0 ⇒ u−2 = u2 − 4u1 − (∆x)2.

We shall use Heun’s method to evaluate the system of ODEs in (11). Let uuuk denote the
numerical approximation of uuu(t) at t = tk for k = 0, 1, 2, . . . , and let ∆t denote the time
stepsize, then the Heun’s method states that

uuu(tk+1) ≈ uuuk+1 = uuuk +
∆t

2
[(AAAkuuuk + bbb) + (AAAk+1uuuk+1 + bbb)], (13)

where the initial function uuu0 is given by (8). Note that the coefficient matrix AAA is not time
independent since it is a function of V (t). The global error of Heun’s method is O(∆t2) (see
Section 9.2 in [6] for a proof), so the global truncation error for the numerical approximation
discussed in this section is O(∆x2 + ∆t2).

As we will show in Section 3.1, the explicit version of Heun’s method is stable only when

∆t ≤ 1

8
(∆x)4. Therefore, in practice we shall use the implicit Heun’s method (which is

stable for all ∆t > 0), by solving the system of linear equations

(III − ∆t

2
AAAk+1)uuuk+1 = (III +

∆t

2
AAAk)uuuk + ∆tbbb, (14)

where III is the N × N identity matrix. However, because the coefficient matrix AAAk+1 on
the left hand side contains an unknown value of V (tk+1), a prediction-correction method is
necessary for solving this system of equations: AAAk+1 can be approximated using AAAk at the
prediction step to predict the value of uuu∗k+1, which can then be used to evaluate a prediction of
V (t∗k+1) using Formula (12); at the correction step, AAAk+1 will be updated from the prediction
V (t∗k+1) to obtain the corrected value of uuuk+1 and V (tk+1). Since the implicit method is used
in both prediction and correction steps, the unconditional stability is preserved.

6

3.1 Stability of Heun’s Method

To study the stability of iterations, we consider the homogeneous equation associated with
the evolution equation (5):

∂u

∂t
= −∂

4u

∂x4
, x > 0, t > 0.

Denote ukn := u(xn, tk), the explicit Heun’s method takes the form

uk+1
n = ukn +

∆t

2
[f(ukn) + f(uk+1

n)] (15)

at the point (xn, tk), where

f(ukn) =
1

(∆x)4
[ukn+2 − 4ukn+1 + 6ukn − 4ukn−1 + ukn−2], (16)

and uk+1
n on the right hand side of (15) can be approximated by Euler’s method:

uk+1
n = ukn + ∆tf(ukn). (17)

It can be shown (in page 466 of [6]) that the stability of explicit Heun’s method is the same
as Euler’s method, so the stability region of the explicit method (15) and (16) can simply be

determined from iterations of Euler’s method (17). Denote r =
∆t

(∆x)4
, Equation (17) can

be rearranged as

uk+1
n = (1− 6r)ukn + 4r(ukn+1 + ukn−1)− r(ukn+2 + ukn−2).

Expanding ukn in the discrete Fourier transform ukn := akeipn, we have

ak+1 = ak[1− 4r(1− cos p)2].

In order to get stable solutions, we need |1 − 4r(1 − cos p)2| ≤ 1, which gives the stability

constraint r ≤ 1

8
, or ∆t ≤ 1

8
(∆x)4.

The implicit Heun’s method has the same form in (15), except that uk+1
n on the right

hand side is determined implicitly from a system of linear equations. Substituting f , we
rewrite (15) as

(1 + 3r)uk+1
n − 2r(uk+1

n+1 + uk+1
n−1) +

r

2
(uk+1

n+2 + uk+1
n−2)

= (1− 3r)ukn + 2r(ukn+1 + ukn−1)− r

2
(ukn+2 + ukn−2).

7

By the same Fourier transform, we have

ak+1 = ak
[

1− 2r(1− cos p)2

1 + 2r(1− cos p)2

]
.

Since |1−2r(1−cos p)2| ≤ 1+2r(1−cos p)2 for all r > 0, the implicit scheme is unconditionally
stable.

Note that the above stability analysis is valid only when V (t) is close to zero, and becomes
invalid when |V (t)| is large, e.g. near the blow-up time. Therefore, we shall use the adaptive
method described in Section 9.3 of [6] to adjust ∆t at each time step, so that the local
truncation error is controlled in a certain tolerance level for all t > 0.

3.2 Error Analysis: Smoothness of the Solution

Another source of error, in addition to the truncation error from numerical approximation,
is introduced when we determine the value of V (t) from Equation (7), which is based on
the assumption that a smooth solution exists at the boundary x = 0. In order to check this
assumption, it is useful to find the residuals for higher order derivatives of u at x = 0.

In what follows, we shall denote β(t) = ux(0, t) for simplicity. Ideally, if we differentiate
(5) with respect to x once and twice and set x→ 0, we should have

dβ

dt
+
∂5u

∂x5

∣∣∣∣
x=0

= −1

2
V (t), (18)

∂6u

∂x6

∣∣∣∣
x=0

= 0. (19)

However, since we do not have the data of u available at x = x−3, we are not able to check
if these two equalities hold independently. Alternatively, if we determine u−3 from (19):

u3 − 6u2 + 15u1 − 20u0 + 15u−1 − 6u−2 + u−3

(∆x)6
≈ 0

⇒ u−3 = −u3 + 12u2 − 24u1 +
3

2
(∆x)2,

then the value of dβ/dt can be determined from Equation (18) and (12):

dβ

dt
= −∂

5u

∂x5

∣∣∣∣
x=0

− 1

2
V (t)

≈ −u3 − 4u2 + 5u1 − 5u−1 + 4u−2 − u−3

2(∆x)5
− u2 − 4u1 + 6u0 − 4u−1 + u−2

(∆x)3(u1 − u−1)
.

(20)

8

Thus, we can compare the value of dβ/dt determined from (20) with the numerical derivative

dβ

dt

∣∣∣∣
t=tk

≈ β(tk+1)− β(tk−1)

tk+1 − tk−1

(21)

to obtain an estimation of the residuals at the boundary x = 0.

3.3 Example: Negative Initial Velocity

The following numerical approximation is based on the initial function (9). The initial
velocity determined from this initial condition is V (0) = −1.25.

0 5 10 15 20 25 30
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

t = 0
t = .25T
t = .5T
t = .75T
t = T

Figure 3: The dynamical evolution of u verses
x at different time t (T is the terminal time).

0 0.5 1 1.5 2
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Figure 4: Change of velocity of the contact
line V with respect to time t.

0 0.5 1 1.5 2
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Figure 5: Boundary value ux|x=0 versus t.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 6: Boundary value uxxxx|x=0 versus t.

Figure 4 clearly shows a blow-up of V towards −∞ at t ≈ 1.9, while the solution u(x, t)
in Figure 3 remains regular at terminal time t = T . Recall that Equation (7) determines the

9

velocity V (t) by the quotient of uxxxx(0, t) and β(t) = ux(0, t), where β(t) should be strictly
negative for all t > 0. From Figure 5 we can see that the value of β is about to cross zero
from the negative side at the terminal time, while uxxxx(0, t) in Figure 6 is also approaching
zero near the terminal time, but with a much slower rate than β(t). This also indicates that
|V (t)| is approaching infinity at the terminal time.

0 0.5 1 1.5 2
10

−5

10
−4

10
−3

10
−2

10
−1

Figure 7: Error of dβ/dt versus t.

0 0.5 1 1.5 2
0

1

2

3

4

5

6
x 10

−3

Figure 8: Time step sizes ∆t versus t.

Figure 7 compares the value of dβ/dt between (20) and (21). The error remains small,
therefore, the assumption that the solution is smooth (or at least C6) at the boundary x = 0
is valid up to numerical accuracy. Figure 8 shows the time stepsize adjusted to preserve the
same level of the local error of 10−5, with an upper bound t ≤ 0.006. This upper bound
is needed because the error drops significantly near t ≈ 0.8, and the time step adjustment
procedure would otherwise produce large values of ∆t.

3.4 Example: Positive Initial Velocity

0 5 10 15 20 25 30
−6

−5

−4

−3

−2

−1

0

1

2

3

Figure 9: Change of velocity V (t) starting from a large positive initial velocity.

10

Figure 9 shows the dynamical evolution of the velocity V (t) when V (0) = 2.35, determined
from the initial function with a = 0.5 and b = 0.6 in (8):

u0(x) = −1

4
e−x/2x(4 + 3x+ x2 + 0.6x3). (22)

Although the terminal time T ≈ 28 is much larger than that of a negative initial velocity,
a blow-up is still detected from this particular initial condition. The solution u(x, t) looks
similar to the solution shown in Figure 3 and hence is not shown here.

0 5 10 15 20 25 30
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Figure 10: ux|x=0 versus t.

0 5 10 15 20 25 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

Figure 11: uxxxx|x=0 versus t.

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Figure 12: Error of dβ/dt.

0 5 10 15 20 25 30
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Figure 13: Time stepsize ∆t.

Figures 10 and 11 show that ux|x=0 and uxxxx|x=0 cross zero at the terminal time. The
level of error shown in Figure 12 is similar to the previous example and is acceptable. The
adjusted time step sizes in Figure 13 agree roughly with the error for different time t, where
the step size reduces when the error increases near the terminal time.

11

3.5 More Initial Velocities

The following plots illustrate the dynamical evolution of the velocities V (t) under different
initial conditions. From these plots, together with the previous examples, it is clear that
the blow-up time depends on the initial velocity V (0), where a large positive initial velocity
leads to a much longer equilibrium state before the solution blows up.

0 5 10 15 20 25 30
−6

−5

−4

−3

−2

−1

0

1

a = 0.4, b = 0.0, V
0
 = −0.7406

a = 0.4, b = 0.1, V
0
 = −0.1758

a = 0.4, b = 0.2, V
0
 = 0.3886

a = 0.4, b = 0.3, V
0
 = 0.9526

0 0.5 1 1.5 2 2.5 3 3.5
−6

−5

−4

−3

−2

−1

0

a = 0.6, b = 0.0, V
0
 = −1.9526

a = 0.6, b = 0.1, V
0
 = −1.3877

a = 0.6, b = 0.2, V
0
 = −0.8230

a = 0.6, b = 0.3, V
0
 = −0.2584

Figure 14: Comparison of velocities V (t) between different initial conditions.

4 Blow-up Rate

In order to determine the exact blow-up time t0, we will fit the numerical data near the
terminal time T with the logarithmic function (3) and the power function (4).

To fit the data into (3), we first differentiate both sides of the expression with respect to
t and take the inverse:

dV

dt
= − C1

t0 − t
⇒

(
dV

dt

)−1

=
t

C1

− t0
C1

.

Then the constants C1 and t0 can be determined from a linear regression applied to the
above equation. The other constant C2 can be found from another linear regression applied
to the original logarithmic function (3), where the values of C1 log(t0 − t) are known now.

The similar differentiation-regression method can also be used to find the coefficients in
the power function (4), after taking the logarithm of both sides:

log(−V (t)) = log c− p log(t0 − t).

In particular, we differentiate the above expression and obtain:

1

V (t)

dV

dt
=

p

t0 − t
⇒ V (t)

(
dV

dt

)−1

=
t0
p
− t

p
.

12

4.1 Examples

In practice, we found that the blow-up time t0 and blow-up rate p in the power law or the
coefficient C1 in the logarithmic law vary with different time windows (i.e. the range of t
which is used to fit the data). The following Matlab output gives a comparison of blow-up
times and rates under different time windows and different tolerance levels, using the initial
condition discussed in Section 3.3. Here starting time means the time t at which we start to
fit the data, and Error is the mean squared error (MSE) defined by

MSE :=
1

n− 3

∑
(Vobs − Vfit)

2,

where n is the total number of data points used in the regression.

Initial condition: a = 0.5, b = 0; initial velocity: V(0) = -1.2500

Tolerance level: 0.0001, number of iterations: 330, terminal time = 1.8729

Starting time Blowup time t0 Blowup rate p or C1 Error

powerlaw:

1.8176 1.8749 0.3916 0.000017

1.8356 1.8752 0.3994 0.000003

1.8550 1.8756 0.4104 0.000000

loglaw:

1.8176 1.8678 0.5371 23.732740

1.8356 1.8695 0.6135 33.681247

1.8550 1.8716 0.7578 68.934686

Tolerance level: 1e-006, number of iterations: 1448, terminal time = 1.8732

Starting time Blowup time t0 Blowup rate p or C1 Error

powerlaw:

1.8172 1.8753 0.3927 0.000033

1.8360 1.8757 0.4009 0.000006

1.8547 1.8760 0.4118 0.000000

loglaw:

1.8172 1.8688 0.5500 25.226547

1.8360 1.8705 0.6343 33.937325

1.8547 1.8724 0.7854 58.894321

The above table shows that the errors from logarithmic law are much larger than the
errors from power law in all cases. Also, the error of power law reduces as the time window
moves closer to the blow-up time, whereas the error of logarithmic law increases. Moreover,
the blow-up times t0 determined from the logarithmic law are smaller than terminal time.

13

Hence, the logarithmic law deviates from the numerical data near blow-up time. As we
can see in Figure 15, the power function (4) fits our numerical data much better than the
logarithmic function (3).

1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89
−9

−8

−7

−6

−5

−4

−3

−2

−1

t

V

numerical data
Power Law
Logarithmic law

Figure 15: Comparison between data fitting with the logarithmic law and the power law.

Here are two more examples with different initial conditions:

Initial condition: a = 0.4, b = 0; initial velocity: V(0) = -0.7360

Tolerance level: 0.0001, number of iterations: 284, terminal time = 2.9646

Starting time Blowup time t0 Blowup rate p or C1 Error

powerlaw:

2.8763 2.9652 0.3995 0.000104

2.9058 2.9657 0.4078 0.000023

2.9365 2.9662 0.4197 0.000002

loglaw:

2.8763 2.9560 0.3906 12.400108

2.9058 2.9585 0.4557 19.102593

2.9365 2.9615 0.5870 37.017782

Tolerance level: 1e-006, number of iterations: 1364, terminal time = 2.9654

Starting time Blowup time t0 Blowup rate p or C1 Error

powerlaw:

2.8765 2.9662 0.4001 0.000164

2.9063 2.9666 0.4085 0.000030

2.9358 2.9671 0.4201 0.000002

14

loglaw:

2.8765 2.9574 0.3959 12.052519

2.9063 2.9599 0.4640 18.350765

2.9358 2.9626 0.5945 32.196180

Initial condition: a = 0.4, b = 0.2; initial velocity: V(0) = 0.4640

Tolerance level: 0.0001, number of iterations: 1154, terminal time = 19.0738

Starting time Blowup time t0 Blowup rate p or C1 Error

powerlaw:

18.5099 19.0655 0.3972 0.000056

18.6951 19.0684 0.4059 0.000012

18.8868 19.0713 0.4189 0.000001

loglaw:

18.5099 19.0162 0.1018 0.342647

18.6951 19.0310 0.1200 0.554862

18.8868 19.0475 0.1583 1.111706

Tolerance level: 1e-006, number of iterations: 4233, terminal time = 19.0885

Starting time Blowup time t0 Blowup rate p or C1 Error

powerlaw:

18.5172 19.0815 0.3982 0.000715

18.7069 19.0842 0.4073 0.000142

18.8986 19.0867 0.4208 0.000009

loglaw:

18.5172 19.0382 0.1044 0.412399

18.7069 19.0521 0.1241 0.660228

18.8986 19.0670 0.1659 1.472944

4.2 Blow-up Rate

The results of data fitting suggest that for both small and large blow-up times t0, the power
law gives a consistent estimation of the blow-up rate p, with p ≈ 0.4. It is suggested in
Section 4 of [5] that the power law (4) can be applicable with p = 0.5, provided that uxxxx|x=0

remains non-zero as t → t0. However, as we have seen in Figure 6 and 11, uxxxx|x=0 is also
approaching zero near the blow-up time. Thus, we are not able to justify the power law (4)
with a precise value of p at this time. More accurate and computationally efficient numerical
simulations are needed before we can make any further conclusions.

15

5 Conclusion

We conclude from the numerical simulations of the model problem (5) - (6) that, for any
suitable initial condition in the form (8), there always exists a finite positive time t0 such
that V (t)→ −∞ as t→ t0, although the blow-up time t0 varies from different initial velocity
V (0). With a large positive initial velocity, the solution tends to have a longer equilibrium
state before it eventually blows up, whereas a negative initial velocity yields a much smaller
value of the blow-up time t0.

The numerical results also suggest that the behavior of V (t) near the blow-up time
satisfies the power law (4), with a blow-up rate p ≈ 0.4. However, the true value of p remains
unknown at this time, and requires development of more precise and computationally efficient
numerical methods.

Because the model equation (5) is already a fourth order PDE, we shall avoid using any
numerical methods that involves higher order central differences. In addition, because of the
unknown variable V (t), it is difficult to use other higher order implicit methods to solve the
system of ODEs (11). Thus, the finite difference method has a limited accuracy. Therefore, a
different approach is needed, for instance, by using the collocation method involving discrete
Fourier transform. This will remain open for further studies.

References

[1] E.S. Benilov and M. Vynnycky, Contact lines with a 180◦ contact angle, J. Fluid Mech.
(2013), vol. 718, pp. 481-506.

[2] D.J. Benney and W.J. Timson, The rolling motion of a viscous fluid on and off a rigid
surface, Stud. Appl. Math. (1980), vol. 63, pp. 9398.

[3] C.G. Ngan and V.E.B. Dussan, The moving contact line with a 180◦ advancing contact
angle, Phys. Fluids (1984), vol. 24, pp. 2785-2787.

[4] D.E. Pelinovsky, A.R. Giniyatullin, and Y.A. Panfilova, On solutions of a reduced model
for the dynamical evolution of contact lines, Transactions of Nizhni Novgorod State Tech-
nical University n.a. Alexeev N.4 (94), 45-60 (2012)

[5] D.E. Pelinovsky and A.R. Giniyatullin, Finite-time singularities in the dynamical evo-
lution of contact lines, Bulletin of the Moscow State Regional University (Physics and
Mathematics) 2012 N.3, 14-24 (2012)

[6] M. Grasselli and D.E. Pelinovsky, Numerical Mathematics, Jones and Bartlett, Boston
(2008)

16

A MATLAB Codes

A.1 Finite Difference Method

function [k, t, V, x, u] = Diffusion_Diff(a, b, Etol, kbreak, L, N)

% This function uses finite difference method discussed in Section 3 to

% approximate the numerical solutions of u(x, t) and V(t). The iteration

% will terminate when absolute value of V is greater than 5, which is

% considered as numerical evidence of blow-up.

%

% k is the total number of iterations.

% a and b are parameters in the initial condition.

% Etol is the error tolerance level, the default value is Etol = 10^-5.

% The default value of the right boundary L is 15/a.

% The default value of the number of interior grid points N is 149.

%

% kbreak is the maximum number of iterations. If no blow-up is detected

% when this number is reached, the function will terminate automatically

% and save the data to Diffusion_Diff.mat for future computation. The

% default value is kbreak = 1000.

%

% If no input is specified, the function will load data from

% Diffusion_Diff.mat and continue the computation.

if nargin ~= 0

if a <= 0, error(’a must be strictly positive.’); end

if b < 0, error(’b must be non-negative.’); end

if nargin < 5

L = 15/a; N = 149;

if nargin < 4

kbreak = 1001;

if nargin < 3

Etol = 10^-5;

end

end

end

% Discretization over x-axis:

x = linspace(0, L, N+2); x = x(2 : N+1)’; dx = L/(N+1);

17

% Initial condition:

u = -exp(-a*x).*x/4.*(4 + (4*a+1)*x + a*(2*a+1)*x.^2 + b*x.^3);

V = 4/dx^3*(2*u(2) - 4*u(1) + dx^2)/(4*u(1) + dx^2);

Vexact = 6*b - 4*a^3 - 3*a^2;

fprintf(’Initial velocity: numerical: %.4f, analytical: %.4f.\n’, V, Vexact)

t = 0; dt = Etol/abs(V - Vexact);

else

load Diffusion_Diff

end

% Adaptive method:

for k = length(t) - 1 + (1 : kbreak)

if abs(V(k)) > 5, break; end

% approximation at dt

[uPred, VPred] = Heun(dx, dt, u(:,k), V(k));

% approximation at dt/2

[u1, V1] = Heun(dx, dt/2, u(:,k), V(k));

[u2, V2] = Heun(dx, dt/2, u1, V1);

% optimal time stepsize for next step

Error = 4*norm(u2-uPred)/3;

s = (Etol/Error)^(1/3);

dt = dt*s;

t(k+1) = t(k) + dt;

[u(:,k+1), V(k+1)] = Heun(dx, dt, u(:,k), V(k));

end

if k < 10

warning(’initialFunction:Velocity’,...

’Initial velocity too large: V(0) = %.4f.’, V(1));

elseif mod(k, kbreak) == 0

warning(’Diffusion_Diff:iterationTerminated’,...

’Number of iterations exceeds %g, no blow-up detected when t < %.4f.’,...

k, t(k));

save Diffusion_Diff

end

18

A.2 Implicit Heun’s Method

function [u, V] = Heun(dx, dt, u0, V0)

% This function uses implicit Heun’s method to compute u and V for the next

% time step.

% dx and dt are space and time stepsizes, respectively.

% u0 and V0 take values of u and V, respectively, at the current time step.

N = length(u0);

b = [1/(2*dx^2); zeros(N - 1, 1)];

A0 = A_diff(dx, N, V0);

% prediction

u1 = (eye(N) - dt*A0/2)\((eye(N) + dt*A0/2)*u0 + dt*b);

V1 = (4/dx^3)*(2*u1(2) - 4*u1(1) + dx^2)/(4*u1(1) + dx^2);

A1 = A_diff(dx, N, V1);

% correction

u = (eye(N) - dt*A1/2)\((eye(N) + dt*A0/2)*u0 + dt*b);

V = (4/dx^3)*(2*u(2) - 4*u(1) + dx^2)/(4*u(1) + dx^2);

function A = A_diff(dx, N, V)

% Matrix A in the finite difference method.

A = - 1/dx^4*diag(ones(1, N-2), -2)...

+ (4/dx^4 - V/(2*dx))*diag(ones(1, N-1), -1)...

- 6/dx^4*diag(ones(1, N))...

+ (4/dx^4 + V/(2*dx))*diag(ones(1, N-1), 1)...

- 1/dx^4*diag(ones(1, N-2) ,2);

A = A + [1/dx^4 zeros(1, N-1); zeros(N-2, N); zeros(1, N-1) 1/dx^4];

A.3 Approximation of Solutions

clear all; close all

a = input(’Set value of a = ’);

b = input(’Set value of b = ’);

tol = input(’Set tolerance level = 10^’);

kbreak = 1000;

19

[k, t, V, x, u] = Diffusion_Diff(a, b, 10^tol, kbreak);

if k < 10, break, end

figure(1); plot(t(1:k-1), diff(t), ’.’); title(’Time stepsize’)

figure(2); plot(t, V, ’.’); title(’V(t)’)

while mod(k, kbreak) == 0 & k < 5*kbreak

[k, t, V, x, u] = Diffusion_Diff;

figure(1); plot(t(1:k-1), diff(t), ’.’); title(’Time stepsize’)

figure(2); plot(t, V, ’.’); title(’V(t)’)

end

fprintf(’Number of iterations: %g, terminal time: T = %.4f.\n’, k, t(k))

if k < 5*kbreak, save Diffusion_Diff_2, end

K = floor(k/4)*4;

figure(3);

plot(x’,u(:,1),’.r’); hold on;

plot(x’,u(:,K/4+1),’.g’);

plot(x’,u(:,K/2+1),’.c’);

plot(x’,u(:,3*K/4+1),’.b’);

plot(x’,u(:,K+1),’.k’); hold off

legend(’t = 0’, ’t = .25T’, ’t = .5T’, ’t = .75T’, ’t = T’)

dx = x(2) - x(1);

for k = 1 : length(t)

beta(k) = u(1,k)/dx + dx/4;

u4(k) = (2*u(2,k) - 4*u(1,k) + dx^2)/dx^4;

dbeta1(k) = -V(k)/2 - (2*u(3,k) - 12*u(2,k) + 18*u(1,k) - 3*dx^2)/(2*dx^5);

if k > 2

dbeta2(k-2) = (beta(k) - beta(k-2))/(t(k) - t(k-2));

dbetaError(k-2) = abs(dbeta1(k-1) - dbeta2(k-2));

end

end

figure(4); plot(t, beta); title(’u_x(0, t)’);

figure(5); plot(t, u4); title(’u_{xxxx}(0, t)’);

figure(6); semilogy(t(2:k-1), dbetaError); title(’Error of d\beta/dt’);

20

A.4 Power Law

function [c, p, t0, Error] = blowupPower(t, V)

w = abs(V);

n = length(t);

dt = diff(t(1:n-1) + t(2:n));

dw = diff(w(1:n-1) + w(2:n));

y = w(2:n-1).*dt./dw;

b = polyfit(t(2:n-1), y, 1);

p = -1/b(1);

t0 = b(2)*p;

y = log(w) + p*log(t0-t);

c = exp(mean(y));

Error = norm(w - c./(t0-t).^p)^2/(n-3);

A.5 Logarithmic Law

function [c1, c2, t0, Error] = blowupLog(t, V)

w = abs(V);

n = length(t);

dt = diff(t(1:n-1) + t(2:n));

dw = diff(w(1:n-1) + w(2:n));

y = dt./dw;

b = polyfit(t(2:n-1), y, 1);

c1 = -1/b(1);

t0 = b(2)*c1;

y = w + c1*log(t0-t);

c2 = mean(y);

Error = norm(w - c1*log(t0 - t) - c2)^2/(n-3);

21

A.6 Blow-up Rate

% This script fits the numerical data of V(t) near the blow-up time, and

% compares the results between the power law and the logarithmic law. The

% numerical data that are subject to large error near the terminal time are

% excluded in the data fitting.

clear all

a = input(’set value of a = ’);

b = input(’set value of b = ’);

kbreak = 2000; % change maximum number of iterations here

fileID = fopen(’blowupRate.txt’, ’w’);

fprintf(fileID, ’Initial condition: a = %g, b = %g; ’, a, b);

for Etol = 10.^-[4 6] % change tolerance level here

[k, t, V] = Diffusion_Diff(a, b, Etol, kbreak);

if k < 10, fprintf(fileID, [’\r\nWarning: ’ lastwarn]); break, end

if Etol == 10^-4, fprintf(fileID, ’initial velocity: %.4f\r\n’, V(1)); end

fprintf(fileID, ’\r\nTolerance level: %g, ’, Etol);

if k == kbreak, fprintf(fileID, [’\r\nWarning: ’ lastwarn]); break, end

fprintf(’Number of iterations: %g, terminal time: %.4f.\n’, k, t(k));

for j = 1 : 3

span = t > t(k)*(.96+.01*j) & t < t(round(.98*k));

tSpan = t(span); VSpan = V(span); tStart(j) = tSpan(1);

[c(j), p(j), tpwr(j), Epwr(j)] = blowupPower(tSpan, VSpan);

[c1(j), c2(j), tlog(j), Elog(j)] = blowupLog(tSpan, VSpan);

end

fprintf(fileID, ’Number of iterations: %g, terminal time: %.4f\r\n’, k, t(k));

fprintf(fileID, ’%15s %15s %20s %12s\r\n’, ’Starting time’,...

’Blowup time t0’, ’Blowup rate p or C1’, ’Error’);

fprintf(fileID, ’powerlaw:\r\n’);

fprintf(fileID, ’%15.4f %15.4f %15.4f %17.6f\r\n’, [tStart; tpwr; p; Epwr]);

fprintf(fileID, ’loglaw:\r\n’);

fprintf(fileID, ’%15.4f %15.4f %15.4f %17.6f\r\n’, [tStart; tlog; c1; Elog]);

end

fclose(fileID);

22

A.7 Blow-up Time

% This script plots the fitted data from power law and logarithmic law,

% together with the numerical data of V(t) near the blow-up time.

clear all

key = input([’Type 1 to load previously saved data, \n’...

’0 to start with new initial condition: ’]);

if key == 0

a = input(’Set value of a = ’);

b = input(’Set value of b = ’);

tol = input(’Set tolerance level = 10^’);

kbreak = 3000; % change maximum number of iterations here

[k, t, V] = Diffusion_Diff(a, b, 10^tol, kbreak);

if k < 10 | mod(k, kbreak) == 0, break, end

elseif key == 1

load Diffusion_Diff_2;

clear x u

else

error(’invalid input’)

end

span = t > .98*t(k);

figure(7); plot(t(span), V(span), ’.’); hold on

span = t > .98*t(k) & t < t(round(.98*k));

tSpan = t(span); VSpan = V(span);

[c, p, tpwr] = blowupPower(tSpan, VSpan);

tt = linspace(tSpan(1),tpwr,101);

tt = tt(1:100);

w = -c./(tpwr-tt).^p;

plot(tt,w,’-r’)

[c1, c2, tlog] = blowupLog(tSpan, VSpan);

tt = linspace(tSpan(1),tlog,101);

tt = tt(1:100);

w = c1*log(tlog-tt) - c2;

plot(tt,w,’-g’)

legend(’numerical approximation’, ’power law’, ’log law’); hold off

23

