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1. Breathers and Modulating pulses

True breathers exist in integrable models, e.g. the sine–Gordon
equation:

utt − uxx + sin(u) = 0,

The exact breather solution is

u(x, t) = 4 arctan

√
1− ω2 cos(ωt)

ω cosh(
√

1− ω2x)
, 0 < ω < 1.

This is the standing breather which also generates a family of
traveling breathers by the Lorentz transformation:

u(x, t) = ũ
(

x− ct√
1− c2

,
t − cx√
1− c2

)
, −1 < c < 1.
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Example of the breather

The breather solution satisfies

u(x, t + T) = u(x, t) and lim
|x|→∞

u(x, t) = 0,

with T = 2π/ω.

D. Pelinovsky, McMaster University Breathers and Transition Fronts 3 / 16



Breathers in the small-amplitude limit

Consider the limit ω → 1 in

u(x, t) = 4 arctan

√
1− ω2 cos(ωt)

ω cosh(
√

1− ω2x)
, ω ∈ (0, 1),

where we recall that arctan(z) ≈ z as z→ 0.

If ε :=
√

1− ω2 is small, then the power expansions yields

u(x, t) = 4εsech(εx) cos(ω(ε)t) +O(ε3),

with
ω(ε) =

√
1− ε2 = 1− 1

2
ε2 +O(ε4).
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Small-amplitude expansions

This suggest the reduction of the sine–Gordon equation

utt − uxx + sin(u) = 0,

with the small-amplitude, slow-scale expansions

u(x, t) = ε[A(εx, ε2t)eit + Ā(εx, ε2t)e−it] +O(ε3).

Since sin(u) = u− 1
6 u3 +O(u5) and e±it are in the null space of

1 + ∂2
t in L2

per, we get the NLS equation for A = A(ξ, τ) from the
solvability condition in L2

per at the order of O(ε3):

2iAτ − Aξξ −
1
2
|A|2A = 0.

The breather corresponds to the NLS soliton A(ξ, τ) = 2sech(ξ)e−
i
2 τ .
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Small-amplitude expansions

However, the expansions fail for non-integrable versions of the wave
equation, e.g. for the φ4 theory:

utt − uxx + u− 1
6

u3 = 0.

. H. Segur, M. D. Kruskal, Phys. Rev. Lett. 58 (1987), 747

. J. Denzler, Commun. Math. Phys. 158 (1993) 397

. B. Birnir, H.P. McKean, A. Weinstein, CPAM 47 (1994) 1043

. Justification of the NLS approximation holds only on long but
finite time intervals:

sup
t∈[0,τ0ε−2]

|u(·, t)− εA(ε·, ε2t)eit − εĀ(ε·, ε2t)e−it‖L∞ ≤ Cε3.
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Small-amplitude expansions

The breather solutions can be thought to be a solution of the form

u(x, t) = v(ξ, θ), ξ := x− ct, θ := kx− ωt

for some approrpriately choosen parameters c, k, ω and with
boundary conditions

v(x, θ + 2π) = v(x, θ) and lim
|ξ|→∞

v(ξ, θ) = 0.

The PDE is converted to the spatial dynamical system in ξ by using
Fourier series in θ. A center manifold does not allow us generally to
construct a homoclinic orbit with zero boundary conditions.

. M. Groves and G. Schneider, Comm. Math. Phys. 219 (2001);
J. Diff. Eqs. 219 (2005); Comm. Math. Phys. 278 (2008).
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Small-amplitude expansions

In the cases with center manifolds, we have modulating pulses instead
of breathers. Modulating pulses are not trully localized (also called
generalized breathers or nanopterons).

O(ε2N) O(ε)

cg

cpO(ε−(2N+1))

O(ε−1)

-�
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Modulating pulses in spatially periodic systems
. Standing modulating pulse solutions of the wave equation:

utt − uxx − ρ(x)u + u3 = 0, ρ(x + 2π) = ρ(x).

with u = v(x, kx− ωt)
V. Lescarret, G. Schneider (2009); T. Dohnal, D. Rudolf (2020)

. Traveling modulating pulse solutions of the GP equation:

iψt = −ψxx + ρ(x)ψ + |ψ|2ψ, ρ(x + 2π) = ρ(x)

with ψ = v(x− ct, x)eiωt.
D.P & G. Schneider (2008); D.P. (2011);

. Traveling modulating pulse solutions in the wave equation:

utt − uxx + ρ(x)u = γu3, ρ(x + 2π) = ρ(x).

with u = v(x− ct, kx− ωt, x).
T. Dohnal, D.P., G. Schneider, Nonlinearity 37 (2024) 05505
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2. Breathers localized in time and periodic in space

The focusing nonlinear Schrödinger (NLS) equation

i∂tψ + ∂2
xψ + |ψ|2ψ = 0

admits the exact solution [Akhmediev, Eleonsky, & Kulagin (1985)]

ψ(x, t) = eit
[

1− 2(1− λ2) cosh(kλt) + ikλ sinh(kλt)
cosh(kλt)− λ cos(kx)

]
,

commonly known as Akhmediev breathers.
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Localized-in-time breathers in time-periodic systems

The FPU model:

mün + cu̇n + k(t)un = β(d + un − un−1)−α − β(d + un+1 − un)−α,

where α, β,m, d > 0, c ≥ 0, and k(t + 2π) = k(t).

FPU models a chain of repelling magnets surrounded by time
modulated coils (phononic lattices)
Kim, Chong, Daraios et al., Phys. Rev. E 107 (2023) 034211
Chong, Kim, Daraios et al., Phys. Rev. Res. 6 (2024) 023045
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Localized-in-time breathers in time-periodic systems

The FPU model:

mün + cu̇n + k(t)un = β(d + un − un−1)−α − β(d + un+1 − un)−α,

where α, β,m, d > 0, c ≥ 0, and k(t + 2π) = k(t).

Localized-in-time breathers were observed in experiments:
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Bifurcation theory: c = 0

We consider an abstract FPU system with

mün + k(t)un = F(un+1 − un)− F(un − un−1),

where m > 0, k(t + 2π) = k(t), and

F(w) = K2w− K3w2 + K4w3, K2 > 0.

We consider N particles with Dirichlet conditions:

u0(t) = uN+1(t) = 0.
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Bifurcation theory: c = 0

Due to Dirichlet conditions, we use the discrete Fourier sine modes:

un(t) =

N∑
m=1

ûm(t) sin(qmn), qm :=
πm

N + 1
, 1 ≤ m ≤ N

and obtain the linear Schrodinger problem

Lûm = λmûm, L = −m∂2
t − k(t),

where λm = 4K2 sin2 ( qm
2

)
.
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Bifurcation theory: c = 0

Due to Dirichlet conditions, we use the discrete Fourier sine modes:

un(t) =

N∑
m=1

ûm(t) sin(qmn), qm :=
πm

N + 1
, 1 ≤ m ≤ N

and obtain the linear Schrodinger problem

Lûm = λmûm, L = −m∂2
t − k(t),

where λm = 4K2 sin2 ( qm
2

)
.

The spectrum of L in L2(R) is purely continuous:

σ(L) = [ν0, µ1] ∪ [µ2, ν1] ∪ [ν2, µ3] ∪ [µ4, ν3] ∪ · · ·

We are looking for a bifurcation case of k(t) when λm0 = µ1 or
λm0 = µ2 for one m0 ∈ {1, 2, . . . ,N} (double-period bifurcation).
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Bifurcation theory: c = 0
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Generalized localized-in-time breathers

Assume three conditions:

. Spectral Assumption: There exists k0(t + 2π) = k0(t) such that
all Floquet exponents are purely imaginary, With the exception
of two exponents at `0 = i

2 , all other are simple and nonzero.

k(t) = k0(t) + δε2, δ = ±1.

. Non-degeneracy: The numerical coefficient χ of the normal form
is nonzero and focusing:

1
2
λ′′1(`0)A′′ + δA + χA3 = 0,

with δ = −sgn(λ′′1(`0)) = −sgn(χ), e.g. K3 = 0 and K4 6= 0.

. Reversibility in time: The time-periodic coefficient satisfies
k(t − t0) = k(t0 − t) for at least one t0 ∈ [0, 2π] (two generally).
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Generalized localized-in-time breathers

Theorem (C. Chong, D.P., G. Schneider, SIADS 24 (2025) 894)

Under the three conditions, there exists an ε0 > 0 such that for all
ε ∈ (0, ε0) and every M ≥ 3 the FPU system possesses two
generalized homoclinic solutions U±hom(t) : [−ε−M+2, ε−M+2]→ RN

satisfying

sup
t∈[−ε−M+2,ε−M+2]

‖U±hom(t)−U±(t)‖+‖(U±hom)′(t)−(U±)′(t)‖ ≤ CεM−1

where U±(t) : R→ RN satisfy lim
|t|→∞

‖U±(t)‖+ ‖(U±)′(t)‖ = 0 and

can be approximated as

(U±)n(t) = ±εA(εt)g(t) sin(qm0n) +O(ε2),

where g(t + 2π) = −g(t) and A(τ) = αsech(βτ) are uniquely
defined with some α, β > 0.
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Numerical illustration: bifurcation from λm0 = µ1, K4 < 0
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Numerical illustration: bifurcation from λm0 = µ2, K4 > 0
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Numerical illustration: bifurcation from λm0 = µ2, K3 6= 0
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Justification of the homoclinic solutions

Step 1: Bifurcation setup.

Let k(t) = k0(t) + δε2 and pick k0(t) so that λm0 = µ1 for one
m0 ∈ {1, 2, . . . ,N}. Assume no other Floquet multipliers at ±1.
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Justification of the homoclinic solutions

Step 1: Bifurcation setup.

Let k(t) = k0(t) + δε2 and pick k0(t) so that λm0 = µ1 for one
m0 ∈ {1, 2, . . . ,N}. Assume no other Floquet multipliers at ±1.

Step 2: Formal derivation of the normal form. Expanding

un(t) = εU(1)
n (t) + ε2U(2)

n (t) + ε3U(3)
n (t) +O(ε4),

we select the leading order in the form

U(1)
n (t) = A(εt)g(t) sin(qm0n),

where g(t + 2π) = −g(t) is the bifurcating mode of L0g = µ1g with
µ1 = K2ω

2(qm0), ω2(q) := 4 sin2(q
2).
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Justification of the homoclinic solutions

At the order of O(ε2), we get

L0U(2)
n + ∆U(2)

n = 2mA′(τ)g′(t) sin(qm0n) + K3A(τ)2g(t)2F(2)
n ,

where τ = εt and F(2)
n = −2 sin(qm0)(1− cos(qm0)) sin(2qm0n).

The solution for U(2)
n (t) can be written in the form

U(2)
n (t) = A′(τ)h1(t) sin(qm0n) + χ2A(τ)2h2(t) sin(2qm0n),

where

(L0 − K2ω
2(qm0))h1 = 2mg′(t),

(L0 − K2ω
2(2qm0))h2 = −2 sin(qm0)(1− cos(qm0))g(t)2.

The unique solution for h1(t + T) = −h1(t) and h2(t + T) = h2(t)
exists under the spectral assumption.
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Justification of the homoclinic solutions

At the order of O(ε3), we get

L0U(3)
n + ∆U(3)

n = δU(1)
n + 2m∂τ∂tU

(2)
n + m∂2

τU(1)
n

+ 2K3

[
(U(1)

n+1 − U(1)
n )(U(2)

n+1 − U(2)
n )− (U(1)

n − U(1)
n−1)(U(2)

n − U(2)
n−1)

]
− K4

[
(U(1)

n+1 − U(1)
n )3 − (U(1)

n − U(1)
n−1)3

]
.

Projection to the resonant mode g(t) sin(qm0n) yields the normal
form:

1
2
λ′′1(`0)A′′(τ) + δA(τ) + χA(τ)3 = 0,

where χ 6= 0 under the non-degeneracy assumption.
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Justification of the homoclinic solutions

Step 3: Justification of the normal form. The normal form theorem
near the double period bifurcation (Iooss–Adelmeyer, 1998) after

. diagonalization of the linear system in Fourier sine modes,

. near-identity transformations to push remainder terms in the
higher order of ε,

. persistence of reversible homoclinic orbits in the 2-dimensional
perturbed normal form under the reversibility assumption on k(t)

. persistence analysis for the remaining (2N − 2)-dimensional
system by using variation of parameters (Duhamel’s formual)
and Gronwall-type estimates of the remainder terms.
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3. Transition fronts due to dissipation c > 0

If c = εc̃ > 0 is small, the normal form equation is

1
2
λ′′1(`0)

[
A′′(τ) +

c̃
m

A′(τ)

]
+ δA(τ) + χA(τ)3 = 0,

and the homoclinic orbits transform into the heteroclinic orbits.
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3. Transition fronts due to dissipation c > 0

Theorem (C. Chong, D.P., G. Schneider, SIADS 24 (2025) 894)

Under the spectral and non-degeneracy assumptions, there exists an
ε0 > 0 such that for all ε ∈ (0, ε0) the FPU system possesses two
anti-periodic solutions U±antiper such that

sup
t∈R
‖U±antiper(t)‖+ ‖(U±antiper)

′(t)‖ ≤ C0ε

and two heteroclinic solutions U±het ∈ C1(R,RN) such that

lim
t→−∞

U±het(t) = 0, lim
t→−∞

(U±het)
′(t) = 0

and
lim

t→∞
inf

t0∈[0,2π]
‖U±het(t)− U±antiper(t + t0)‖ = 0.
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3. Transition fronts due to dissipation c > 0

Numerical illustration with K3,K4 6= 0:
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3. Transition fronts due to dissipation c > 0

Longer computation:
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4. Conclusion

. We considered the generalized breathers (localized-in-time
pulses) in the FPU lattice.

. These solutions are recovered in the dynamical systems on a
long but finite scale.

. Numerical experiments do not often distinguish between true
and generalized breathers.

. In the presence of dissipation, the generalized breathers
transform into transition fronts (heteroclinic orbits).

MANY THANKS FOR YOUR ATTENTION!
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