Dark solitons in external potentials

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

References:

D.P., D. Frantzeskakis, P. Kevrekidis, Phys. Rev. E 72, 016615 (2005)
D.P., P. Kevrekidis, ZAMP 59, 559 (2008)

NSC-08, Porto, July 28-31, 2008

Numerical simulations

Questions:

Find approximations of the frequency of oscillations of a dark soliton and study long-time changes in the amplitude of oscillations.

Set-up

Dark solitons in Bose–Einstein condensates

$$iu_t = -u_{xx} + |u|^2 u + \epsilon V(x)u,$$

where ϵ is small and $V(x): \mathbb{R} \to \mathbb{R}$ is a smooth, exponentially decaying function such that

$$\exists C > 0, \ \kappa > 0: \quad |V(x)| \le Ce^{-\kappa|x|}, \quad \forall x \in \mathbb{R}$$

Example: symmetric external potentials

$$V_1(x) = -\operatorname{sech}^2\left(\frac{\kappa x}{2}\right), \qquad V_2(x) = x^2 e^{-\kappa|x|}, \qquad x \in \mathbb{R}.$$

More general context: periodic and confining potentials V(x).

Approaches to the solution at glance

$$iu_t = -u_{xx} + |u|^2 u + \epsilon V(x)u,$$

- $\epsilon = 0$ existence and stability of dark solitons is known
- $\epsilon \ll 1$ persistence of solutions by using the method of Lyapunov–Schmidt reductions
- $\epsilon \ll 1$ stability of solutions using the Evans function method and the negative index theory
- $\epsilon \neq 0$ long-time dynamics by using Newton's law of motion and central manifold reductions

Main results

1. A black soliton $u = \phi_0(x - s)e^{-it}$ with $\phi_0 \to \pm 1$ as $x \to \pm \infty$ persists for small $\epsilon \neq 0$ if M'(s) = 0 and $M''(s) \neq 0$, where

$$M'(s) = \int_{\mathbb{R}} V'(x) \left[1 - \phi_0^2(x - s) \right] dx.$$

- 2. If a black soliton is spectrally stable for $\epsilon = 0$, then it is spectrally unstable for small $\epsilon \neq 0$ with one real positive eigenvalue if M''(s) < 0 and two complex-conjugate eigenvalues if M''(s) > 0.
- 3. If u(x,0) is close to $\phi_{\epsilon}(x-s(0))$, then u(x,t) remains close to $\phi_{\epsilon}(x-s(t))e^{-it}$, where s(t) solves for $0 < t < C/\epsilon$

$$\mu_0 \ddot{s} - \epsilon \lambda_0 M''(s) \dot{s} + \epsilon M'(s) = O(\epsilon^2), \qquad \lambda_0, \mu_0 > 0.$$

Applications

- If V(-x) = V(x), then M'(0) = 0 and the black soliton with s = 0 persists for $\epsilon \neq 0$.
- Additional roots $s = \pm s_0$ may exist if sign(M(0)M''(0)) = 1 since $M(s) \to 0$ as $s \to \infty$.

Example: $V_1 = -\mathrm{sech}^2\left(\frac{\kappa x}{2}\right)$

Only one solution persists with $s_0 = 0$ and M''(0) > 0

Example: $V_2 = x^2 e^{-\kappa |x|}$

For $\kappa < 3.21$, three solutions persist with $s_0 = 0$ (M''(0) > 0) and $s_0 = \pm s_*$ ($M''(s_*) < 0$). For $\kappa > 3.21$, only one solution persists with $s_0 = 0$ and M''(0) < 0

Nonlinear dynamics of instability

Newton's particle equation

$$\mu_0 \ddot{s} - \epsilon \lambda_0 M''(s) \dot{s} + \epsilon M'(s) = O(\epsilon^2), \qquad \lambda_0, \mu_0 > 0.$$

Real instability for $V_2(x)$, $\kappa < 3.21$ and $s_0 = s_* \neq 0$

Nonlinear dynamics of instability

Complex instability for $V_2(x)$, $\kappa < 3.21$ and $s_0 = 0$

Nonlinear dynamics of instability

Real instability for $V_2(x)$, $\kappa > 3.21$ and $s_0 = 0$

