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1. The model and motivations.
We consider the following PDE for η = η(t, x):

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

with x defined in the 2π-periodic domain T and c > 0 being a
parameter for the wave speed.
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We consider the following PDE for η = η(t, x):

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

with x defined in the 2π-periodic domain T and c > 0 being a
parameter for the wave speed.

High-frequency limit of the Camassa–Holm equation

uT − uTXX + kuX + 3uuX = 2uXuXX + uuXXX ,

for solutions of the form u(T,X) = 2η(t, x) with t = 2cε−1T ,
x = ε−1(X − c2T ), k = ε−2 and ε→ 0.
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We consider the following PDE for η = η(t, x):

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

with x defined in the 2π-periodic domain T and c > 0 being a
parameter for the wave speed.

Extension of the Hunter–Saxton equation

(uT + uuX)X =
1

2
(uX)2

for solutions of the form u(T,X) = 2η(t, x) with t = 2cT ,
x = X + c2T , without the last term.



1. The model and motivations.
We consider the following PDE for η = η(t, x):

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

with x defined in the 2π-periodic domain T and c > 0 being a
parameter for the wave speed.

Truncation of the full water wave equation in conformal
variables with η being the surface elevation.

S.Locke–D.P., JFM 2025



Recent numerical results

Existence of smooth Stokes waves of large amplitudes was
obtained numerically with a high precision.
S. Dyachenko, P. Lushnikov, A. Korotkevich (2016)
S. Dyachenko, V. Hur, D. Silantyev (2023)

Spectral stability of smooth Stokes waves of large amplitudes
was explored numerically both for co-periodic and localized
perturbations.
S. Dyachenko, A. Semenova (2023)
A. Korotkevich, P. Lushnikov, A. Semenova, S. Dyachenko (2023)
B. Deconinck, S. Dyachenko, A. Semenova (2024)



Recent numerical results
The wave energy H and the wave speed c oscillate as functions
of the wave steepness s towards the limiting wave with the
peaked profile:

Conjectures based on the numerical results:
∃ ∞-many oscillations of wave energy and speed.
The family of smooth Stokes waves converge to the limiting
wave of the peaked profile.



Recent numerical results

The wave profile becomes steep and breaks due to instability:

The traveling wave of the peaked profile is believed to exist for
a unique value of c = c∗. However, the proof of uniqueness of
c∗ and the convergence as c→ c∗ is open. For model equations
(fractional KdV, Whitham), the proof of uniqueness of c∗ is in
J. Dahne, J. Diff. Eqs. 401 (2024) 550
M. Ehrnström, O.I.H. Mæhlen, K. Varholm, Ann. Inst. H. Poincaré C (2025)



Babenko’s equation for traveling (Stokes) waves
Traveling waves η(u, t) = η(u− ct) with the zero-mean profile η
satisfy a scalar pseudo–differential equation

(c2Kh − 1)η =
1

2
Khη2 + ηKhη,

where the self-adjoint operator Kh is defined by

(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0.
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Traveling waves η(u, t) = η(u− ct) with the zero-mean profile η
satisfy a scalar pseudo–differential equation

(c2Kh − 1)η =
1

2
Khη2 + ηKhη,

where the self-adjoint operator Kh is defined by

(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0.

Existence of traveling waves with both smooth and peaked
profiles is defined by solutions of Babenko’s equation.
K. Babenko, Russian Academy of Sciences 294 (1987) 1033
...
S. Locke & D.P., Appl. Math. Lett. 161 (2025) 109359



Babenko’s equation for traveling (Stokes) waves
Traveling waves η(u, t) = η(u− ct) with the zero-mean profile η
satisfy a scalar pseudo–differential equation

(c2Kh − 1)η =
1

2
Khη2 + ηKhη,

where the self-adjoint operator Kh is defined by

(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0.

The zero-mean constraint on η in the physical coordinate
becomes the quadratic constraint in the conformal coordinate:∮

η +

∮
ηKhη = 0.



Babenko’s equation for traveling (Stokes) waves
Traveling waves η(u, t) = η(u− ct) with the zero-mean profile η
satisfy a scalar pseudo–differential equation

(c2Kh − 1)η =
1

2
Khη2 + ηKhη,

where the self-adjoint operator Kh is defined by

(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0.

In the deep-water limit h→∞, we have Kh → |∂x| and
Babenko’s equation becomes the “stationary BO" equation

(c2|∂x| − 1)η =
1

2
|∂x|η2 + η|∂x|η,

with∞-many oscillations for c in (1, cmax) with c∗ ≈ 1.0922.



Babenko’s equation for traveling (Stokes) waves
Traveling waves η(u, t) = η(u− ct) with the zero-mean profile η
satisfy a scalar pseudo–differential equation

(c2Kh − 1)η =
1

2
Khη2 + ηKhη,

where the self-adjoint operator Kh is defined by

(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0.

In the shallow-water limit h→ 0, we replace Kh by −∂2x and
Babenko’s equation becomes the stationary equation

(c2 − 2η)η′′ − (η′)2 + η = 0,

which is equivalent to the steady model considered here.



2. Conserved quantities and local well-posedness.
Assume a smooth solution η ∈ C0((−τ0, τ0), Hs

per(T)), s > 3
2 :

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

The model has the three (basic) conserved quantities:
Mass

M(η) =

∮
ηdx

Momentum
Q(η) =

1

2

∮
(∂xη)2dx

Energy

H(η) =
1

2

∮ [
η2 + 2η(∂xη)2

]
dx.

Moreover, it admits a nontrivial constraint

M(η) + 2Q(η) =

∮ [
η + (∂xη)2

]
dx = 0.



Local well-posedness of the initial-value problem
Integrating once in x,

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

we can write the evolution problem

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
where Π0 : L2(T)→ L2(T)|{1}⊥ .
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−1
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The mapping

Π0∂
−1
x Π0

[
(∂xη)2 + η

]
: H1

per ∩W 1,∞ → H1
per ∩W 1,∞

is bounded on every bounded subset.



Local well-posedness of the initial-value problem
Integrating once in x,

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

we can write the evolution problem

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
where Π0 : L2(T)→ L2(T)|{1}⊥ .

The inviscid Burgers equation

2c∂tη = (c2 − 2η)∂xη

is locally well-posed in H1
per ∩W 1,∞

(e.g., the method of characteristics).
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Local well-posedness of the initial-value problem
Integrating once in x,

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

we can write the evolution problem

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
where Π0 : L2(T)→ L2(T)|{1}⊥ .

The initial-value problem for the evolution probem is also
locally well-posed in Hs

per, s >
3
2 , which is embedded into

H1
per ∩W 1,∞.



3. Smooth and peaked traveling waves.
Traveling waves are defined by solutions of the 2nd-order ODE:

(c2 − 2η)η′′ − (η′)2 + η = 0, x ∈ T.



3. Smooth and peaked traveling waves.
Traveling waves are defined by solutions of the 2nd-order ODE:

(c2 − 2η)η′′ − (η′)2 + η = 0, x ∈ T.

Theorem (S. Locke–D. P., JFM, 2025)
There exist c∗ := π

2
√
2

and c∞ ∈ (c∗,∞) such that the ODE
admits a unique solution with the profile η ∈ C∞per(T) for every
c ∈ (1, c∗) s.t.

‖η‖L∞ → 0 as c→ 1

and a solution with the profile η ∈ C0
per(T) for every c ∈ (c∗, c∞)

satisfying for some A(c) > 0,

η(x) =
c2

2
−A(c)|x|2/3 +O(|x|) as x→ 0.



3. Smooth and peaked traveling waves.
Traveling waves are defined by solutions of the 2nd-order ODE:

(c2 − 2η)η′′ − (η′)2 + η = 0, x ∈ T.

The two continuous families meet at c = c∗ = π
2
√
2
, where

the profile η ∈ C0
per(T) ∩W 1,∞(T) is peaked:

η(x) =
1

16
(π2 − 4π|x|+ 2x2), x ∈ [−π, π].

with

‖η‖L∞ = η(0) =
π2

16
=
c2

2
.



3. Smooth and peaked traveling waves.
Traveling waves are defined by solutions of the 2nd-order ODE:

(c2 − 2η)η′′ − (η′)2 + η = 0, x ∈ T.
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3. Smooth and peaked traveling waves.
Traveling waves are defined by solutions of the 2nd-order ODE:

(c2 − 2η)η′′ − (η′)2 + η = 0, x ∈ T.

The highest amplitude

max
x∈T

η(x) = η(0) =
c2

2

follows from Bernoulli’s principle of hydrodynamics.

The |x|2/3 singularity in the conformal coordinate
corresponds to Stokes’ law of the 1200 angle in the
physical coordinate.



Existence

Smooth solutions of (c2 − 2η)η′′ − (η′)2 + η = 0 are level
curves of

E(η, η′) :=
1

2
(c2 − 2η)(η′)2 +

1

2
η2 = E

on the phase plane (η, η′).



Existence

Smooth solutions of (c2 − 2η)η′′ − (η′)2 + η = 0 are level
curves of

E(η, η′) :=
1

2
(c2 − 2η)(η′)2 +

1

2
η2 = E

on the phase plane (η, η′).

-1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2



Linear stability
The evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
has the Hamiltonian formulation

2c∂tη = J∇
[
H(η)− c2Q(η)

]
, J := Π0∂

−1
x Π0.

Here H is the energy and Q is the momentum given by

Q(η) =
1

2

∮
(∂xη)2dx, H(η) =

1

2

∮ [
η2 + 2η(∂xη)2

]
dx.



Linear stability
The evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
has the Hamiltonian formulation

2c∂tη = J∇
[
H(η)− c2Q(η)

]
, J := Π0∂

−1
x Π0.

The profile η ∈ C∞per(T) for smooth traveling waves is a critical
point of H − c2Q so that the perturbation ζ ∈ H1

per ∩W 1,∞

satisfies the linearized equation

2c∂tζ = −JLζ, L := −∂x(c2 − 2η)∂x + (2η′′ − 1).



Linear stability
The evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
has the Hamiltonian formulation

2c∂tη = J∇
[
H(η)− c2Q(η)

]
, J := Π0∂

−1
x Π0.

The profile η ∈ C∞per(T) for smooth traveling waves is a critical
point of H − c2Q so that the perturbation ζ ∈ H1

per ∩W 1,∞

satisfies the linearized equation

2c∂tζ = −JLζ, L := −∂x(c2 − 2η)∂x + (2η′′ − 1).

The spectrum of L : H2
per(T) ⊂ L2(T)→ L2(T) is purely

discrete. The coefficients of L are singular in the limit of peaked
wave since 2η′′(x)− 1→ −1

2 − πδ0 with Dirac δ0.



Linear stability of smooth waves
The linear evolution 2c∂tζ = −JLζ is defined by

J = Π0∂
−1
x Π0, L := −∂x(c2 − 2η)∂x + (2η′′ − 1).



Linear stability of smooth waves
The linear evolution 2c∂tζ = −JLζ is defined by

J = Π0∂
−1
x Π0, L := −∂x(c2 − 2η)∂x + (2η′′ − 1).

The spectral problem

Π0∂
−1
x Π0Lζ = λζ, ζ ∈ H2

per(T)

coincides with the spectral problem

Lζ = λ∂xζ, ζ ∈ H2
per(T)

studied in [M. Stanislavova–A. Stefanov, CMP, 2016] .



Linear stability of smooth waves
The linear evolution 2c∂tζ = −JLζ is defined by

J = Π0∂
−1
x Π0, L := −∂x(c2 − 2η)∂x + (2η′′ − 1).

The conserved energy quadratic form

〈Lζ, ζ〉 =

∮ [
(c2 − 2η)(∂xζ)2 + (2η′′ − 1)ζ2

]
dx,

is defined by the self-adjoint operator L : H2
per(T)→ L2(T):

The spectrum σ(L) consists of isolated eigenvalues.
We have 0 ∈ σ(L) because Lη′ = 0.
0 is the third eigenvalue in the spectrum
σ(L) = {λ1, λ2, 0, λ4, . . . } (shown by the period function).

〈Lζ, ζ〉 is coercive under constraints 〈1, ζ〉 = 0 and 〈η′, ζ ′〉 = 0.



Linear stability of smooth waves
The linear evolution 2c∂tζ = −JLζ is defined by

J = Π0∂
−1
x Π0, L := −∂x(c2 − 2η)∂x + (2η′′ − 1).

Two constraints follow from the conservation of mass M and
momentum Q: 〈1, ζ〉 = 0 and 〈η′, ζ ′〉 = 0.

Theorem (S. Locke–D. P., JFM, 2025)
For every initial data ζ0 ∈ H1

per(T) satisfying the two constraints,
there exists a unique solution ζ ∈ C0(R, H1

per(T)) and a unique
a ∈ C0(R,R) such that

‖ζ(·, t)− a(t)η′‖H1
per
≤ C‖ζ0‖H1

per
, |a′(t)| ≤ C‖ζ0‖H1

per
, t ∈ R,

where C > 0 is independent of ζ0.



Linear stability of smooth waves
The linear evolution 2c∂tζ = −JLζ is defined by

J = Π0∂
−1
x Π0, L := −∂x(c2 − 2η)∂x + (2η′′ − 1).

Linear stability does not imply nonlinear stability because
we have no local well-posedness in H1

per(T) but the
W 1,∞-norm of the perturbation ζ is not controlled in the
time evolution.

For nonlinear stability in the CH equation, one needs to
use the additional variable m := ζ − ζxx to control the
solution either in H1

per(T) ∩W 1,∞
per (T) or in H3

per(T)
as in [S. Lafortune, D.P, Physica D, 2022]



4. Instability of peaked waves
We have the evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
but TW has a peaked profile η∗ ∈ C0

per(T) ∩W 1,∞(T) for
c = c∗ := π

2
√
2
,

η∗(x) =
1

16
(π2 − 4π|x|+ 2x2), x ∈ [−π, π].



4. Instability of peaked waves
We have the evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
but TW has a peaked profile η∗ ∈ C0

per(T) ∩W 1,∞(T) for
c = c∗ := π

2
√
2
,

η∗(x) =
1

16
(π2 − 4π|x|+ 2x2), x ∈ [−π, π].

which is periodically continued on T.

Uniqueness of the peaked periodic wave for c = c∗ was proven
in [A. Geyer & D.P, SIMA, 2019] [G. Bruell & Dhara, Indiana Math. J. 2021]



Proper decomposition for linearization
The evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
is close to the inviscid Burgers (Hopf) equation

2c∂tη = (c2 − 2η)∂xη.



Proper decomposition for linearization
The evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
is close to the inviscid Burgers (Hopf) equation

2c∂tη = (c2 − 2η)∂xη.

If η ∈ C0((−τ0, τ0), H1
per(T) ∩W 1,∞(T)) is a local solution and

there exists ξ(t) such that

lim
x→ξ(t)−

∂xη(t, x) 6= lim
x→ξ(t)+

∂xη(t, x), t ∈ (−τ0, τ0),

then ξ ∈ C1((−τ0, τ0)) and

2c
dξ

dt
= −(c2 − 2η(t, ξ(t))), t ∈ (−τ0, τ0).



Proper decomposition for linearization
The evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
is close to the inviscid Burgers (Hopf) equation

2c∂tη = (c2 − 2η)∂xη.

Assuming that η ∈ C0((−τ0, τ0), H1
per(T) ∩W 1,∞(T)) has a

single peak at x = ξ(t), we consider the perturbation ζ(t, x) as

η(t, x) = η∗(x− ξ(t)) + ζ(t, x− ξ(t)).

This gives the evolution equation

2c∗∂tζ = (c2∗ − 2η∗)∂xζ − 2(ζ − ζ|x=0)(η
′
∗ + ∂xζ)

+ Π0∂
−1
x Π0

[
ζ + 2η′∗∂xζ + (∂xζ)2

]
,



Proper decomposition for linearization
The evolution equation

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
is close to the inviscid Burgers (Hopf) equation

2c∂tη = (c2 − 2η)∂xη.

After integration by parts ζ + 2η′∗∂xζ = 2∂x(η′∗ζ) + 1
2ζ + πδ0ζ,

and truncation, the linearized evolution equation takes the
better form:

2c∗∂tζ = (c2∗ − 2η∗)∂xζ −
1

π

∮
η′∗ζdx+

1

2
Π0∂

−1
x Π0ζ,

where both
∮
ζdx and ζ|x=0 are constant in t and satisfy the

constraint ζ|x=0 = − 1
2π

∮
ζdx.



Proper linearized operator
The linearized evolution equation

2c∗∂tζ = (c2∗ − 2η∗)∂xζ −
1

π

∮
η′∗ζdx+

1

2
Π0∂

−1
x Π0ζ

is defined by the operator A : Dom(A) ⊂ L2(T)→ L2(T) s.t.

Af := (c2∗ − 2η∗)∂xf −
1

π

∮
η′∗fdx+

1

2
Π0∂

−1
x Π0f,

where Dom(A) :=
{
f ∈ L2(T) : (c2∗ − 2η∗)f

′ ∈ L2(T)
}

.



Proper linearized operator
The linearized evolution equation

2c∗∂tζ = (c2∗ − 2η∗)∂xζ −
1

π

∮
η′∗ζdx+

1

2
Π0∂

−1
x Π0ζ

is defined by the operator A : Dom(A) ⊂ L2(T)→ L2(T) s.t.

Af := (c2∗ − 2η∗)∂xf −
1

π

∮
η′∗fdx+

1

2
Π0∂

−1
x Π0f,

where Dom(A) :=
{
f ∈ L2(T) : (c2∗ − 2η∗)f

′ ∈ L2(T)
}

.

For local well-posedness, we should consider
A : H1

per(T) ∩W 1,∞(T) ⊂ L2(T) ∩ L∞(T)→ L2(T) ∩ L∞(T),
where H1

per(T) ∩W 1,∞(T) is embedded into Dom(A).



Spectral instability result

Theorem (F. Natali, D.P., S. Wang, JNLW, 2025, in print)
The spectrum of A : Dom(A) ⊂ L2(T)→ L2(T) completely
covers the closed vertical strip given by

σ(A) =
{
λ ∈ C : −π

4
≤ Re(λ) ≤ π

4

}
.



Spectral instability result

Theorem (F. Natali, D.P., S. Wang, JNLW, 2025, in print)
The spectrum of A : Dom(A) ⊂ L2(T)→ L2(T) completely
covers the closed vertical strip given by

σ(A) =
{
λ ∈ C : −π

4
≤ Re(λ) ≤ π

4

}
.

In fact, we show

σp(A) =
{
λ ∈ C : −π

4
< Re(λ) <

π

4

}
,

ρ(A) =
{
λ ∈ C : |Re(λ)| > π

4

}
,

so that σc(A) = σ(A)\σp(A).



Spectral instability result

Theorem (F. Natali, D.P., S. Wang, JNLW, 2025, in print)
The spectrum of A : Dom(A) ⊂ L2(T)→ L2(T) completely
covers the closed vertical strip given by

σ(A) =
{
λ ∈ C : −π

4
≤ Re(λ) ≤ π

4

}
.

To find σp(A), we analyze Af = λf , f ∈ Dom(A):

1

4
x(2π−x)f ′(x) +

1

4π

∫ 2π

0
(π−x)f(x)dx+

1

2
Π0∂

−1
x Π0f = λf(x),

with the constraint λ
∫ 2π
0 f(x)dx = 0.



Spectral instability result

Theorem (F. Natali, D.P., S. Wang, JNLW, 2025, in print)
The spectrum of A : Dom(A) ⊂ L2(T)→ L2(T) completely
covers the closed vertical strip given by

σ(A) =
{
λ ∈ C : −π

4
≤ Re(λ) ≤ π

4

}
.

Since f ∈ C∞(0, 2π), the spectral problem is the ODE:

1

4
x(2π−x)f ′′(x)+

1

2
(π−x)f ′(x)+

1

2
f(x)− 1

4π

∫ 2π

0
f(x)dx = λf ′(x),

with two solutions f1(x) = 2λ− π + x and

f2(x) ∼ x
2λ
π , x→ 0+, f2(x) ∼ (2π − x)−

2λ
π , x→ (2π)−.



Spectral instability result

Theorem (F. Natali, D.P., S. Wang, JNLW, 2025, in print)
The spectrum of A : Dom(A) ⊂ L2(T)→ L2(T) completely
covers the closed vertical strip given by

σ(A) =
{
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4
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.

For
σp(A) =

{
λ ∈ C : −π

4
< Re(λ) <

π

4

}
,

both f1, f2 ∈ Dom(A) and c1f1(x) + c2f2(x) satisfies the
constraint λ

∫ 2π
0 f(x)dx = 0.



Nonlinear instability result

Theorem (F. Natali, D.P., S. Wang, JNLW, 2025, in print)
For every δ > 0 there exists ζ0 ∈ H1

per(T) ∩W 1,∞(T) satisfying

‖ζ0‖H1
per
≤ δ2, ‖ζ0‖W 1,∞ ≤ δ,

such that the unique local solution ζ satisfies ‖ζ(t0, ·)‖W 1,∞ = 1.
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The nonlinear evolution equation is

2c∗∂tζ = (c2∗−2η∗)∂xζ−2(ζ−ζ|x=0)∂xζ−
1

π
〈η′∗, ζ〉+

1

2
Π0∂

−1
x Π0

[
ζ + 2(∂xζ)2

]
.

with two conserved quantities∮
ζdx and ζ|x=0 +

1

π

∮
(∂xζ)2dx = C0.
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Characteristic curves for x = X(t, s):{
2c∗∂tX(t, s) = −(c2∗ − 2η∗(X)) + 2(ζ(t,X)− ζ(t, 0)),
X(0, s) = s.

and evolution of Z(t, s) := ζ(t,X(t, s)) along the curves{
2c∗∂tZ(t, s) = − 1

π 〈η
′
∗, ζ〉+ 1

2Π0∂
−1
x Π0(ζ + 2(∂xζ)2),

Z(0, s) = ζ0(s),
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‖ζ0‖H1
per
≤ δ2, ‖ζ0‖W 1,∞ ≤ δ,

such that the unique local solution ζ satisfies ‖ζ(t0, ·)‖W 1,∞ = 1.

Assuming ζ0 ∈ C1(0, 2π), we get for V (t, s) := ∂xζ(t,X(t, s)):{
2c∗∂tV (t, s) = −2η′∗(X)V − V 2 + 1

2(Z(t, s) + Z(t, 0)),
V (0, s) = ζ ′0(s),

with the one-sided limit to the peak at V0(t) := lim
s→0+

V (t, s):

2c∗V
′
0(t) =

π

2
V0(t)− V 2

0 (t) + Z(t, 0) ≤ π

2
V0(t) + C0.
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per(T) ∩W 1,∞(T) satisfying

‖ζ0‖H1
per
≤ δ2, ‖ζ0‖W 1,∞ ≤ δ,

such that the unique local solution ζ satisfies ‖ζ(t0, ·)‖W 1,∞ = 1.

This gives the instability in the W 1,∞-norm:

V0(t) ≤
(
V0(0) +

2

π
C0

)
e
πt
4c∗ .

for −δ < V0(0) < − 2
π |C0|, where |C0| . δ2.



5. Convergence of smooth waves to the peaked wave.

The wave profile is found from the first-order quadrature:
(
dη

dx

)2

=
2E − η2

c2 − 2η
,

η(±π) = −
√

2E .
Coefficients of Fourier series decay exponentially for smooth
waves and algebraically for the peaked wave.

0 0.5 1 1.5 2
-12

-10

-8

-6

-4

-2

0



Eigenvalues of the self-adjoint operator.

The spectrum of L : H2
per(T)→ L2(T) is purely discrete:

L = −∂x(c2 − 2η)∂x + (2η′′ − 1).

The lowest eigenvalue diverges in the limit of peaked waves
and the numerical accuracy becomes poor.
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Eigenfunctions of the self-adjoint operator.

The spectrum of L : H2
per(T)→ L2(T) is purely discrete:

L = −∂x(c2 − 2η)∂x + (2η′′ − 1).

Eigenfunctions become peaked in the limit of peaked waves.
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Eigenfunctions in the Fouier space

The spectrum of L : H2
per(T)→ L2(T) is purely discrete:

L = −∂x(c2 − 2η)∂x + (2η′′ − 1).

Coefficients decay slowly in the limit of peaked waves.
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No convergence along the family of smooth waves?

Recall the Babenko equation for deep fluid

(c2|∂x| − 1)η =
1

2
|∂x|η2 + η|∂x|η,

with∞-many oscillations for c in (1, cmax) with c∗ ≈ 1.0922.



6. Summary

We considered the following model for η = η(t, x):

2c∂x∂tη = (c2 − 2η)∂2xη − (∂xη)2 + η

with x defined in the 2π-periodic domain T and c > 0 being a
parameter for the wave speed.

The smooth waves are linearly stable in the time evolution.

The peaked wave is unstable in the time evolution.

The cusped waves belong to H1
per but do not belong to

H1
per ∩W 1,∞, where local well-posedness is shown.


