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M otivations

Complex-valued Maxwell equation

Ew— (1+V(z)+0|E]?)Ey =0
and the Gross—Pitaevskii equation

iEy = —E,, + V(2)E + o|E|*E,
whereE(z,t) : R xR +— C, V(x) = V(z + 27), ando = £1.

Gap solitonsare localized stationary solutions of nonlinear PDEs
with space-periodic coefficients which reside in a spectagl of the
associated linear Schrodinger operator.



EXxistence of stationary solutions

Time-periodic solution® (z,t) = U(x)e " with w € R satisfy the
stationary nonlinear equation with a periodic potential

wU (z) = —U"(z) + V(2)U(z) + o|U|*U(z)

The associated Schrodinger equation is

{ —u"(z) + V(x)u(z) = wu(z),

w(2m) = e“™u(0),




Existence results

* Construction of multi-humped gap solitons in Alama-Li (299

* Bifurcations of gap solitons from band edges in Kupper-&tua
(1990) and Heinz-Stuart (1992)

* Multiplicity of branches of gap solitons in Heinz (1995)

 Existence of critical points of energy with’-normalization in
Buffoni-Esteban-Sere (2006)

[Stuart, 1995; Pankov, 2005] L&t(x) be a real-valued
bounded periodic potential. Letbe in a finite gap of the spectrum
of L = —V* + V(x). There exists a non-trivial weak solution
U(z) € H'(R), which decays exponentially as| — oo.



| llustr ation of solution branches

D.P., A. Sukhorukov, Yu. Kivshar, PR, 036618 (2004)
V(z) = Vysin®(z) with V5 = 1 ando = —1:




| llustr ation of solution branches
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V(z) = Vysin®(z) with 1, = 1 ando = +1:
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Asymptotic reductions

The nonlinear elliptic problem with a periodic potentiahdae
reduced asymptotically to the following problems:

* Coupled-mode (Dirac) equations famall potentials

i(a; + az) +ab= o(|a]* + 2|b]*)a
i(by — by) + aa = o(2|al* + b]*)b

* Envelope (NLS) equations fomite potentials near band edges
iy + Ggp + olala =0
* Lattice (dNLS) equations fdargeor long-periodpotentials

iy 4 0 (Gpy1 + An_1) + olan]?a, = 0.

Localized solutions of reduced equations exist in the ditafigrm.



For mal coupled-modetheory

If V(x) = 0, then2r-periodic or27-antiperiodic Bloch functions

exist forw = w,, = ”{ wheren € Z. Letw = w; and consider the
asymptotic multi-scale expansion

1T

E(z,t) = /e [a(ex, et)e’s + blex, et)eF + O(e)| e %.
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Coupled-mode equations

The vector(a,b) : R x R — C? satisfies asymptotically the
coupled-mode system:

i(ar + ax) + Vib = o(|a|* + 2|b]*)a,
i(by — by) + V1a = o(2lal? + [b2)b,

whereX = ex, T = et, andV; = V_; are Fourier coefficients of
V(z) ate=®,

The dispersion relation of the linearized coupled-modeaéqu is

(w—w)? = V3|2 + k2.



Stationary gap solitons

Stationary gap solitons are obtained in the analytic form

a(X,T) =a(X)e ™ b(X,T)=bX)e ",

wherex = /|Vi]2 — Q2 and|Q| < |V}

V2 JF—0F

. and

a(X) =42 = 7 VIVi = Qcosh(kX) + iy/[VA] + Qsinh(kX)




Moving gap solitons

Moving gap solitons are obtained in the analytic form

1/4 1/4
0 = (1 “) A(E)e, b — (1 - ) B(&)e, |e] < 1,

1 —c 1+c
where
. X —cl T —cX
p— . ’7':
V1 — ¢? V1 — ¢?

and, sinceA|* — |BJ? is constant irf € R, then
A= 6O, B=g()e,
with ¢ andy being solutions of the system

/! _260’¢|2 P n (
¥ = (1_02)7 Z¢_%¢_M¢+J(1_CQ>’¢|2¢




Questions and Answers

Can we justify the use of the coupled-mode theory to
approximate stationary gap solitons?

YES: we can measure a small approximation error of
stationary solutions id/* (R).

Can we justify the use of the coupled-mode theory to
approximate moving gap solitons?

NO: the small approximation error of traveling solutions
IS controlled on a large but finite interval and the gap soli®
surrounded by a train of small-amplitude almost-periodaves.



Time-dependent coupled-mode system

|[Goodman-Weinstein-Holmes, 2001; Schneider-Uecker,
2001:] Let(a,b) € C([0,Ty], H*(R,C?)) be solutions of the
time-dependent coupled-mode system for a fiXgd- 0. There
existsey, C' > 0 such that for alk € (0, ¢) the Gross—Pitaevskii
equation has a local solutidfi(x, ¢) and

for some(k,w) and anyt € [0, Ty /€.

We would like to consider stationary and moving gap
solitons inH*(R) for all ¢t € R.



Spatial dynamics formulation

SetE(x,t) = e ™) (x,y) with y = 2 — ¢t and a parameter. For
traveling solutions¢ # 0 and we set > 0. Then,

(w —icdy + 02 + 20,0, + 02) Y = €V ()Y + eo|y|*¢.

We consider functions (x, y) being27-periodic or2r-antiperiodic
In z and bounded iy. Therefore,

V(T y) =Y Ymly)e™,

meZ’

such that),,(y) satisfy the nonlinear system of coupled ODEs:

m2

T) Wy = € Z Vin—miWm, + eN.T.

mi€EZ’

P +i(m — )+ (w —



Eigenvalues of the spatial dynamics

Linearization of the system with,,,(v) = €™, ., gives roots
kK = k., IN the quadratic equation

m2

/<;2+i(m—c)/<;+w—T:O, Vm € 7.
o If w= %2 there is a double zero roet= 0 with modes

m = {n, —n}.

2 2
* Form > mg = [“ e } all rootsx are complex-valued.

* Form < my, all rootsx are purely imaginary and semi-simple
of maximal multiplicity three.

sComm. Math. Phys219, 489 (2001)



Assumptions of the main theorem

Let V' (x) be a smootl2r-periodic real-valued function
with zero mean and symmetiy(z) = V(—x) onx € R, such that

V(z) =) Vome™ : Y (14+m)°|Vam|* < o0,

meZ meZ
for somes > 0, wherelV, = 0andVs,,, =V o5, = V_o,..

The moving gap soliton of the coupled-mode system is
said to be a reversible homoclinic orbit(ifi, B) decays to zero at

infinity and A(¢) = A(=¢), B(&) = B(=€).



Main theorem for traveling solutions

There exists, L, C > 0 such that for alk € (0, ¢y) the
Gross—Pitaevskil equation has a solution in the form
E(x,t) = e ") (z,y), wherey = x — ¢t and the function)(x, y)
IS a periodic (anti-periodic) function af for even (odd).,

satisfying the reversibility constraint(x, y) = ¥ (x, —y), and

U(r) — 7 (aley)e™® + beley)e™F)

forallz € Randy € [—L/eV !, L/eNT.

Herea . (Y) = a(Y) + O(e), Y = ey is an exponentially decaying
reversible solution, where(Y) is a solution of the coupled-mode
system withY = X — cT..



Hamiltonian for mulation

Let ¢, (y) = L, (y) — %(c — m)i,,(y) and rewrite the system

{ W = G+ L(c— M),

Do = —L1(n?+ 2 —2em) Y + 5(c—M)dm — €Uy + N.T.

The system is Hamiltonian in canonical variablés ¢, 1, ¢) on
the phase space

X = {(4,¢,9,¢) € I2(Z,C"},

wherel2(Z) is a Banach algebra for any> *.



Symmetries

Solutions are invariant under the reversibility transfatrmn

Y(y) = P(-y), o) — —d(—y), YyeR.

and the gauge transformation
P(y) = “P(y), d(y)— e“P(y), VaeR

Reversible solutions satisfy the constraints:

Y(—y) =P(y), ¢(—y) =—dy), Yy eR,

which means that the trajectory intersects the revergislirface

S, = {(, ¢, ) € D: Imp =0, Red =0} .



Canonical transfor mations

letZ_ ={meZ : m<my},Z,={meZ : m>mgy}and

ct + ¢ i
7 ), = n U : m:—f/nQ—l—cz—Qcmc;:—c;n,
v \4/n2+02—20m¢ 2 ( )

ct + ¢ 1,
i _ m m _ o m2 _ R2( T
Loy iy = \4/20m—n2—02’¢m_2\/26m n? —c2(c —c. ).

The new Hamiltonian system is rewritten in new canonicaialdes

Y e 7 dc 8H dc. oH
m _ = —j—,
dy 8c+ " dy Jc-
dcT OH dc- 5’H
MESy T T o dy | oo

whereH is a new Hamiltonian functions in variables andc—.



Truncated coupled-mode system

The new Hamiltonian function iIs

H= Y (kflchl? = Enlen )+ > (kmemeh — khchen) +N.T.

mEeEZ _ m€Z+

Consider the subspace
S={c’ =0, Vm e Z\{n}, ¢, =0, Vm e Z\{-n}}
and truncatéd on the subspace:

Qe | Al Vanlefeza +ez)

H|g =€
s n—c n+c Vn2 — 2

+ N.T.|.

The Hamiltonian system fdi:;', —) IS nothing but the

coupled-mode system far= “—»_ inY = ey.

\/7 - Vn+c



Extended coupled-mode system

Using near-identity canonical transformations, we cambthe
new Hamiltonian function in the form

H = Z (kr—;‘cjnp m‘cm‘2 —|_ Z R Cm m_lij—n ’I—;ET_YL)

mEeZ _ mGZ.,.

+eHg(ct, cZ,) +eHr(c),cZ,, ¢t e”)+ e T Hy(ch, 2, ¢ c),

where H is quadratic with respect t@™, c™).

If Hr = 0, the subspac# is invariant subspace of the Hamiltonian
system and dynamics gnis given by

dC?—,L'_ , 0HS dC:n . (?HS
e — —_—
dY — dct’ dY o,

whereY =



Per sistenceresults

There exists a reversible homoclinic orbit of the extended
coupled-mode system which satisfies

ex ()] < Coe™™, ez, (y)| < C_e™W, vy eR,

for somevy, C_, C_ > 0 and sufficiently smal.

The linearized system at the zero solution is topologically
equivalent for sufficiently smad, except that the double zero
eigenvalue at = 0 split into a pair of complex eigenvalues to the
left and right half-planes for > 0.

Divide the phase space near the zero solution into
X=X,0X.9 X, X,

and rewrite the system fax, + c;, € X, andc € X, X, & X..



L ocal center-stable manifold

Leta € X, b e X, and(a;,as) € C? be small:

x, S Cue,  |Ibllx, < Che™, o]+ |ao| < Cue™.

la]

There exists a family of local solutiorg = ¢, (y; a, b, aq, as) and
c = c(y;a, b, ay,as) such that

c.(0) =a, c,=e""b+¢(y), cn=as1(y)+azss(y)+cn(y),

wherec,(y) andc,(y) are uniquely defined and the family of local
solutions satisfies the bound

sup  len(®)llx, < Cue”, sup  Jle(y)llxr < Cev,
Vye[0,L/eN+1] Vy€e[0,L/eN+1]

for some constants’;,, C' > 0.



Proof of the main theorem

The local center-stable manifold is extended to a localtgmiwn
y € |—yo, Yol if it intersects the reversibility surface,.

Sincec,.(0) = ais arbitrary, we can set immediately
Im(a)r =0, Vm € Z_\{n}, Im(a), =0, Vm € Z_\{—n}.

The other parametetsand(«aq, ay) are not however the initial
conditions. They satisfy the set of reversibility congital

Reb,,+Re(Cs)m(0) = Re(cy)m(0), Imb,,+Im(c;),,(0) = —Im(cy,).m(C
and
Imc(0) =0, ImcZ, (0)=0.

The first set is solved by the Implicit Function Theorem. The
second set Is satisfleddf, = a, = 0, since the kernel does not
satisfy the reversibility but the inhomogeneous solutionci, does.



	Motivations
	Existence of stationary solutions
	Existence results
	Illustration of solution branches
	Illustration of solution branches
	Asymptotic reductions
	Formal coupled-mode theory
	Coupled-mode equations
	Stationary gap solitons
	Moving gap solitons
	Questions and Answers
	Time-dependent coupled-mode system
	Spatial dynamics formulation
	Eigenvalues of the spatial dynamics
	Assumptions of the main theorem
	Main theorem for traveling solutions
	Hamiltonian formulation
	Symmetries
	Canonical transformations
	Truncated coupled-mode system
	Extended coupled-mode system
	Persistence results
	Local center-stable manifold
	Proof of the main theorem

