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Section 1

Workshop in honor of Michael Plum
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> First meeting: July 2016 in LMS Durham Symposium
> Extended visit: KIT, January-July 2022 (Humboldt Award)

> Shorter meetings in 2023
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Section 2

Breathers and Modulating pulses
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Examples of a breather

The standard example is the breather of the sine—Gordon equation:
Uy — Uyy + sin(u) = 0,
given by the exact solution

V1 — w? cos(wr)
wcosh(v1 — w?x)’

This is the standing breather which also generates a family of moving
breathers by the Lorentz transformation:

u(x,t) = 4arctan O<w<l.

X —ct r—cx

VI—c2'V1=¢2

ulx,t) =1 (

>, —-l<ce< 1.
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Examples of a breather

The breather solution satisfies

u(x,t+7T)=u(x,t) and lim u(x,t) =0,

x| =00

with T = 27 /w.
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Examples of a breather

One striking asymptotic limit is the small-amplitude, slow-scale
approximation:

V1 — w? cos(wr)
wcosh(v1 — w?x)’

w e (0,1).

u(x,t) = 4arctan

If ¢ := V1 — w? is small, then the power expansions yields
u(x,1) = 4esech(ex) cos(w(e)t) + O(?),

with

wEe)=vV1-e2=1- %52 +O(eh).

D. Pelinovsky, McMaster University Breathers and Modulating pulses 5/23



Small-amplitude expansions

This suggest the reduction of the sine—-Gordon equation
Uy — Uyy + sin(u) = 0,
with the small-amplitude, slow-scale expansions
u(x, 1) = e[A(ex, e%t)e’ + A(ex, e%t)e ™) + O(e?).

Since sin(u) = u — tu? + O(u®) and e*" are in the null space of
1+ 0% in Lger, we get the NLS equation for A = A(, 7) from the
solvability condition in Lger at the order of O(?):

1
2iA; — Age — 5\A|2A =0.

The breather corresponds to the NLS soliton A(, 7) = 2sech(¢ )e_%T.
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Small-amplitude expansions

However, the expansions fail for non-integrable versions of the wave
equation, e.g. for the ¢* theory:

1
uﬂ—uxx—l—u—ngzo.

> H. Segur, M. D. Kruskal, Phys. Rev. Lett. 58 (1987), 747
> J. Denzler, Commun. Math. Phys. 158 (1993) 397

> B. Birnir, H.P. McKean, A. Weinstein, CPAM 47 (1994) 1043

> Justification of the NLS approximation holds only on long but
finite time intervals:

sup  |u(-,1) — eA(e-, e%)e" — A(e-, %) || Lo < Ce.
t€[0,70e 2]
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Small-amplitude expansions

The breather solutions can be thought to be a solution of the form
u(x,t) =v(,0), &:=x—ct, 0:=kx—wt

for some approrpriately choosen parameters c, k, w and with
boundary conditions

u(x,0 +2m7) =u(x,0) and lim v(&,0)=0.

§|—o0

The PDE is converted to the spatial dynamical system in £ by using
Fourier series in 6. A center manifold does not allow us generally to
construct a homoclinic orbit with zero boundary conditions.

> M. Groves and G. Schneider, Comm. Math. Phys. 219 (2001);
J. Diff. Egs. 219 (2005); Comm. Math. Phys. 278 (2008).
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Small-amplitude expansions

Instead of breathers, we would then have modulating pulses which are
not trully localized (also called generalized breathers).
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Breathers versus modulating pulses

Besides integrable systems, true breathers exist in some models:
> Lattices with weak coupling:
—ez(Au)n—l—un—l—uf,:O, neZz.
S. Aubry & R. MacKay (1994); D.P., T. Penati, S. Paleari (2020)
> Systems with periodic coefficients
SOty —tp—p(X)utu® =0,  s(x+2m) = s(x), p(x+27) = p(x).

C. Blank, M. Chirilus, V. Lescarret, G. Schneider (2011);
A. Hirsch & W. Reichel (2019); S. Kohler & W. Reichel (2022)

> Curl—curl wave equations: M. Plum & W. Reichel (2016), (2023)
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Breathers versus modulating pulses

In more general models, modulating pulses exist instead of breathers:

> Standing modulating pulse solutions of the wave equation with
periodic coefficients

utt_uxx_p(x)u+u3 =0, p(x+27r) :p(x)
V. Lescarret, G. Schneider (2009); T. Dohnal, D. Rudolf (2020)

> Traveling modulating pulse solutions of the Gross-Pitaevskii
equation with periodic potentials:

iy = —tu+ p()Y + [UPY,  plx+27) = p(x)

D.P & G. Schneider (2008); D.P. (2011);
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Breathers versus modulating pulses

No results for traveling modulating pulse solutions in the wave
equation with periodic coefficients so far.

Uy — ey + p(X)u =y, p(x+2m) = p(x).

Here traveling modulating pulses have three spatial scales:

E=x—ct, 0=kx—wt, =x

T. Dohnal, D.P., G. Schneider, Nonlinearity (2024) under review.
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Section 3

Traveling modulating pulses in the wave
equation with periodic coefficients
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Linear theory and traveling modulating pulses

Consider the linear wave equation
OPu(x, 1) — O*u(x, 1) + p(X)u(x, 1) =0, p(x+27) = p(x),

with 2m-periodic, bounded, and positive coefficient p.
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Linear theory and traveling modulating pulses

Consider the linear wave equation
OPu(x, 1) — O*u(x, 1) + p(X)u(x, 1) =0, p(x+27) = p(x),
with 2m-periodic, bounded, and positive coefficient p.
Solutions are given by the family of Bloch modes:
u(x, 1) = eFnDiee (1 1) neN, leB:=R\Z,

where £, (1, x) = f, (1, x + 27) and f, (I, x) = f,(I + 1,x)el* are
L?([0,27]) normalized eigenfunctions and

0<wi(l) Swrll) < <) wnni() ... VIEB,
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Linear theory and traveling modulating pulses

Consider the linear wave equation
Rulx, 1) — Dulx, 1) + p(¥)ulx,1) = 0, plx+27) = p(x),

with 2m-periodic, bounded, and positive coefficient p.

e
-3 L
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Linear theory and traveling modulating pulses

Consider the linear wave equation
OPu(x, 1) — O*u(x, 1) + p(X)u(x, 1) =0, p(x+27) = p(x),
with 2m-periodic, bounded, and positive coefficient p.

For fixed ny € N and [y € B, we can approximate the traveling
modulating pulse by

app (%, 1) = EA(£(x — ¢4t), E20)fp (I, x) e e @0 ¢
where ¢ = wy, (lp), and A = A(X, T) is a soliton of the NLS equation:
2i07A + wyy (1) OXA + Yy (l0)|A[*A = 0,

with ’Yno(lo) = 3“fn0 (4o, ‘)H?A/an(lo)-
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Main theorem [T. Dohnal, D.P., G. Schneider (2024)]

Choose ng € N and Iy € B such that w,(ly) # wy,(lo), Vn # no,
wﬁlo (l()) 75 +1, w:llo(lo) 75 0, and

w2 (mly) # mzw,zlo(lo), me {3,5,...2N+ 1}, VneN

There are 9 > 0 and C > 0 such that for all £ € (0, g) there exist
traveling modulating pulse solutions of the semi-linear wave equation:

ulx,t) =v(€, z,x) with £ =x—cet, z=lpx — wt,
with v € C2([—e~ N+ e=(N+D] x) satisfying

Sup |V(§7 <, x) - h(f, e x)’ < C52N7

E€[—e—(N+1) g—(N+1)]

where X := H2 (T, L*(T)) N H. (T, H..(T)) N L*(T, H>(T)).

per per per per

The function 2 € C*(R, X) satisfies

lim A(¢,z,x) =0 and  sup ’h(&z,x) - uapp(f,z,x)} < Ce2.
|§] =00 £,7,x€ER
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Some remarks about the main result

The illustration of the main result is the same picture:
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Some remarks about the main result

As a consequence, the modulating pulses are relevant for the
initial-value problem for the wave equation.

Theorem

Let v be the constructed solution and take an arbitrary function
¢ € CP(R\ [—e~@N+D c=CN+D] X such that

v(€,x,2), (£,x,z2) € [—e~@N+D ¢—(@N+D] x R x R,
¢(€7x7 Z)a (g,x, Z) € otherwise

o |
satisfies vext € C*(R, X). Let up(x) := vext(x, Lox, x) and

up (x) := —cgOevext(x, Lox, X) — WO Vexi (X, LoX, X).
The corresponding solution of the wave equation satisfies
u(x,1) = v(x — cot, lox — wt, x) for every

(x,1) € [—e=ONFD =(@N41)] 5 (0, 00) with |x| + 1 < e72N+1,
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Spatial dynamics formulation
Starting with the wave equation
Ofulx, 1) — Ru(x, 1) + plx)u(x,1) = yu(x,1)°,  plx+27) = p(x),
we introduce three spatial scales in
u(x,r) =v(€,z,x) with { =x —cot, z=lox —wt.
This yields

[(¢? = 10 + 2(cw — 10)D¢ 0. — 200y + (w* — I5)D7 — 2160:0, — O3] v
+ px)y =,

with v(&,z 4+ 2m,x) = v(§,z,x + 2m) = v(&, z,x). We can use the
Fourier series in z but not in x.
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Spatial dynamics formulation

By using Fourier series in z and writing the first-order system in &, we
obtain the spatial dynamical system:

1= (g ) =anteo (52 )= (pusln, ) e

where
A(w, ¢) = 0 1
m\, €)= —(0y +imly)? + p(x) — m*w? 2imcw — 2(0; +imly) )

For eachm € Z, Ayy(w,¢) : D C R — R are linear operators with

D =H}(T) x Hyo.(T), R =Hp(T) x L*(T)

per per
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Spatial dynamics formulation

By using Fourier series in z and writing the first-order system in &, we
obtain the spatial dynamical system:

1= (g ) =anteo (52 )= (pusln, ) e

where
A(w, ¢) = 0 1
m\, €)= —(0y +imly)? + p(x) — m*w? 2imcw — 2(0; +imly) )

We are looking for the solution map
[0,&)] 2 € = (Vm, Wi )mez € C'([0, &), D) in function space
D := [(*(Z,L*(T)) N (>N (Z, Hyer(T)) N (2, Hper (T))]
x [(21(Z, LX(T)) N 2(Z, Hper(T))).

per
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Eigenvalues of the spatial system
Recall that the bifurcation case corresponds to wy = wy, (lp) and
cg = wy, (lo). The eigenvalue problem A, (wo, cg)V = AV is
reformulated in the scalar form:
[— (0 +imly + N + p(x)]V(x) = (mwy — icgA)*V(x),

which is solved with Bloch eigenfunctions in

w2 (mly —iX) = (mwo —icg\)?,  neN.
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Eigenvalues of the spatial system

Recall that the bifurcation case corresponds to wy = wy, (lp) and
cg = wy, (lo). The eigenvalue problem A, (wo, cg)V = AV is
reformulated in the scalar form:

[— (0 +imly + N + p(x)]V(x) = (mwy — icgA)*V(x),
which is solved with Bloch eigenfunctions in

w2 (mly —iX) = (mwo —icg\)?,  neN.

No information on roots of A is available, but zero roots A = 0 are
controlled from the non-resonance conditions wy, (ly) # wo, n # ng,

w2 (mly) #m*wg, me{3,5,...2N+1}, VneN.
The zero root A = 0 is double in the subspace n = ny.
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Eigenvalues of the spatial system

Recall that the bifurcation case corresponds to wy = wy, (lp) and
cg = wy, (lo). The eigenvalue problem A, (wo, cg)V = AV is
reformulated in the scalar form:

[— (0 +imly + N + p(x)]V(x) = (mwy — icgA)*V(x),
which is solved with Bloch eigenfunctions in
w2 (mly —iX) = (mwo —icg\)?,  neN.
One can show that the non-resonance conditions can be satisfied for

p(x) = 1 (low-contrast potentials). In this case, the roots are defined
by the quadratic equations

1+ (n+mly — iN)* = (mwy — icg)\)?.

Moreover, one can find conditions when all roots are simple.
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Algorithm for justification of a homoclinic orbit

Step 1: Decomposition near the bifurcation.

( ;11((22)) > = £q0(§)Fo(x) +eq1(&)F1(x) +eS1(§, x),

and

( V‘::’Z(é,,))cc)) > =eSu(&,x), m#1,

where the small parameter is defined for w = wy + > and ¢ = Cq.
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Algorithm for justification of a homoclinic orbit

Step 2: Near-identity transformation to reduce the residual terms.

They are performed based on the bounds

2N+1
(TTA (wo, ¢)TD) " lzsp + > IAm(wo, ¢g) " lrsp < Co,

m=3

which is obtained from the resolvent equations
0 1 vy _(f
Ly M, w/) \g)’

2

with
L, = _(8x + imlO)z + ,O(X) -—m w(2)7
M,, = 2imcgwy — 2(0x + imly),
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Algorithm for justification of a homoclinic orbit

After Steps 1 and 2, the system

d
4(2)-(8)+ermns

d
£5m = Ap(wo, cg)Sn + 52Fm(qo7 q1,S)
becomes
— () =" 2 () IN+2 (N)
dg ( q1 ) <0 >+Z€ F7(q0,q1) + & 7 F™ (q0,q1,8S)

J=1

d )
S = An(wo, ¢)Sn + N2 F0(q0, 1) + €2 F (g0, q1,S)
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Algorithm for justification of a homoclinic orbit

Step 3: Construction of a reversible homoclinic orbit

d (q\_(a o 2 120)
d§<q1>—(0>+jzlsl’ (90,q1)

satisfying Im(go) = 0 and Re(g;) = 0.

\ homoclinic orbit
Re g1

fixed space of reversibility | Re q0
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Algorithm for justification of a homoclinic orbit

Step 3: Construction of a reversible homoclinic orbit
d(aq q S
£ 0 ) _ 1 2j )
= + e’F ,
satisfying Im(go) = 0 and Re(q;) = 0.
We have the leading-order approximation with

lgo — A(e) = < Ce, lg1 — eA'(e7) [l < €2,

The persistence analysis is done by the implicit function theorem in
H'(R) because of the symmetries of the truncated system with the
2-parameter family of solutions

(qo(€ + &)é, g1 (€ + &)™), &, 00 € R.
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Algorithm for justification of a homoclinic orbit

After Step 3, we can write (g0, q1) = (Qo,£0Q1) + (qo, €91 ), where
(Qo,£01) is the homoclinic orbit of the truncated system. The
abstract system is

deco, = eho(€)eo, + eG(eo,, €r) + €N T Gr(€opom + €0, €r),

_ 2 2N+2
8§cr = Arcr +e€ F(CO,hom + Co,r; cr) +e FR(CO,hom + Co,r; cr)a

A, contains nonzero eigenvalues for stable, center, and unstable
manifolds of the linearized system. We assume

HeA-{H'D—YD S K7 § Z 07
||6Au£||D—)'D < K7 5 < Ov
le*lpop <K,  E€R.
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Algorithm for justification of a homoclinic orbit

After Step 3, we can write (g0, q1) = (Qo,£0Q1) + (qo, €91 ), where
(Qo,£01) is the homoclinic orbit of the truncated system. The
abstract system is

deco, = eho(€)eo, + eG(eo,, €r) + €N T Gr(€opom + €0, €r),

_ 2 2N+2
8§cr = Arcr +e€ F(CO,hom + Co,r; cr) +e FR(CO,hom + Co,r; cr)a

Step 4: Center-stable manifold. For every a € D., b € Ds s.t.
la||lp, + |[b||p, < Ce?V, there exists a family of local solutions with

sup  ([leo,r (&) e+ +Hlee(©) Ip, +les () llp+leu(€) 1) < C,
56[0767(2N+1)]

satisfying ¢.(0) = a and e=$0%s¢ (&) = b at & = =¥+, These
parameters are chosen to satisfy the reversibility constraints.
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Section 4

Breathers localized in time
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Example: the focusing NLS equation

The focusing nonlinear Schrodinger (NLS) equation
i) + O + [ =0
admits the exact solution [Akhmediev, Eleonsky, & Kulagin (1985)]

2(1 — M%) cosh(kAr) + ik sinh(kAr)

Yl ) =€ |1 - cosh(kA) — A cos(kx) ’

commonly known as Akhmediev breathers.
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The engineering setup
The FPU model:
miiy + k()u, = B(d + un — tp—1)"" = B(d + tp1 — un)”,
where a, B,m,d > 0 and k(¢ + 27) = k().

FPU models a chain of repelling magnets surrounded by time
modulated coils (Chong, Kim, Daraios et al.: arXiv:2310.06934)
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The engineering setup
The FPU model:
miiy + k()u, = B(d + un — tp—1)"" = B(d + tp1 — un)”,
where o, 8,m,d > 0 and k(1 + 2m) = k(t).

Time-localized breathers were observed in experiments:

(a) (b)
1 1
12 .
. ’
I3 \
05 g5 K .
T Z ~
— = -
= 0 E y
=08 . 0f
N ~
05 L ;
0.6 05 N
. ’
-1 ‘\ ’
0.4
2 4 6 8 10 0.4 06 0.8 1 12
n ts]
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Bifurcation theory

For N particles with Dirichlet conditions uy = uy+1 = 0, we use the
discrete Fourier sine modes:

N
(1) =) (1) sin(gmn), g ==
m=1

and obtain the linear Schrodinger problem
Lty = Amitw, L =—md} —k(t),

where ), = 4sin® (4).
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Bifurcation theory

For N particles with Dirichlet conditions uy = uy+1 = 0, we use the
discrete Fourier sine modes:

N
(1) =) (1) sin(gmn), g ==
m=1

and obtain the linear Schrodinger problem

Lityy = Amitm, L= —md — k(1)
where ), = 4sin® (4).
The spectrum of £ is purely continuous in

o (L) = [vo, ] U [p2, 1] U [va, pa] U [pa, v3] U - -
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Bifurcation theory

We are looking for a bifurcation case of k() when \,,, = p| or
Amg = po forone mp € {1,2,...,N}.

1 1
0.5 0.5
= =
%D Y %ﬂ Ore
E |
05 0.5
-1 1
1 05 0 05 1 1 05 0 05 1
Re(p) Re(p)
25 25
2 2

o

o
»

10 Re(y), Imag()
o
o

o

10 Re(p), Imag(p)

| el
U , Y

-1
n —in
Breathers and Modulating pulses

o
3

-1
A
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Main theorem [C. Chong, D.P., G. Schneider (2024)]

Assume two conditions (spectral assumption and nonzero normal
form). Then there exists an 9 > 0 such that for all € € (0,¢0) and
every M € N the FPU system possesses two generalized homoclinic
solutions UE (1) : [~ ™M+ e=M+1] 5 RV satisfying

sup ]HUkim(t)—Ui(f)lHH(Ui ) (1) =UF) ()] < ¢!

hom
te[—e—M+1 g—M+1

where U*(t) : R — RN satisfy ‘ llim U=+ [[UF) (£)]| = 0 and
t|—o0

can be approximated as
U (1) = e [A(et)]—"(t) +A(5t)7(t)] sin(gmn) + O(e?),

where F(t + T) = —F(t) and A(T) = asech(/57) are uniquely
defined with some «, 8 > 0.
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Numerical illustration

“ - o -

,,,,,,
“ = o - o 5



Comparison between normal form and numerics

0.2 : ‘ | .
e Amp (sim) o
© Amp (theory) o
* Growth Rate (sim) © ®
0.15| © Growth Rate (theory) © ® |
®
®
® ®
0.1 o |
®
®
®
0.05 ® ° |
®
OZ_@_anoooooooooqggc.)c:
0.05 0.1 0.15 0.2

€
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Algorithm for justification of the homoclinic solutions

Step 1: Bifurcation setup.

Let k(f) = ko(t) + oe* and pick ko(t) so that \,,, = p1 for one
mp € {1,2,...,N}. This corresponds to the spectral band
{)‘1(5)}56[0,27”) with A1 (o) = w1 for o = %. Assume no other
Floquet multipliers to coincide with +1 or —1.
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Algorithm for justification of the homoclinic solutions

Step 1: Bifurcation setup.

Let k(f) = ko(t) + oe* and pick ko(t) so that \,,, = p1 for one
mg € {1,2,...,N}. This corresponds to the spectral band
{)‘1(6)}66[0,27”) with A1 (o) = w1 for o = %. Assume no other
Floquet multipliers to coincide with +1 or —1.

Step 2: Formal derivation of the normal form. Expanding
un(r) = UV (1) + 2UP (1) + U (1) + O (%),
we select the leading order in the form
Uy (1) = A(er)g1 (1) sin(gmyn),

where g;(t + T) = —g;(¢) is the bifurcating mode of Log| = 1181-
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Algorithm for justification of the homoclinic solutions
At the order of O(g?), we get
LoU? + AU = 2mA (7)g (1) sin(gnyn) + X2A(7) 81 (13,

where 7 = et and F) = —2 Sin(gm, ) (1 — cos(gm,)) SIn(2gm,n).

The solution for U (¢) can be written in the form

U (1) = A (7)1 (1) sin(gmyn) + x2A(7)ha(£) sin(2gm,n),

where
(Lo — w*(qmg))h1 = 2mg} (1),
(Lo — 2 (aimg) 2 = —25m(qe) (1 — c0S(gmy) )1 (1)
The unique solution for h; (1 + T) = —h;(t) and hy(t + T) = hy(1)

exists under the spectral assumption.
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Algorithm for justification of the homoclinic solutions
At the order of O(g?), we get

LoUY + AU = oUSY + 2ma,0,U? + m2u)
2 1 2 2
+ 26 (U - U, - uf) - W - v - vl

— o [ = Uy = i = o) ).

Projection to the mode sin(g,,,n) yields the cubic normal form:
1
S (€)A"(7) + oA(7) + XA(7)* = 0,

where \[({o) is the band curvature at \;({y) = p1, where X} (4y) = 0,
and x # 0 under the normal form assumption.
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Algorithm for justification of the homoclinic solutions

Step 3: Justification of the normal form. The normal form theorem
near the double period bifurcation (Iooss—Adelmeyer, 1998) after
diagonalization, near-identity transformations, and the use of
reversibility.
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Conclusion

> Generalized breathers have been considered either as the
time-periodic and space-localized pulses or as the time-localized
and space-periodic orbits.

> These solutions can be recovered in the spatial dynamical
systems on a long but finite spatial scale.

> Numerical experiments do not often distinguish between true
breathers and generalized modulating pulses.

MANY THANKS FOR YOUR ATTENTION!

BEST WISHES TO MICHAEL!!!
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