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1. The model and motivations.
We consider the following PDE for η = η(t, x) : R× T→ R,

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

with x defined in the 2π-periodic domain T and c > 0 being a
parameter for the wave speed.
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2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

with x defined in the 2π-periodic domain T and c > 0 being a
parameter for the wave speed.

High-frequency limit of the Camassa–Holm equation

uT − uTXX + kuX + 3uuX = 2uXuXX + uuXXX ,

for solutions of the form u(T,X) = 2η(t, x) with t = 2cε−1T ,
x = ε−1(X − c2T ), k = ε−2 in the formal limit ε→ 0.
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We consider the following PDE for η = η(t, x) : R× T→ R,

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

with x defined in the 2π-periodic domain T and c > 0 being a
parameter for the wave speed.

Extension of the Hunter–Saxton equation

(uT + uuX)X =
1

2
(uX)2

for solutions of the form u(T,X) = 2η(t, x) with t = 2cT ,
x = X + c2T , without the last term.



1. The model and motivations.
We consider the following PDE for η = η(t, x) : R× T→ R,

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

with x defined in the 2π-periodic domain T and c > 0 being a
parameter for the wave speed.

Truncation of Euler’s equation in conformal variables with η
being the surface elevation and c > 0 being wave speed.

S.Locke–D.P., JFM 2025



Traveling waves with smooth and peaked profiles

Global bifurcation results suggest that ∃ ∞-many bifurcations of
Stokes waves with smooth profiles when the steepness is
increased towards the limiting wave with the peaked profile.
B. Buffoni E. N. Dancer, J. F. Toland, ARMA 152 (2000) 241

Existence of smooth Stokes waves of large amplitudes was
obtained numerically with a high precision.
S. Dyachenko, P. Lushnikov, A. Korotkevich, SAPM 137 (2016) 419
S. Dyachenko, V. Hur, D. Silantyev, JFM 955 (2023) A17

Spectral stability of smooth Stokes waves of large amplitudes
was explored numerically for perturbations with same period.
S. Dyachenko, A. Semenova, JCP 492 (2023) 112411
A. Korotkevich, P. Lushnikov, A. Semenova, S. Dyachenko, SAPM 150 (2023)
B. Deconinck, S. Dyachenko, A. Semenova, JFM 995 (2024) A2



Traveling waves with smooth and peaked profiles
The wave energy H and the wave speed c oscillate as functions
of the wave steepness s towards the limiting peaked wave:

∃ ∞-many oscillations of wave energy and speed.
At each extremum of speed, the Morse index is increased
by one. It is infinite at the limiting peaked wave.
At each extremum of energy, a new unstable eigenvalue
bifurcates in the stability problem.



Traveling waves with smooth and peaked profiles

The traveling wave of the peaked profile is believed to exist for
a unique value of c = c∗. However, the proof of uniqueness of
c∗ and the convergence as c→ c∗ for Stokes waves is open.

For model equations (fractional KdV, Whitham), the proof of
uniqueness of c∗ is developed in
A. Geyer & D.P, SIMA, 2019
G. Bruell & Dhara, Indiana Math. J. 2021
J. Dahne, J. Diff. Eqs. 401 (2024) 550
M. Ehrnström, O.I.H. Mæhlen, K. Varholm, Ann. Inst. H. Poincaré C (2025)



Babenko’s equation for traveling (Stokes) waves
Traveling waves η(u, t) = η(u− ct) with the zero-mean profile η
satisfy a scalar pseudo–differential equation

(c2Kh − 1)η =
1

2
Khη2 + ηKhη,

where the self-adjoint operator Kh is defined by

(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0.
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(c2Kh − 1)η =
1

2
Khη2 + ηKhη,

where the self-adjoint operator Kh is defined by

(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0.

Existence of traveling waves with both smooth and peaked
profiles is defined by solutions of Babenko’s equation.
K. Babenko, Russian Academy of Sciences 294 (1987) 1033
...
S. Locke & D.P., Appl. Math. Lett. 161 (2025) 109359
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The zero-mean constraint on η in the physical coordinate
becomes the quadratic constraint in the conformal coordinate:∮

η +

∮
ηKhη = 0.



Babenko’s equation for traveling (Stokes) waves
Traveling waves η(u, t) = η(u− ct) with the zero-mean profile η
satisfy a scalar pseudo–differential equation

(c2Kh − 1)η =
1

2
Khη2 + ηKhη,

where the self-adjoint operator Kh is defined by

(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0.

In the deep-water limit h→∞, we have Kh → |∂u| and
Babenko’s equation becomes the “stationary BO" equation

(c2|∂u| − 1)η =
1

2
|∂u|η2 + η|∂u|η,

with∞-many oscillations for c in (1, cmax) with c∗ ≈ 1.0922.



Babenko’s equation for traveling (Stokes) waves
Traveling waves η(u, t) = η(u− ct) with the zero-mean profile η
satisfy a scalar pseudo–differential equation

(c2Kh − 1)η =
1

2
Khη2 + ηKhη,

where the self-adjoint operator Kh is defined by

(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0.

In the shallow-water limit h→ 0, we replace Kh by −∂2u and
Babenko’s equation becomes the stationary equation

(c2 − 2η)η′′ − (η′)2 + η = 0,

which is equivalent to the steady model considered here.



2. Conserved quantities and local well-posedness.
Assume a smooth solution η ∈ C0((−τ0, τ0), Hs

per(T)), s > 3
2 :

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

The model has the three (basic) conserved quantities:
Mass

M(η) =

∮
ηdx

Momentum
Q(η) =

1

2

∮
(∂xη)2dx

Energy

H(η) =
1

2

∮ [
η2 + 2η(∂xη)2

]
dx.

Moreover, it admits a nontrivial constraint

M(η) + 2Q(η) =

∮ [
η + (∂xη)2

]
dx = 0.



Local well-posedness of the initial-value problem
Integrating once in x,

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

we can write the evolution problem

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
where Π0 : L2(T)→ L2(T)|{1}⊥ .
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The mapping

Π0∂
−1
x Π0

[
(∂xη)2 + η

]
: H1

per ∩W 1,∞ → H1
per ∩W 1,∞

is bounded on every bounded subset.
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2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
where Π0 : L2(T)→ L2(T)|{1}⊥ .

The inviscid Burgers equation

2c∂tη = (c2 − 2η)∂xη

is locally well-posed in H1
per ∩W 1,∞

(e.g., the method of characteristics).
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we can write the evolution problem

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
where Π0 : L2(T)→ L2(T)|{1}⊥ .

The initial-value problem is locally well-posed in
H1

per ∩W 1,∞. For CH, it was known from
C. DeLellis, T. Kappeler, P. Topalov, Comm. PDEs 32 (2007) 87
F. Linares, G. Ponce, T. C. Sideris (2019)



Local well-posedness of the initial-value problem
Integrating once in x,

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

we can write the evolution problem

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
where Π0 : L2(T)→ L2(T)|{1}⊥ .

The initial-value problem for the evolution probem is also
locally well-posed in smoother Sobolev space Hs

per, s >
3
2 ,

which is embedded into H1
per ∩W 1,∞.

W. Ye, Z. Yin, Monats. Math. 191 (2020) 267



Local well-posedness of the initial-value problem
Integrating once in x,

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

we can write the evolution problem

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
where Π0 : L2(T)→ L2(T)|{1}⊥ .

IVP is ill-posed in Hs
per, s ≤ 3

2 .
A. Himonas, K. Grayshan, C. Holliman, J. Nonlinear Sci. 26 (2016) 1175
Z. Guo, X. Liu, L. Molinet, Z. Yin, J. Diff. Eqs. 266 (2019) 1698
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Traveling waves are defined by solutions of the 2nd-order ODE:

(c2 − 2η)η′′ − (η′)2 + η = 0, x ∈ T.



3. Smooth and peaked traveling waves.
Traveling waves are defined by solutions of the 2nd-order ODE:

(c2 − 2η)η′′ − (η′)2 + η = 0, x ∈ T.

Theorem (S. Locke–D. P., JFM, 2025)
There exist c∗ := π

2
√
2

and c∞ ∈ (c∗,∞) such that the ODE
admits a unique solution with the profile η ∈ C∞per(T) for every
c ∈ (1, c∗) s.t.

‖η‖L∞ → 0 as c→ 1

and a solution with the profile η ∈ C0
per(T) for every c ∈ (c∗, c∞)

satisfying for some A(c) > 0,

η(x) =
c2

2
−A(c)|x|2/3 +O(|x|) as x→ 0.



3. Smooth and peaked traveling waves.
Traveling waves are defined by solutions of the 2nd-order ODE:

(c2 − 2η)η′′ − (η′)2 + η = 0, x ∈ T.

The two continuous families meet at c = c∗ = π
2
√
2
, where

the profile η ∈ C0
per(T) ∩W 1,∞(T) is peaked:

η(x) =
1

16
(π2 − 4π|x|+ 2x2), x ∈ [−π, π].

with the highest amplitude from Bernoulli’s principle of
hydrodynamics: maxx∈T η(x) = η(0) = c2

2

The |x|2/3 singularity in the conformal coordinate (cusped
waves) corresponds to Stokes’ law of the 1200 angle in the
physical coordinate.



3. Smooth and peaked traveling waves.
Traveling waves are defined by solutions of the 2nd-order ODE:

(c2 − 2η)η′′ − (η′)2 + η = 0, x ∈ T.
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Existence

Smooth solutions of (c2 − 2η)η′′ − (η′)2 + η = 0 are level
curves of

E(η, η′) :=
1

2
(c2 − 2η)(η′)2 +

1

2
η2 = E

on the phase plane (η, η′).



Existence

Smooth solutions of (c2 − 2η)η′′ − (η′)2 + η = 0 are level
curves of
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Stability
The evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
has the Hamiltonian formulation

2c∂tη = J∇
[
H(η)− c2Q(η)

]
, J := Π0∂

−1
x Π0.

Here H is the energy and Q is the momentum given by

Q(η) =
1

2

∮
(∂xη)2dx, H(η) =

1

2

∮ [
η2 + 2η(∂xη)2

]
dx.



Stability
The evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
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[
(∂xη)2 + η

]
has the Hamiltonian formulation

2c∂tη = J∇
[
H(η)− c2Q(η)

]
, J := Π0∂

−1
x Π0.

The profile η ∈ C∞per(T) for smooth traveling waves is a critical
point of H − c2Q. The Hessian operator at η is the
Sturm–Liouville operator L : H2

per ⊂ L2(T)→ L2(T),

L = −∂x(c2 − 2η)∂x + (2η′′ − 1).



Stability
The evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
has the Hamiltonian formulation

2c∂tη = J∇
[
H(η)− c2Q(η)

]
, J := Π0∂

−1
x Π0.

The profile η ∈ C∞per(T) for smooth traveling waves is a critical
point of H − c2Q. The Hessian operator at η is the
Sturm–Liouville operator L : H2

per ⊂ L2(T)→ L2(T),

L = −∂x(c2 − 2η)∂x + (2η′′ − 1).

The spectrum of L : H2
per(T) ⊂ L2(T)→ L2(T) is purely

discrete. The coefficients of L are singular in the limit of peaked
wave since 2η′′(x)− 1→ −1

2 − πδ0 with Dirac δ0.



Linear stability of smooth waves
The linear evolution 2c∂tζ = −JLζ is defined by

J = Π0∂
−1
x Π0, L := −∂x(c2 − 2η)∂x + (2η′′ − 1).



Linear stability of smooth waves
The linear evolution 2c∂tζ = −JLζ is defined by

J = Π0∂
−1
x Π0, L := −∂x(c2 − 2η)∂x + (2η′′ − 1).

The conserved energy quadratic form is

〈Lζ, ζ〉 =

∮ [
(c2 − 2η)(∂xζ)2 + (2η′′ − 1)ζ2

]
dx.

The spectrum σ(L) consists of isolated eigenvalues.
We have 0 ∈ σ(L) because Lη′ = 0.
0 is the third eigenvalue in the spectrum
σ(L) = {λ1, λ2, 0, λ4, . . . } (shown by the period function).

〈Lζ, ζ〉 is coercive under constraints 〈1, ζ〉 = 0 and 〈η′, ζ ′〉 = 0,
which are invariant due to conservation of M and Q.



Linear stability of smooth waves
The linear evolution 2c∂tζ = −JLζ is defined by

J = Π0∂
−1
x Π0, L := −∂x(c2 − 2η)∂x + (2η′′ − 1).

Theorem (S. Locke–D. P., JFM, 2025)
For every initial data ζ0 ∈ H1

per(T) satisfying the two constraints,
there exists a unique solution ζ ∈ C0(R, H1

per(T)) and a unique
a ∈ C0(R,R) such that

‖ζ(·, t)− a(t)η′‖H1
per
≤ C‖ζ0‖H1

per
, |a′(t)| ≤ C‖ζ0‖H1

per
, t ∈ R,

where C > 0 is independent of ζ0.



Linear stability of smooth waves
The linear evolution 2c∂tζ = −JLζ is defined by

J = Π0∂
−1
x Π0, L := −∂x(c2 − 2η)∂x + (2η′′ − 1).

Linear stability does not imply nonlinear stability because
we have no local well-posedness in H1

per(T) but the
W 1,∞-norm of the perturbation ζ is not controlled in the
time evolution.

For nonlinear stability in the CH equation, one needs to
use the additional variable m := ζ − ζxx to control the
solution either in H1

per(T) ∩W 1,∞
per (T) or in H3

per(T)
as in [S. Lafortune, D.P, Physica D, 2022]



4. Instability of peaked waves
We have the evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
for the peaked traveling wave with the unique speed
c = c∗ = π

2
√
2

and the peaked profile

η∗(x) =
1

16
(π2 − 4π|x|+ 2x2), x ∈ [−π, π].



4. Instability of peaked waves
We have the evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
for the peaked traveling wave with the unique speed
c = c∗ = π

2
√
2

and the peaked profile

η∗(x) =
1

16
(π2 − 4π|x|+ 2x2), x ∈ [−π, π].

which is periodically continued on T.



Proper decomposition for linearization
The evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
is close to the inviscid Burgers (Hopf) equation

2c∂tη = (c2 − 2η)∂xη.



Proper decomposition for linearization
The evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
is close to the inviscid Burgers (Hopf) equation

2c∂tη = (c2 − 2η)∂xη.

If η ∈ C0((−τ0, τ0), H1
per(T) ∩W 1,∞(T)) is a local solution and

there exists ξ(t) such that

lim
x→ξ(t)−

∂xη(t, x) 6= lim
x→ξ(t)+

∂xη(t, x), t ∈ (−τ0, τ0),

then ξ ∈ C1((−τ0, τ0)) and

2c
dξ

dt
= −(c2 − 2η(t, ξ(t))), t ∈ (−τ0, τ0).



Proper decomposition for linearization
The evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
is close to the inviscid Burgers (Hopf) equation

2c∂tη = (c2 − 2η)∂xη.

Assuming that η ∈ C0((−τ0, τ0), H1
per(T) ∩W 1,∞(T)) has a

single peak at x = ξ(t), we consider the perturbation ζ(t, x) as

η(t, x) = η∗(x− ξ(t)) + ζ(t, x− ξ(t)).

This gives the evolution equation

2c∗∂tζ = (c2∗ − 2η∗)∂xζ − 2(ζ − ζ|x=0)(η
′
∗ + ∂xζ)

+ Π0∂
−1
x Π0

[
ζ + 2η′∗∂xζ + (∂xζ)2

]
,



Proper decomposition for linearization
The evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
is close to the inviscid Burgers (Hopf) equation

2c∂tη = (c2 − 2η)∂xη.

After integration by parts ζ + 2η′∗∂xζ = 2∂x(η′∗ζ) + 1
2ζ + πδ0ζ,

and truncation, the linearized evolution equation takes the
better form:

2c∗∂tζ = (c2∗ − 2η∗)∂xζ −
1

π

∮
η′∗ζdx+

1

2
Π0∂

−1
x Π0ζ,

where both
∮
ζdx and ζ|x=0 are constant in t and satisfy the

constraint ζ|x=0 = − 1
2π

∮
ζdx.



Proper linearized operator
The linearized evolution equation

2c∗∂tζ = (c2∗ − 2η∗)∂xζ −
1

π

∮
η′∗ζdx+

1

2
Π0∂

−1
x Π0ζ

is defined by the operator A : Dom(A) ⊂ L2(T)→ L2(T) s.t.

Af := (c2∗ − 2η∗)∂xf −
1

π

∮
η′∗fdx+

1

2
Π0∂

−1
x Π0f,

where Dom(A) :=
{
f ∈ L2(T) : (c2∗ − 2η∗)f

′ ∈ L2(T)
}

.



Proper linearized operator
The linearized evolution equation

2c∗∂tζ = (c2∗ − 2η∗)∂xζ −
1

π

∮
η′∗ζdx+

1

2
Π0∂

−1
x Π0ζ

is defined by the operator A : Dom(A) ⊂ L2(T)→ L2(T) s.t.

Af := (c2∗ − 2η∗)∂xf −
1

π

∮
η′∗fdx+

1

2
Π0∂

−1
x Π0f,

where Dom(A) :=
{
f ∈ L2(T) : (c2∗ − 2η∗)f

′ ∈ L2(T)
}

.

For local well-posedness, we should consider
A : H1

per(T) ∩W 1,∞(T) ⊂ L2(T) ∩ L∞(T)→ L2(T) ∩ L∞(T),
where H1

per(T) ∩W 1,∞(T) is embedded into Dom(A).



Spectral instability result

Theorem (F. Natali, D.P., S. Wang, JNLW 1 (2025) e10)
The spectrum of A : Dom(A) ⊂ L2(T)→ L2(T) completely
covers the closed vertical strip given by

σ(A) =
{
λ ∈ C : −π

4
≤ Re(λ) ≤ π

4

}
.



Spectral instability result

Theorem (F. Natali, D.P., S. Wang, JNLW 1 (2025) e10)
The spectrum of A : Dom(A) ⊂ L2(T)→ L2(T) completely
covers the closed vertical strip given by

σ(A) =
{
λ ∈ C : −π

4
≤ Re(λ) ≤ π

4

}
.

In fact, we show

σp(A) =
{
λ ∈ C : −π

4
< Re(λ) <

π

4

}
,

ρ(A) =
{
λ ∈ C : |Re(λ)| > π

4

}
,

so that σc(A) = σ(A)\σp(A).



Spectral instability result

Theorem (F. Natali, D.P., S. Wang, JNLW 1 (2025) e10)
The spectrum of A : Dom(A) ⊂ L2(T)→ L2(T) completely
covers the closed vertical strip given by

σ(A) =
{
λ ∈ C : −π

4
≤ Re(λ) ≤ π

4

}
.

To find σp(A), we analyze Af = λf , f ∈ Dom(A):

1

4
x(2π−x)f ′(x) +

1

4π

∫ 2π

0
(π−x)f(x)dx+

1

2
Π0∂

−1
x Π0f = λf(x),

with the constraint λ
∫ 2π
0 f(x)dx = 0.



Spectral instability result

Theorem (F. Natali, D.P., S. Wang, JNLW 1 (2025) e10)
The spectrum of A : Dom(A) ⊂ L2(T)→ L2(T) completely
covers the closed vertical strip given by

σ(A) =
{
λ ∈ C : −π

4
≤ Re(λ) ≤ π

4

}
.

Since f ∈ C∞(0, 2π), the spectral problem is the ODE:

1

4
x(2π−x)f ′′(x)+

1

2
(π−x)f ′(x)+

1

2
f(x)− 1

4π

∫ 2π

0
f(x)dx︸ ︷︷ ︸
=0

= λf ′(x),

with two solutions f1(x) = 2λ− π+ x and f2(x) ∼ x
2λ
π , x→ 0+.



Spectral instability result

Theorem (F. Natali, D.P., S. Wang, JNLW 1 (2025) e10)
The spectrum of A : Dom(A) ⊂ L2(T)→ L2(T) completely
covers the closed vertical strip given by

σ(A) =
{
λ ∈ C : −π

4
≤ Re(λ) ≤ π

4

}
.

For
σp(A) =

{
λ ∈ C : −π

4
< Re(λ) <

π

4

}
,

both f1, f2 ∈ Dom(A) and c1f1(x) + c2f2(x) satisfies the
constraint

∫ 2π
0 f(x)dx = 0.



Nonlinear instability result

Theorem (F. Natali, D.P., S. Wang, JNLW 1 (2025) e10)
For every δ > 0 there exists ζ0 ∈ H1

per(T) ∩W 1,∞(T) satisfying

‖ζ0‖H1
per
≤ δ2, ‖ζ0‖W 1,∞ ≤ δ,

such that the unique local solution ζ satisfies ‖ζ(t0, ·)‖W 1,∞ = 1.



Nonlinear instability result

Theorem (F. Natali, D.P., S. Wang, JNLW 1 (2025) e10)
For every δ > 0 there exists ζ0 ∈ H1
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‖ζ0‖H1
per
≤ δ2, ‖ζ0‖W 1,∞ ≤ δ,

such that the unique local solution ζ satisfies ‖ζ(t0, ·)‖W 1,∞ = 1.

The nonlinear evolution equation is

2c∗∂tζ = (c2∗−2η∗)∂xζ−2(ζ−ζ|x=0)∂xζ−
1

π
〈η′∗, ζ〉+

1

2
Π0∂

−1
x Π0

[
ζ + 2(∂xζ)2

]
.

with two conserved quantities∮
ζdx and ζ|x=0 +

1

π

∮
(∂xζ)2dx = C0.



Nonlinear instability result

Theorem (F. Natali, D.P., S. Wang, JNLW 1 (2025) e10)
For every δ > 0 there exists ζ0 ∈ H1

per(T) ∩W 1,∞(T) satisfying

‖ζ0‖H1
per
≤ δ2, ‖ζ0‖W 1,∞ ≤ δ,

such that the unique local solution ζ satisfies ‖ζ(t0, ·)‖W 1,∞ = 1.

Characteristic curves for x = X(t, s):{
2c∗∂tX(t, s) = −(c2∗ − 2η∗(X)) + 2(ζ(t,X)− ζ(t, 0)),
X(0, s) = s.

and evolution of Z(t, s) := ζ(t,X(t, s)) along the curves{
2c∗∂tZ(t, s) = − 1

π 〈η
′
∗, ζ〉+ 1

2Π0∂
−1
x Π0(ζ + 2(∂xζ)2),

Z(0, s) = ζ0(s),



Nonlinear instability result

Theorem (F. Natali, D.P., S. Wang, JNLW 1 (2025) e10)
For every δ > 0 there exists ζ0 ∈ H1

per(T) ∩W 1,∞(T) satisfying

‖ζ0‖H1
per
≤ δ2, ‖ζ0‖W 1,∞ ≤ δ,

such that the unique local solution ζ satisfies ‖ζ(t0, ·)‖W 1,∞ = 1.

Assuming ζ0 ∈ C1(0, 2π), we get for V (t, s) := ∂xζ(t,X(t, s)):{
2c∗∂tV (t, s) = −2η′∗(X)V − V 2 + 1

2(Z(t, s) + Z(t, 0)),
V (0, s) = ζ ′0(s),

with the one-sided limit to the peak at V0(t) := lim
s→0+

V (t, s):

2c∗V
′
0(t) =

π

2
V0(t)− V 2

0 (t) + Z(t, 0) ≤ π

2
V0(t) + C0.



Nonlinear instability result

Theorem (F. Natali, D.P., S. Wang, JNLW 1 (2025) e10)
For every δ > 0 there exists ζ0 ∈ H1

per(T) ∩W 1,∞(T) satisfying

‖ζ0‖H1
per
≤ δ2, ‖ζ0‖W 1,∞ ≤ δ,

such that the unique local solution ζ satisfies ‖ζ(t0, ·)‖W 1,∞ = 1.

This gives the instability in the W 1,∞-norm:

V0(t) ≤
(
V0(0) +

2

π
C0

)
e
πt
4c∗ .

for −δ < V0(0) < − 2
π |C0|, where |C0| . δ2.



5. Convergence of smooth waves to the peaked wave.

The wave profile is found from the first-order quadrature:
(
dη

dx

)2

=
2E − η2

c2 − 2η
,

η(±π) = −
√

2E .
Coefficients of Fourier series decay exponentially for smooth
waves and algebraically for the peaked wave.
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Eigenvalues of the self-adjoint operator.

The spectrum of L : H2
per(T)→ L2(T) is purely discrete:

L = −∂x(c2 − 2η)∂x + (2η′′ − 1).

The lowest eigenvalue diverges in the limit of peaked waves
and the numerical accuracy becomes poor.
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Eigenfunctions of the self-adjoint operator.

The spectrum of L : H2
per(T)→ L2(T) is purely discrete:

L = −∂x(c2 − 2η)∂x + (2η′′ − 1).

Eigenfunctions become peaked in the limit of peaked waves.
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Eigenfunctions in the Fouier space

The spectrum of L : H2
per(T)→ L2(T) is purely discrete:

L = −∂x(c2 − 2η)∂x + (2η′′ − 1).

Their Fourier spectrum decays slowly for nearly-peaked waves.
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No convergence along the family of smooth waves?

Recall the Babenko equation for deep fluid

(c2|∂x| − 1)η =
1

2
|∂x|η2 + η|∂x|η,

with∞-many oscillations for c in (1, cmax) with c∗ ≈ 1.0922.



6. Summary

We considered the following model for η = η(t, x):

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

with x defined in the 2π-periodic domain T and c > 0 being a
parameter for the wave speed.

The smooth waves are linearly stable in the time evolution.

The peaked wave is linearly and nonlinearly unstable.

The cusped waves belong to H1
per but do not belong to

H1
per ∩W 1,∞, where local well-posedness is shown.

Their stability analysis is open.


