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Outline of the talk

@ The model for shallow water waves and motivations.

© Conserved quantities and local well-posedness.

© Coexistence of smooth, peaked, cusped traveling waves.
© Instability of the peaked traveling wave.

@ Convergence to the peaked wave along the family of
smooth waves.
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@ Fabio Natali (University of Maringa, Brazil),
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1. The model and motivations.

We consider the following PDE for n = n(t,z) : R x T — R,

12600 = (¢ — 20)02n — (9en)* + 1

with = defined in the 27-periodic domain T and ¢ > 0 being a
parameter for the wave speed.



1. The model and motivations.

We consider the following PDE for n = n(t,z) : R x T — R,

12600 = (¢ — 20)02n — (9en)* + 1

with = defined in the 27-periodic domain T and ¢ > 0 being a
parameter for the wave speed.

@ High-frequency limit of the Camassa—Holm equation
ur —urxx + kux +3uux = 2uxuxx +uuxxx,

for solutions of the form (7T, X) = 2n(t, z) with t = 2ce T,
r=ce¢ YX —c*T), k =e? in the formal limit ¢ — 0.



1. The model and motivations.

We consider the following PDE for n = n(t,z) : R x T — R,

12600 = (¢ — 20)02n — (9en)* + 1

with = defined in the 27-periodic domain T and ¢ > 0 being a
parameter for the wave speed.

@ Extension of the Hunter—Saxton equation

1
(’LLT + UUX)X = §(UX)2
for solutions of the form w (7', X') = 2n(t, z) with t = 2¢T,

x = X + 2T, without the last term.



1. The model and motivations.

We consider the following PDE for n = n(t,z) : R x T — R,

12600 = (¢ — 20)02n — (9en)* + 1

with = defined in the 27-periodic domain T and ¢ > 0 being a
parameter for the wave speed.

@ Truncation of Euler’s equation in conformal variables with
being the surface elevation and ¢ > 0 being wave speed.

# = x + iy plane W — u + v plane
¥

S.Locke-D.P., JFM 2025



Traveling waves with smooth and peaked profiles

Global bifurcation results suggest that 3 co-many bifurcations of
Stokes waves with smooth profiles when the steepness is
increased towards the limiting wave with the peaked profile.

B. Buffoni E. N. Dancer, J. F. Toland, ARMA 152 (2000) 241

Existence of smooth Stokes waves of large amplitudes was
obtained numerically with a high precision.

S. Dyachenko, P. Lushnikov, A. Korotkevich, SAPM 137 (2016) 419

S. Dyachenko, V. Hur, D. Silantyev, JFM 955 (2023) A17

Spectral stability of smooth Stokes waves of large amplitudes
was explored numerically for perturbations with same period.

S. Dyachenko, A. Semenova, JCP 492 (2023) 112411

A. Korotkevich, P. Lushnikov, A. Semenova, S. Dyachenko, SAPM 150 (2023)
B. Deconinck, S. Dyachenko, A. Semenova, JFM 995 (2024) A2



Traveling waves with smooth and peaked profiles

The wave energy H and the wave speed c oscillate as functions
of the wave steepness s towards the limiting peaked wave:
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@ J oco-many oscillations of wave energy and speed.

@ At each extremum of speed, the Morse index is increased
by one. lItis infinite at the limiting peaked wave.

@ At each extremum of energy, a new unstable eigenvalue
bifurcates in the stability problem.



Traveling waves with smooth and peaked profiles

The traveling wave of the peaked profile is believed to exist for
a unique value of ¢ = ¢,. However, the proof of uniqueness of
¢« and the convergence as ¢ — ¢, for Stokes waves is open.

For model equations (fractional KdV, Whitham), the proof of
uniqueness of ¢, is developed in

A. Geyer & D.P, SIMA, 2019

G. Bruell & Dhara, Indiana Math. J. 2021

J. Dahne, J. Diff. Egs. 401 (2024) 550

M. Ehrnstrém, O.1.H. Maeshlen, K. Varholm, Ann. Inst. H. Poincaré C (2025)



Babenko’s equation for traveling (Stokes) waves

Traveling waves 7(u,t) = n(u — ct) with the zero-mean profile n
satisfy a scalar pseudo—differential equation

1
(*Kp — 1)y = §’Ch772 +nKhn,

where the self-adjoint operator £j, is defined by

TP ncoth(hn),  n € Z\{0},
- 0, n = 0.

w =u + iv plane




Babenko’s equation for traveling (Stokes) waves

Traveling waves 7(u,t) = n(u — ct) with the zero-mean profile n
satisfy a scalar pseudo—differential equation

1
(*Kp —1)n = §’Ch772 +nKhn,

where the self-adjoint operator K, is defined by
TP ncoth(hn),  n € Z\{0},
0, n = 0.

Existence of traveling waves with both smooth and peaked
profiles is defined by solutions of Babenko’s equation.
K. Babenko, Russian Academy of Sciences 294 (1987) 1033

S. Locke & D.P., Appl. Math. Lett. 161 (2025) 109359



Babenko’s equation for traveling (Stokes) waves

Traveling waves 7(u, t) = n(u — ct) with the zero-mean profile n
satisfy a scalar pseudo—differential equation

1
(Kp — 1) = §’Ch772 +nKhn,

where the self-adjoint operator K, is defined by
TP ncoth(hn),  n € Z\{0},
0, n = 0.

The zero-mean constraint on n in the physical coordinate
becomes the quadratic constraint in the conformal coordinate:

]{Wr}l{n/@m:o-



Babenko’s equation for traveling (Stokes) waves

Traveling waves 7(u, t) = n(u — ct) with the zero-mean profile n
satisfy a scalar pseudo—differential equation

1
(*Kp —1)n = §’Ch772 +nKhn,

where the self-adjoint operator K, is defined by

TP ncoth(hn),  n € Z\{0},
0, n = 0.

In the deep-water limit » — oo, we have K;, — |0,| and
Babenko’s equation becomes the “stationary BO" equation

1
(0u] = 1)n = §|8u!772 +1|0uln,

with co-many oscillations for ¢ in (1, cpax) With ¢, ~ 1.0922.



Babenko’s equation for traveling (Stokes) waves

Traveling waves 7(u, t) = n(u — ct) with the zero-mean profile n
satisfy a scalar pseudo—differential equation

1
(*Kp —1)n = §’Ch772 +nKhn,

where the self-adjoint operator K, is defined by

TP ncoth(hn),  n € Z\{0},
0, n = 0.

In the shallow-water limit » — 0, we replace K;, by —9? and
Babenko’s equation becomes the stationary equation

(& =2n)n" — () +n=0,

which is equivalent to the steady model considered here.



2. Conserved quantities and local well-posedness.

Assume a smooth solution i € C%((—79,70), H5,(T)), s > 3.

2c0,0im = (¢ — 20)02n — (0m)* + 1

The model has the three (basic) conserved quantities:
@ Mass

M) = § ndo

@ Momentum

@ Energy

H(n) = % 7{ [ + 21(0:m)?] da.

Moreover, it admits a nontrivial constraint

M(n) +2Q(n) = f [+ (0:m)?] dz = 0.



Local well-posedness of the initial-value problem

Integrating once in z,
2c0,0im = (¢* — 2n)0in — (Dm)® + 1

we can write the evolution problem

2c0im = (¢* — 20)0yn + M0, Ty [(9:m)* + 1]

where I : L2(T) — LZ(T)|{1}J_



Local well-posedness of the initial-value problem

Integrating once in z,
2c0,0im = (¢* — 2n)0in — (Dm)® + 1

we can write the evolution problem

2c0im = (¢* — 20)0yn + M0, Ty [(9:m)* + 1]

where I : L2(T) — L2(T)|{1}J_

The mapping
1100, 'y [(0xn)* + 1] « Hi\y n W — HL AWt

per per

is bounded on every bounded subset.



Local well-posedness of the initial-value problem

Integrating once in z,
2c0,0im = (¢* — 2n)0in — (Dm)® + 1

we can write the evolution problem

2c0im = (¢* — 20)0yn + M0, Ty [(9:m)* + 1]

where I : L2(T) — L2(T)|{1}J_

The inviscid Burgers equation
2¢0ym = (¢ — 20)9,

is locally well-posed in H}. N W

(e.g., the method of characteristics).



Local well-posedness of the initial-value problem

Integrating once in z,
2c0,0im = (¢* — 2n)0in — (Dm)® + 1

we can write the evolution problem

2c0im = (¢* — 20)0yn + M0, Ty [(9:m)* + 1]

where I : L2(T) — LZ(T)|{1}J_

@ The initial-value problem is locally well-posed in
Hl.. n W' For CH, it was known from

C. Delellis, T. Kappeler, P. Topalov, Comm. PDEs 32 (2007) 87
F. Linares, G. Ponce, T. C. Sideris (2019)



Local well-posedness of the initial-value problem

Integrating once in z,
2c0,0im = (¢* — 2n)0in — (Dm)® + 1

we can write the evolution problem

2c0im = (¢* — 20)0yn + M0, Ty [(9:m)* + 1]

where I : L2(T) — L2(T)|{1}J_

@ The initial-value problem for the evolution probem is also
locally well-posed in smoother Sobolev space H.,, s > %
which is embedded into 4., N W,

W. Ye, Z. Yin, Monats. Math. 191 (2020) 267



Local well-posedness of the initial-value problem

Integrating once in z,
2¢0,0m = (¢* — 2n)8zn — (9en)® +1

we can write the evolution problem

2c0im = (¢* — 20)0yn + M0, Ty [(9:m)* + 1]

where I : L2(T) — LZ(T)|{1}J_

e IVPisill-posedin Hy, ., s < 3.
A. Himonas, K. Grayshan, C. Holliman, J. Nonlinear Sci. 26 (2016) 1175
Z. Guo, X. Liu, L. Molinet, Z. Yin, J. Diff. Eqgs. 266 (2019) 1698



3. Smooth and peaked traveling waves.

Traveling waves are defined by solutions of the 2"4-order ODE:

(=2n)"— () +n=0, ze€T.




3. Smooth and peaked traveling waves.

Traveling waves are defined by solutions of the 2"4-order ODE:

(=2nn"—0)+n=0, =z€T.

Theorem (S. Locke-D. P., JFM, 2025)

There exist ¢, :== QL\@ and c € (cy,0) such that the ODE

admits a unique solution with the profile n € C¢,.(T) for every
ce (1,¢) S

Inllree =0 as ¢—1

and a solution with the profile n € CJ,.(T) for every c € (c., ¢)
satisfying for some A(c) > 0,
C2

n(x) =5 - Az + O(|z|) as =z — 0.




3. Smooth and peaked traveling waves.

Traveling waves are defined by solutions of the 2"4-order ODE:

(=2n)"— () +n=0, ze€T.

@ The two continuous families meet at c = ¢, = Q\f, where
the profile ) € CY,,.(T) N W>°(T) is peaked:
1
n(z) = 16(7r — 4r|z| + 227), x € [—m, .

with the highest amplitude from Bernoulli’s principle of
hydrodynamics: max,er () = 7(0) = &

@ The |x|?/3 singularity in the conformal coordinate (cusped
waves) corresponds to Stokes’ law of the 120° angle in the
physical coordinate.



3. Smooth and peaked traveling waves.

Traveling waves are defined by solutions of the 2"4-order ODE:

(=2n)"— () +n=0, ze€T.
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Existence

Smooth solutions of | (¢? — 2n)n” — ()2 +n = 0| are level
curves of

1 1
E(n,n) = 5(62 —2n)(n)* + 5772 =€

on the phase plane (1, 7).



Existence

Smooth solutions of | (¢? — 2n)n” — ()2 +n = 0| are level
curves of

1 1
E(n,1) = 5(62 —2n)(n)* + 5772 =€

on the phase plane (1, 7).




Stability

The evolution equation

2c0im = (¢* — 20)0pn + o0, o [(9:n) + 1)

has the Hamiltonian formulation

2¢c0in = JV [H(n) — c2Q(7])] R RE HOE?;lHO.

Here H is the energy and @ is the momentum given by

Q) = 5 P @uPds, Hin) = § i+ 20(00m)?) da



Stability

The evolution equation

2c0im = (¢* — 20)0pn + o0, o [(9:n) + 1)

has the Hamiltonian formulation

2¢c0in = JV [H(n) — c2Q(7])] R RE 1__[08;1]]0.

The profile € C5e, (T) for smooth traveling waves is a critical
point of H — ¢?Q. The Hessian operator at 7 is the
Sturm—Liouville operator £ : H2,. ¢ L?(T) — L*(T),

per

L=—0,(c* —21)d, + (21" —1).



Stability

The evolution equation

2c0im = (¢* — 20)0pn + o0, o [(9:n) + 1)

has the Hamiltonian formulation

2¢c0in = JV [H(n) — c2Q(n)] R RE 1__[08;1]]0.

The profile € C5e, (T) for smooth traveling waves is a critical
point of H — ¢?Q. The Hessian operator at 7 is the
Sturm-Liouville operator £ : H2,, C L*(T) — L*(T),

L=—0,(c* —21)d, + (21" —1).

The spectrum of £ : H3 (T) c L*(T) — L*(T) is purely
discrete. The coefficients of £ are singular in the limit of peaked
wave since 25" (z) — 1 — —1 — wdy with Dirac d.



Linear stability of smooth waves

The linear evolution 2¢0,( = —JL( is defined by

J =10, 'y, L:=—0,(c* —2n)0, + (2 —1).




Linear stability of smooth waves

The linear evolution 2¢0,( = —JL( is defined by

J =10, 'y, L:=—0,(c* —2n)0, + (2 —1).

The conserved energy quadratic form is

(L(,Q) = 7{ [( = 21)(0:0)* + (20" — 1)¢?] d.

@ The spectrum o(L) consists of isolated eigenvalues.
@ We have 0 € o(L) because Ly’ = 0.

@ 0 is the third eigenvalue in the spectrum
(L) = {1, A\2,0, A4, ...} (shown by the period function).

(L¢, ¢) is coercive under constraints (1,¢) = 0 and (1, (') = 0,
which are invariant due to conservation of M and Q.



Linear stability of smooth waves
The linear evolution 2¢0,( = —JL( is defined by

J =10, 'y, L:=—0,(c* —2n)0, + (2 —1).

Theorem (S. Locke-D. P., JFM, 2025)

For every initial data ¢, € Hl},er(T) satisfying the two constraints,
there exists a unique solution ¢ € C°(R, H_..(T)) and a unique
a € C°(R,R) such that

1€C,t) — a®)n s, < Clldolla,,, &' < Clléollmy,, tER,

per per per

where C' > 0 is independent of (.




Linear stability of smooth waves

The linear evolution 2¢0,( = —JL( is defined by

J =10, 'y, L:=—0,(c* —2n)0, + (2 —1).

@ Linear stability does not imply nonlinear stability because
we have no local well-posedness in #].(T) but the
Whe°-norm of the perturbation ¢ is not controlled in the
time evolution.

@ For nonlinear stability in the CH equation, one needs to
use the additional variable m := ¢ — (,, to control the
. . . 1 .
solution either in H_ (T) N Wy (T) or in H3,(T)
as in [S. Lafortune, D.P, Physica D, 2022]



4. Instability of peaked waves

We have the evolution equation

2c0im = (¢* — 20)0pn + o0, o [(9:n) + 1)

for the peaked traveling wave with the unique speed

C=c =3 f and the peaked profile
1
Ne(x) = 16(77 — 4r|z| 4 22%), x € [—m,m].




4. Instability of peaked waves

We have the evolution equation

2c0im = (¢* — 20)0pn + o0, o [(9:n) + 1)

for the peaked traveling wave with the unique speed
C=c =3 f and the peaked profile

1
16
which is periodically continued on T.

N
NV

ne(z) = — (7% — 4r|z| + 22%), x € [—m, .




Proper decomposition for linearization

The evolution equation

2c0im = (¢* — 20)0pn + o0, o [(9:n) + 1)

is close to the inviscid Burgers (Hopf) equation

2c0m = (¢* — 20)0,n.



Proper decomposition for linearization

The evolution equation

2c0im = (¢* — 20)0pn + o0, o [(9:n) + 1)

is close to the inviscid Burgers (Hopf) equation

2c0¢n = (02 —2n)0xn

If n € C°((—79,70), H!..(T) N W1°(T)) is a local solution and

per

there exists £(t) such that

lim 9,n(t,z) # Um 9.n(t,z), te (—70,70),

x—E&(t)~ z—E(t)t
then ¢ € C'((—79,7)) and

26% —(c* = 2n(t,£(1))), t€ (—70,70)



Proper decomposition for linearization

The evolution equation

2c0im = (¢* — 20)0pn + o0, o [(9:n) + 1)

is close to the inviscid Burgers (Hopf) equation

2c0m = (¢* — 20)0,n.

Assuming that n € C°((—7, 1), H..(T) N WH>°(T)) has a

per

single peak at x = £(¢), we consider the perturbation ((t,z) as
n(t, x) = n(x —&(t)) + ¢tz = &(1)).
This gives the evolution equation

2¢.0¢¢ = (Ci - 277*)833C - 2(< - C\x:o)(ni + al‘()
+ o0, "o [¢ + 20.0:¢ + (0:0)?]



Proper decomposition for linearization

The evolution equation

2c0im = (¢* — 20)0pn + o0, o [(9:n) + 1)

is close to the inviscid Burgers (Hopf) equation
2c0m = (¢* — 20)0,n.
After integration by parts ¢ + 27/.89,¢ = 20, (1) + $¢ + 7o,

and truncation, the linearized evolution equation takes the
better form:

1 1
2¢.0,C = (¢} — 20.)0x¢ — - ?{niédw + §H03;1H0C,

where both § (dz and (|,—¢ are constant in ¢ and satisfy the
constraint ¢|,—o = —5 § (dx.



Proper linearized operator

The linearized evolution equation

1 1
2e.00 = (2~ 20)0.C — - oGz + 511005 Mg

is defined by the operator A : Dom(A) ¢ L?(T) — L*(T) s.t.
1 1
AF = (= 20000 — ol fdo + 5100 Moy,

where Dom(A) := {f € L*(T) : (2 —2n,)f" € L*(T)}.



Proper linearized operator

The linearized evolution equation

2.0 = (¢ = 2000,¢ ~ 1 oG+ T g

is defined by the operator A : Dom(A) ¢ L?(T) — L*(T) s.t.
AF = (= 20000 — ol fdo + 5100 Moy,

where Dom(A) := {f € L*(T) : (2 —2n,)f" € L*(T)}.

For local well-posedness, we should consider
A:HE (T)NWL(T) € L?(T) N L*(T) — L*(T) N L>=(T),

where H__(T) 1 W'(T) is embedded into Dom(A).

per



Spectral instability result

Theorem (F. Natali, D.P.,, S. Wang, JNLW 1 (2025) e10)

The spectrum of A : Dom(A) C L*(T) — L*(T) completely
covers the closed vertical strip given by

a(A):{)\eC: —ZgRe(A)<Z}.




Spectral instability result

Theorem (F. Natali, D.P.,, S. Wang, JNLW 1 (2025) e10)

The spectrum of A : Dom(A) C L*(T) — L*(T) completely
covers the closed vertical strip given by

a(A):{)\eC: —ZSRe(A)SZ}.

In fact, we show

()= {reC: T <Re(N) <7},

p(A) = {)\ eC: [Re(N)| > %}
s0 that o,(A) = o(A)\o,(A).



Spectral instability result

Theorem (F. Natali, D.P.,, S. Wang, JNLW 1 (2025) e10)

The spectrum of A : Dom(A) C L*(T) — L*(T) completely
covers the closed vertical strip given by

o(A) = {)\ eC: _Z < Re()) <

Mz}
H,_/

To find 0,,(A), we analyze Af = \f, f € Dom(A):

27
JCr—a)f @)+ = [ (r—a)f(@)de+ 5005 Tof = Af(a).

with the constraint A f02” f(x)dz = 0.



Spectral instability result

Theorem (F. Natali, D.P.,, S. Wang, JNLW 1 (2025) e10)

The spectrum of A : Dom(A) C L*(T) — L*(T) completely
covers the closed vertical strip given by

a(A):{)\eC: —ZSRe(A)SZ}.

Since f € C*(0,27), the spectral problem is the ODE:

27
17 0T—) (@) g () f (@) 45 F @)~

7| @ =2,

=0

with two solutions fi(z) = 2\ — 7+ z and fa(z) ~ a7, — 0.



Spectral instability result

Theorem (F. Natali, D.P.,, S. Wang, JNLW 1 (2025) e10)

The spectrum of A : Dom(A) C L*(T) — L*(T) completely
covers the closed vertical strip given by

a(A):{)\eC: —ZSRe(A)SZ}.

For

i
4 )

both fi, fo € Dom(A) and ¢; f1(z) + caf2(x) satisfies the
constraint [" f(x)dz = 0.

op(A) = {)\ €C: _% < Re()) <



Nonlinear instability result

Theorem (F. Natali, D.P.,, S. Wang, JNLW 1 (2025) e10)

For every 5 > 0 there exists ¢y € H}.(T) N W'*(T) satisfying

ICollery, < 8% NGollwoe <6,

per

such that the unique local solution ¢ satisfies || (to, -) |l = 1.




Nonlinear instability result

Theorem (F. Natali, D.P.,, S. Wang, JNLW 1 (2025) e10)

For every 5 > 0 there exists ¢y € H}.(T) N W'*(T) satisfying

ICollery, < 8% NGollwoe <6,

per

such that the unique local solution ¢ satisfies || (to, -) |l = 1.

The nonlinear evolution equation is
1
2¢,0,C = (03—277*)3IC—2(C—C|:1::0)5:1:C—;<77i7C>+ o0, .o [C +2(9:¢) }

with two conserved quantities

%Cd:r and  (lg—o + % f(axg)de = Cp.



Nonlinear instability result

Theorem (F. Natali, D.P.,, S. Wang, JNLW 1 (2025) e10)

For every 5 > 0 there exists ¢y € H}.(T) N W'*(T) satisfying

ICollery, < 8% NGollwoe <6,

per

such that the unique local solution ¢ satisfies || (to, -) |l = 1.

Characteristic curves for z = X (¢, s):

{ 20,0, X (t,5) = —(ci — 2n.(X)) + 2(C(t, X) — ¢(¢, 0)),
X(0,s) = s.

and evolution of Z(t, s) := ((t, X (¢, s)) along the curves

{ 2.0, Z(t,8) = =+ (1l ¢) + 51100, o (¢ + 2(92¢)?),
Z(07 8) = C0(8)7



Nonlinear instability result

Theorem (F. Natali, D.P.,, S. Wang, JNLW 1 (2025) e10)

For every 5 > 0 there exists ¢y € H}.(T) N W'*(T) satisfying

ICollery, < 8% NGollwoe <6,

per

such that the unique local solution ¢ satisfies || (to, -) |l = 1.

Assuming (o € C1(0,27), we get for V (¢, s) := 0,((t, X (t,5)):

{20*8t (t,5) = =20 (X)V = V2 + 5(Z(t,s) + Z(1,0)),
V(0,5) = Cols),

with the one-sided limit to the peak at V4 (¢) := lim V(¢,s):

s—0t

2.V (t) = 5Vo(t) = Vi'(t) + Z(£,0) < ZVo(t) + Co.



Nonlinear instability result

Theorem (F. Natali, D.P.,, S. Wang, JNLW 1 (2025) e10)

For every 5 > 0 there exists ¢y € H}.(T) N W'*(T) satisfying

ICollery, < 8% NGollwoe <6,

per

such that the unique local solution ¢ satisfies || (to, -) |l = 1.

This gives the instability in the 1 1:>°-norm:

Tt

Volt) < (VO(O) + ico) eer |

for —6 < V5(0) < —2|Col, where |Cy| < 62



5. Convergence of smooth waves to the peaked wave.
The wave profile is found from the first-order quadrature:
28— n?

@ 2
de ) 2 —2np’
n(xm) = —v2€E.
Coefficients of Fourier series decay exponentially for smooth

waves and algebraically for the peaked wave.

logli




Eigenvalues of the self-adjoint operator.

The spectrum of £ : H3_ (T) — L*(T) is purely discrete:
L=—0,(c* —21)d, + (21" —1).

The lowest eigenvalue diverges in the limit of peaked waves
and the numerical accuracy becomes poor.
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Eigenfunctions of the self-adjoint operator.

The spectrum of £ : H3, (T) — L*(T) is purely discrete:
L=—0,(c* —21)d, + (21" —1).

Eigenfunctions become peaked in the limit of peaked waves.
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Eigenfunctions in the Fouier space

The spectrum of £ : H2_ (T) — L*(T) is purely discrete:
L= —0,(c* —21)d, + (21" — 1).

Their Fourier spectrum decays slowly for nearly-peaked waves.
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No convergence along the family of smooth waves?

Recall the Babenko equation for deep fluid
1
(c*10u] = 1)n = 5 10al” + 1|0 ln,

with co-many oscillations for ¢ in (1, cpax) With ¢, ~ 1.0922.
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We considered the following model for n = n(t, z):

2c0,0im = (% — 20)02n — (9m)* + 1

with = defined in the 27-periodic domain T and ¢ > 0 being a
parameter for the wave speed.

@ The smooth waves are linearly stable in the time evolution.
@ The peaked wave is linearly and nonlinearly unstable.

@ The cusped waves belong to Héer but do not belong to
H!. NnW> where local well-posedness is shown.

per

Their stability analysis is open.



