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Outline of the talk

1. Stability patterns of the surface water waves: numerical results

2. Advantages of the pseudo-differential Babenko-type equations

3. Existence of traveling waves with smooth and peaked profiles

4. Stability criterion for co-periodic perturbations based on energy

5. Bifurcations of the modulational stability bands via normal forms

The talk is based on the joint work with

. Spencer Locke (PhD at University of Michigan),

. Sergey Dyachenko (University of Buffalo),

. Robert Marangell (University of Sydney).
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1. Stability patterns of the surface water waves

Stokes waves are traveling waves of the permanent form in the
irrotational motion of an incompressible fluid:

Traveling waves of small amplitudes were defined in
G. G. Stokes, On the theory of oscillatory waves, Transactions of the Cambridge

Philosophical Society 8 (1847) 441

T. Levi-Civita, Determination rigoureuse des ondes permanentes dámpleur finite,

Mathematische Annalen 93 (1925) 264
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Stokes waves with the smooth and peaked profiles

In 1880, G. G. Stokes suggested existence of the limiting wave with
the peaked profile in the family of waves with the smooth profiles:

Existence of peaked solutions was proven by J. Toland et al. and the
2π/3-peaked singularity was proven by P. Plotnikov in 1982.

J. F. Toland, Proc. Roy. Soc. London 363 (1978) 469

C. J. Amick, L. E. Fraenkel, J. F. Toland, Acta Mathematica 148 (1982) 193

P. I. Plotnikov, Studies in Applied Mathematics 108 (2002) 217
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Recent numerical results

More recently, numerical approximations of smooth periodic waves of
large amplitudes were obtained with a high precision.
S. Dyachenko, P. Lushnikov, A. Korotkevich, Stud. Appl. Math. (2016)

S. Dyachenko, V. Hur, D. Silantyev, J. Fluid Mech. 955 (2023) A17

Spectral stability of smooth Stokes waves was explored numerically
both for co-periodic and localized perturbations.
S. Dyachenko, A. Semenova, J. Comp. Phys. 492 (2023) 112411

A. Korotkevich, P. Lushnikov, A. Semenova, S. Dyachenko, Stud.Appl.Math.(2023)

B. Deconinck, S. Dyachenko, A. Semenova, J. Fluid Mech. 995 (2024) A2

B. Deconinck, S. Dyachenko, P. Lushnikov, A. Semenova, Proc.Nat.Acad.Sci.(2023)
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Recent numerical results

The wave energyH and the wave speed c oscillate as functions of the
wave steepness s towards the limiting wave with the peaked profile:

Instability of waves with respect to co-periodic perturbatios is related
to the extremal points of energy.
M. Tanaka, J. Phys. Soc. Japan 52 (1983) 3047; J. Fluid Mech. 156 (1985) 281

P. G. Saffman, J. Fluid Mech. 159 (1985) 169
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Recent numerical results

Instability bands with respect to arbitrary perturbations change in a
sequence of bifurcations, which are repeated as steepness s increases.
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Recent numerical results

Only the small-amplitude limit was considered by using rigorous
mathematical analysis:
H. Q. Nguyen, W. A. Strauss, Comm. Pure Appl. Math. 76 (2023) 1035

M. Berti, A. Maspero, P. Ventura, Inventiones mathematicae 230 (2022) 651

M. Berti, A. Maspero, P. Ventura, Arch. Rational Mech. Anal. 247 (2023) 91

V. M. Hur, Z. Yang, Arch. Rational Mech. Anal. 247 (2023) 62

The wave profile becomes steep and breaks due to instability:
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Wave breaking in reduced models

Instability of waves with the peaked profile due to wave breaking was
well understood in many toy models of the fluid dynamics such as

. Camassa–Holm equation

ut + ux − utxx + 3 u ux = 2 uxuxx + u uxxx

F. Natali, D.E. Pelinovsky, J. Diff. Eqs. 268 (2020) 7342

A. Madiyeva, D.E. Pelinovsky, SIAM J. Math. Anal. 53 (2021) 3016

. Hunter–Saxton-type equation

2cuxt = (c2 − 2u)uxx − (ux)
2 + u

S. Locke, D. E. Pelinovsky, J. Fluid Mech. 1004 (2025) A1

F. Natali, D. E. Pelinovsky, S. Wang, J. Nonlinear Waves (2025) submitted
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Wave breaking in reduced models

. Reduced Ostrovsky equation

(ut + uux)x = u

A. Geyer, D.E. Pelinovsky, SIAM J. Math. Anal. 51 (2019) 1188

A. Geyer, D.E. Pelinovsky, Proceedings of AMS 148 (2020) 5109

In all these models, the family of smooth waves remains linearly and
nonlinearly stable all the way before the wave profile becomes peaked
and the peaked wave becomes linearly and nonlinearly unstable.
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Wave breaking in reduced models

. Reduced Ostrovsky equation

(ut + uux)x = u

A. Geyer, D.E. Pelinovsky, SIAM J. Math. Anal. 51 (2019) 1188

A. Geyer, D.E. Pelinovsky, Proceedings of AMS 148 (2020) 5109

The main objective of this work is to develop the rigorous
mathematical analysis of spectral instability of Stokes waves in full
water wave equations for a deep fluid.
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2. Advantages of the pseudo-differential formulation

. η(x, t) - the free surface profile with the zero-mean constraint∮
ηdx = 0.

. φ(x, y, t) - velocity potential satisfying the Laplace equation in

Dη(t) := {(x, y) : −π ≤ x ≤ π, −∞ < y ≤ η(x, t)}

. Periodic boundary conditions at x = ±π.

. Decaying boundary condition ϕy|y→−∞ = 0.

. Nonlinear evolution equations at the free surface:

ηt + ϕxηx − ϕy = 0,

ϕt +
1
2

(ϕx)
2 +

1
2

(ϕy)
2 + η = 0,

}
at y = η(x, t),
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2. Advantages of the pseudo-differential formulation

Three methods of study the dynamics in the Hamiltonian system

ηt + ϕxηx − ϕy = 0,

ϕt +
1
2

(ϕx)
2 +

1
2

(ϕy)
2 + η = 0,

}
at y = η(x, t),

1. Dirichlet-to-Neumann operator for ϕy|y=η(x,t) by
W. Craig, C. Sulem, J. Comput. Phys. 108 (1993) 73

2. Reformulation in conformal variables by
A. I. Dyachenko, E. A. Kuznetsov, V. E. Zakharov, Phys. Lett. A 221 (1996) 73

3. Reformulations with integral constraints by
M. Ablowitz, A. Fokas, Z. Musslimani, J. Fluid Mech. 562 (2006) 313
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Conformal transformation
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Conformal transformation

Cauchy–Riemann equations for z = F(w, t) with holomorphic F in w:

∂x
∂u

=
∂y
∂v
,

∂x
∂v

= −∂y
∂u

in the fixed domain D := {(u, v) : −π ≤ u ≤ π, −∞ ≤ v ≤ 0} s.t.
decaying condition as v→ −∞ and periodic conditions at u = ±π.
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Conformal transformation

Fourier series solution:

x(u, v, t) = u +
∑
n∈Z

x̂n(t)einu e|n|v,

y(u, v, t) = v + ŷ0(t) +
∑
n∈Z

x̂n(t)einu i sgn(n)e|n|v,

where ŷ0(t) does not affect equations of motion.
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Conformal transformation

Similarly, the velocity potential is uniquely represented by

ϕ(u, v, t) =
∑
n∈Z

φ̂n(t)einu e|n|v,

where φ̂n(t) is the Fourier coefficient for φ(u, t) = ϕ(u, v = 0, t). The
other variables are ξ(u, t) = x(u, v = 0, t) and η(u, t) = y(u, v = 0, t).
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A closed system of evolution equations

It follows from Cauchy–Riemann equations for z = F(w, t) that

η = ŷ0 +H(ξ − u),

whereH is Hilbert transform with Fourier symbol Ĥn = isgn(n).

The closed system of evolution equations is obtained by the least
action principle from the Lagrangian

L(φ, ξ, η) :=

∮
φ(ηtξu − ηuξt)du− 1

2

∮
φKφdu− 1

2

∮
η2ξudu

+

∮
f (η − ŷ0 −H(ξ − u))du,

where K = −H∂u is a positive self-adjoint operator in L2(T) with
Fourier symbol K̂n = |n| and f is the Lagrange multiplier to preserve
the relation η = ŷ0 +H(ξ − u).
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A closed system of evolution equations

Using Euler–Lagrange equations in (φ, η, ξ), we obtain
ηtξu − ηuξt +Hφu = 0,
−φtξu + φuξt − ηξu + f = 0,
φtηu − φuηt + ηηu +Hf = 0,

where ξu = 1 +Kη and ξt = Hηt.
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A closed system of evolution equations

Using Euler–Lagrange equations in (φ, η, ξ), we obtain
ηtξu − ηuξt +Hφu = 0,
−φtξu + φuξt − ηξu + f = 0,
φtηu − φuηt + ηηu +Hf = 0,

where ξu = 1 +Kη and ξt = Hηt.

Eliminating f yields the closed system of two evolution equations{
(1 +Kη)ηt + ηuHηt +Hφu = 0,
φtηu − φuηt + ηηu +H [(1 +Kη)φt + φuHηt + (1 +Kη)η] = 0,

which replaces a full system of equations of motion for water waves.

The system admits a Hamiltonian formulation in canonical variables.
A. I. Dyachenko, E. A. Kuznetsov, V. E. Zakharov, Phys. Lett. A 221 (1996) 73
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A closed system of evolution equations

Using Euler–Lagrange equations in (φ, η, ξ), we obtain
ηtξu − ηuξt +Hφu = 0,
−φtξu + φuξt − ηξu + f = 0,
φtηu − φuηt + ηηu +Hf = 0,

where ξu = 1 +Kη and ξt = Hηt.

The constraint
∮
ηdx = 0 becomes

∮
ηξudu =

∮
η(1 +Kη)du = 0.

Additional constants of motion are∮
φ(1 +Kη)du,

∮
φηudu,

∮ [
η2(1 +Kη) + φKφ

]
du.

These are two (vertical and horizontal) components of the momentum
and the energy.
T. Benjamin, P. Olver, J. Fluid Mech. 125 (1982) 137
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Babenko’s equation

Traveling waves η(u, t) = η(u− ct) satisfy φu = cKη, where the
profile η is a solution of a scalar pseudo–differential equation

(c2K − 1)η =
1
2
Kη2 + ηKη.

Existence of traveling waves with both smooth and peaked profiles is
defined by solutions of Babenko’s equation.
K. Babenko, Russian Academy of Sciences 294 (1987) 1033
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Babenko’s equation

Traveling waves η(u, t) = η(u− ct) satisfy φu = cKη, where the
profile η is a solution of a scalar pseudo–differential equation

(c2K − 1)η =
1
2
Kη2 + ηKη.

Existence of traveling waves with both smooth and peaked profiles is
defined by solutions of Babenko’s equation.
K. Babenko, Russian Academy of Sciences 294 (1987) 1033

Linear stability of traveling waves is defined by the linearization of
the two equations near the traveling wave profile:{

η(u, t) = η(u− ct) + v(u− ct, t),
φ(u, t) = −cHη(u− ct) + w(u− ct, t).

S. Dyachenko, A. Semenova, J. Comp. Phys. 492 (2023) 112411
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Babenko’s equation

Traveling waves η(u, t) = η(u− ct) satisfy φu = cKη, where the
profile η is a solution of a scalar pseudo–differential equation

(c2K − 1)η =
1
2
Kη2 + ηKη.

Linearization at (v,w) yields the closed system of linear equations{
Mvt = Kw,
M∗wt − 2cHvt = Lv,

whereM = 1 +Kη + η′H,M∗ = 1 +Kη −H(η′ ·), and

L = c2K − (1 +Kη)− ηK −K(η ·),

where L is a self-adjoint linearized Babenko operator in L2(T).
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Babenko’s equation

Traveling waves η(u, t) = η(u− ct) satisfy φu = cKη, where the
profile η is a solution of a scalar pseudo–differential equation

(c2K − 1)η =
1
2
Kη2 + ηKη.

Separation of variables as v(u− ct, t) = v̂(u− ct)eλt,
w(u− ct, t) = ŵ(u− ct)eλt yields the spectral stability problem(

L 0
0 K

)(
v̂
ŵ

)
= λ

(
−2cH M∗
M 0

)(
v̂
ŵ

)
,

with the domain in H1
per(T)× H1

per(T) for co-periodic perturbations.
The left-side is a self-adjoint unbounded operator and the right-side is
a non-self-adjoint bounded operator in L2(T)× L2(T).
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3. Existence of traveling waves in Babenko’s equation

Babenko’s equation:

c2Kη − η =
1
2
Kη2 + ηKη,

where K = −H∂u with Fourier symbol K̂n = |n|.

Q: Which of your favorite integrable equation does it resemble?
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3. Existence of traveling waves in Babenko’s equation

Babenko’s equation:

c2Kη − η =
1
2
Kη2 + ηKη,

where K = −H∂u with Fourier symbol K̂n = |n|.

Q: Which of your favorite integrable equation does it resemble?
A: Benjamin–Ono equation ηt + 2ηηx +Hηxx = 0

Traveling waves η(x, t) = η(x + ct) satisfy

Kη − cη = η2.

This equation has a family of smooth solutions for every c > 1

η(x) =
sinh γ

cos x− cosh γ
, c = coth γ, γ ∈ (0,∞).
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3. Existence of traveling waves in Babenko’s equation

Babenko’s equation:

c2Kη − η =
1
2
Kη2 + ηKη,

where K = −H∂u with Fourier symbol K̂n = |n|.

c = 1 is the local bifurcation point for nonzero 2π-periodic solutions.
Small-amplitude (Stokes) expansions are algorithmically computed:

η(u) = a cos(u) + a2
[
cos(2u)− 1

2

]
+

3
2

a3 cos(3u) +O(a4)

where a > 0 is a small parameter for the wave amplitude which
defines the speed c2 = 1 + a2 +O(a4).
However, smooth waves of Babenko’s equation exist only for
c ∈ (1, cmax) with cmax <∞.
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Periodic solutions with the peaked profile

Recall that the physical profile of the surface elevation (x, η(x)) is
given in the parametric form as (ξ(u), η(u)) with ξu = 1 +Kη.

If η(x) is peaked with the 120o angle, then η(u) is cusped with the
singularity of the type

η(u) =
c2

2
− A|u|2/3 + o(|u|2/3).

G. Stokes (1880), J. Toland (1978), P. Plotnikov (1982).
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Periodic solutions with the peaked profile

What singular solutions are admitted in Babenko’s equation and for
what values of c?

c2Kη − η =
1
2
Kη2 + ηKη,

Near the singular solutions, it makes sense to use η(u) = c2

2 − η̃(u)
with η̃ satisfying the fixed-point equation

η̃ = Tc(η̃) :=
c2

2
+

1
2
K(η̃2) + η̃Kη̃,

where η̃(0) = 0.
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Periodic solutions with the peaked profile

Theorem (Locke–P, Appl. Math. Lett. 161 (2025) 109359)

If the solution of η̃ = Tc(η̃) is singular at u = 0 with the singularity of
the type

η̃(u) = A|u|α +O(|u|2α), α ∈ (0, 1],

with some A > 0, then necessarily, α = 2
3 .

. Parameters c and A are not defined by the local expansion.

. Some arguments about the unique definition of c = c∗ can be
found for the model equations (fractional KdV, Whitham):
J. Dahne, J. Diff. Eqs. 401 (2024) 550

M. Ehrnström, O.I.H. Mæhlen, K. Varholm, Ann. Inst. H. Poincaré C (2025)

. The proof of uniqueness of c∗ is open in Babenko’s equation.
Numerical continuations suggest c∗ ≈ 1.0922 but cannot
approach c∗ due to the slow convergence of Fourier series.
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Periodic solutions with the peaked profile

Theorem (Locke–P, Appl. Math. Lett. 161 (2025) 109359)

If the solution of η̃ = Tc(η̃) is singular at u = 0 with the singularity of
the type

η̃(u) = A|u|2/3 + B|u|β +O(|u|2/3+β), β ∈
(

2
3
, 2
)
,

with some A > 0 and B 6= 0, then necessarily, β ≈ 1.46 is a root of
the transcendental equation(

β +
2
3

)
cot

(
π

2
(β − 1

3
)

)
− β tan

(
πβ

2

)
=

2√
3
.

These results recover the asymptotic results from
M.A. Grant, J. Fluid Mech. 59 (1973) 257
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Ideas of the proof

The singular behavior of the two quadratic terms in

η̃ = Tc(η̃) :=
c2

2
+

1
2
K(η̃2) + η̃Kη̃.

is different for solution of the form η̃(u) = A|u|α+ o(|u|α) as |u| → 0:

K|u|α = −αH(|u|α−1sgn(u)) = −α tan
(πα

2

)
|u|α−1 +O(1),

K|u|2α = −2αH(|u|2α−1sgn(u)) = −2α tan(πα)|u|2α−1 +O(1).

This yields

Tcη̃ = −A2α
[
tan (πα) + tan

(πα
2

)]
|u|2α−1 +O(1) + o(|u|2α−1).

Since 2α− 1 < α for α ∈ (0, 1), the fixed-point equation η̃ = Tcη̃
can be satified as |u| → 0 only if

tan (πα) + tan
(πα

2

)
= 0,

which has the only root 2
3 for α in (0, 1).

Dmitry Pelinovsky, McMaster University Stability of waves in Babenko-type equation 13 / 24



4. Stability criterion for co-periodic perturbations

Assume that the traveling wave with profile η ∈ H∞per(T) exists for
this c ∈ (1, cmax). Consider solutions (v̂, ŵ) ∈ H1

per(T)× H1
per(T) of

the spectral stability problem for some values of λ ∈ C:(
L 0
0 K

)(
v̂
ŵ

)
= λ

(
−2cH M∗
M 0

)(
v̂
ŵ

)
,

where
. H,M = 1 +Kη + η′H, andM∗ = 1 +Kη −H(η′ ·) are

bounded operators in L2(T).
. K = −H∂u and L are unbounded operators in L2(T) with the

domain in H1
per(T). The spectrum of λ is purely discrete.

. Moreover, L is the linearized Babenko’s operator:

L = c2K − (1 +Kη)− ηK −K(η ·)

so that Lη′ = 0 and L∂cη = −2cKη.
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What determine new unstable EV (eigenvalue) λ?

For the linearized Babenko’s operator L : H1
per(T)→ L2(T), the

spectrum is known at c = 1, where η = 0:

c = 1 : σ(L) = {|n| − 1, n ∈ Z} = {−1, 0, 1, 2, . . . }.

By using the small-amplitude expansion with c2 = 1 + a2 +O(a4),

η(u) = a cos(u) + a2
[
cos(2u)− 1

2

]
+

3
2

a3 cos(3u) +O(a4),

one can show that the zero EV splits into a zero eigenvalue associated
with the odd eigenfunction η′(u) and a small negative EV
−2a2 +O(a4) associated with an even eigenfunction.

Similarly, all double positive eigenvalues split for even and odd
eigenfunctions and may cross 0 for larger values of a (c > 1).
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What determine new unstable EV (eigenvalue) λ?

Numerical results from
S. Dyachenko, A. Semenova, J. Comp. Phys. 492 (2023) 112411
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What determine new unstable EV (eigenvalue) λ?

Q: Do unstable eigenvalues bifurcate when the linearized Babenko’s
operator admit zero EV?(

L 0
0 K

)(
v̂
ŵ

)
= λ

(
−2cH M∗
M 0

)(
v̂
ŵ

)
,

c 6= c0 : Ker(K) = span(1), Ker(L) = span(η′),

c = c0 : Ker(K) = span(1), Ker(L) = span(η′, v0),

Dmitry Pelinovsky, McMaster University Stability of waves in Babenko-type equation 15 / 24



What determine new unstable EV (eigenvalue) λ?

A: No. They bifurcate at the extremal points of energy!

H(η) =

∮ [
η2(1 +Kη) + c2ηKη

]
du, φ = −cHη.

M. Tanaka, J. Phys. Soc. Japan 52 (1983) 3047; J. Fluid Mech. 156 (1985) 281

P. G. Saffman, J. Fluid Mech. 159 (1985) 169
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What determine new unstable EV (eigenvalue) λ?

Babenko’s equation c2Kη − η = 1
2Kη

2 + ηKη is the Euler–Lagrange
equation of the action functional

Λc(η) :=
1
2
〈(c2K − 1)η, η〉 − 1

2
〈Kη2, η〉, η ∈ H1

per(T),

so that

d
dc

Λc(η) = c〈Kη, η〉+ 〈(c2Kη − η − 1
2

Kη2 − ηKη), ∂cη〉 = P(η),

where P(η) = c〈Kη, η〉 is the horizontal momentum. This yields
d
dc H(η) = c d

dc P(η) since Λc(η) = cP(η)− H(η), we obtain

Λc(η) = cP(η)− H(η) ⇒ d
dc

Λc(η) = c
d
dc

P(η)− d
dc

H(η) + P(η).

Extremal points of energy coincide with extremal points of the
horizontal momentum, as in the BO or KdV equations.
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Bifurcations of unstable eigenvalues

Theorem (Dyachenko–P, Physica D (2025))

Assume the existence of η ∈ C∞per(T) with Ker(L) = span(η′). The
generalized null space of the spectral problem is at least
six-dimensional if and only if d

dc P(η)|c=c0 = 0. Moreover, new
eigenvalues λ satisfy

Bλ2 + (c− c0)
d2

dc2 P(η)|c=c0 +O((c− c0)2) = 0,

for some B > 0.

. The numerical coefficient B > 0 is approximated numerically.

. Since c− c0 and d2

dc2 P(η)|c=c0 alternate between each extremal
point, the new unstable eigenvalues always bifurcate in the
direction of increasing steepness.
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Bifurcations of unstable eigenvalues
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Jordan block computations

We have the spectral stability problem:(
L 0
0 K

)(
v̂
ŵ

)
= λ

(
−2cH M∗
M 0

)(
v̂
ŵ

)
,

By the assumption, Ker(K) = span(1) and Ker(L) = span(η′). For
every λ 6= 0, we have two orthogonality conditions:

〈1,Mv〉 = 〈1 + 2Kη, v〉 = 0,

〈η′,−2cHv +M∗w〉 = −2c〈Kη, v〉+ 〈η′,w〉 = 0.

These constraints determine the size of the Jordan block at λ = 0.
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Jordan block computations

We have the spectral stability problem:(
L 0
0 K

)(
v̂
ŵ

)
= λ

(
−2cH M∗
M 0

)(
v̂
ŵ

)
,

Kernel at λ = 0: (
v
w

)
= a1

(
η′

0

)
+ a2

(
0
1

)
,

where (a1, a2) are arbitrary.
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Jordan block computations

We have the spectral stability problem:(
L 0
0 K

)(
v̂
ŵ

)
= λ

(
−2cH M∗
M 0

)(
v̂
ŵ

)
,

First generalized kernel at λ = 0:{
Kw1 = a1Mη′,
Lv1 = −2ca1Hη′ + a2M∗1.

There exists a solution (v1,w1) ∈ H1
per(T)× H1

per(T):(
v
w

)
= a1

(
−∂cη
Hη

)
+ a2

(
−1
0

)
.
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Jordan block computations

We have the spectral stability problem:(
L 0
0 K

)(
v̂
ŵ

)
= λ

(
−2cH M∗
M 0

)(
v̂
ŵ

)
,

Second generalized kernel at λ = 0:{
Kw2 = −a1M∂cη − a2M1,
Lv2 = 2ca1H∂cη + a1M∗Hη.

We have 〈1,M∂cη〉 = 0 due to

〈1 +Kη, η〉 = 0 ⇒ 〈1,M∂cη〉 = 〈1 + 2Kη, ∂cη〉 = 0.

But 〈1,M1〉 = 1 6= 0. Similarly, 〈η′, 2cH∂cη +M∗Hη〉 = d
dc P(η).
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Jordan block computations

We have the spectral stability problem:(
L 0
0 K

)(
v̂
ŵ

)
= λ

(
−2cH M∗
M 0

)(
v̂
ŵ

)
,

The Jordan canonical forms are

d
dc

P(η) 6= 0 :


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

d
dc

P(η) = 0, B 6= 0 :



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 .
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Jordan block computations

We have the spectral stability problem:(
L 0
0 K

)(
v̂
ŵ

)
= λ

(
−2cH M∗
M 0

)(
v̂
ŵ

)
,

If d
dc P(η) = 0, the Jordan chain of eigenvectors for (a1, a2) = (1, 0) is(
v0
w0

)
=

(
η′

0

)
,

(
v1
w1

)
=

(
−∂cη
Hη

)
,

(
v2
w2

)
,

(
v3
w3

)
,

where{
Kw2 = −M∂cη,
Lv2 = 2cH∂cη +M∗Hη.

{
Kw3 =Mv2,
Lv3 = −2cHv2 +M∗w2.

and B := 〈η′,−2cHv3 +M∗w3〉 with B > 0 (numerically).
Justification of the normal form is done by Puiseux expansions.
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5. Bifurcations of the modulational stability bands

B. Deconinck, S. Dyachenko, A. Semenova, J. Fluid Mech. 995 (2024) A2

Dmitry Pelinovsky, McMaster University Stability of waves in Babenko-type equation 19 / 24



Stability with respect to arbitrary perturbations

We consider solutions (v,w) ∈ H1(R)× H1(R) of(
L 0
0 K

)(
v
w

)
= λ

(
−2cH M∗
M 0

)(
v
w

)
.

By the Floquet–Bloch theory, we can use the integral transform

v(u) =

∫
B

v̂(u, µ)eiµudµ, w(u) =

∫
B

ŵ(u, µ)eiµudµ, B =

(
−1

2
,

1
2

]
and consider solutions (v̂, ŵ) ∈ H1

per(T)× H1
per(T) of(

Lµ 0
0 Kµ

)(
v̂
ŵ

)
= λ

(
−2cHµ M∗µ
Mµ 0

)(
v̂
ŵ

)
,

where µ-dependent operators obtained from Lµ = e−iµuLeiµu.
The spectrum is still purely discrete for every µ ∈ B.
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Stability with respect to arbitrary perturbations

Hµ = e−iµxHeiµx:

SinceH
∑

n∈Z f̂nei(µ+n)u = i
∑

n∈Z sgn(µ+ n)f̂nei(µ+n)u, we get

Hµf = Hf ± i〈1, f 〉 =: H±, ±µ > 0.
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Stability with respect to arbitrary perturbations

Hµ = e−iµxHeiµx:

SinceH
∑

n∈Z f̂nei(µ+n)u = i
∑

n∈Z sgn(µ+ n)f̂nei(µ+n)u, we get

Hµf = Hf ± i〈1, f 〉 =: H±, ±µ > 0.

Kµ = e−iµxKeiµx:
Since Kµ = −Hµ(∂u + iµ), we get

Kµ = K − iµH±.
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Stability with respect to arbitrary perturbations

Hµ = e−iµxHeiµx:

SinceH
∑

n∈Z f̂nei(µ+n)u = i
∑

n∈Z sgn(µ+ n)f̂nei(µ+n)u, we get

Hµf = Hf ± i〈1, f 〉 =: H±, ±µ > 0.

Kµ = e−iµxKeiµx:
Since Kµ = −Hµ(∂u + iµ), we get

Kµ = K − iµH±.

Mµ = e−iµxMeiµx:
Similarly,

Mµ = 1 +Kη + η′H±,
M∗µ = 1 +Kη −H±(η′·).
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Stability with respect to arbitrary perturbations

Lµ = e−iµxLeiµx:
Since L = c2K − (1 +Kη)− ηK −K(η ·), we also have

Lµ = L − iµL±,

where
L± = c2H± − ηH± −H±(η·).

Hence, the spectral stability problem becomes a eigenvalue problem
in λ with linear terms in µ:{

(K − iµH±)ŵ = λM±v̂,
(L − iµL±)v̂ = λ(M∗±ŵ− 2cH±v̂),

where ±µ > 0.
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Stability with respect to arbitrary perturbations

In the limit µ→ 0±, we get{
Kŵ = λM±v̂,
Lv̂ = λ(M∗±ŵ− 2cH±v̂),

or explicitly {
Kŵ = λ (Mv̂± i〈1, v̂〉η′) ,
Lv̂ = λ (M∗ŵ− 2cHv̂∓ ci〈1, v̂〉) .

All projection terms are removed by the transformation

v̂ = ∓i〈1, v〉η′ + v, ŵ = ±ic〈1, v〉+ w. (1)

where (v,w) ∈ H1
per(T)× H1

per(T) solves the previous stability
problem for co-periodic perturbations.
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Bifurcation of the modulational stability band

Theorem (Dyachenko–Marangell–P, in progress (2025))

Assume the existence of η ∈ C∞per(T) with Ker(L) = span(η′). Assume
d
dc P(η)|c=c0 = 0 and B 6= 0. The modulational stability bands
(µ, λ(µ)) near (0, 0) satisfy

λ2
(
Bλ2 + (c− c0)

d2

dc2 P(η)|c=c0

)
− iµλ

d
dc
‖η‖2

L2 = O(λ6 + µ2).

. For c = c0, three bands exist near (0, 0) from solutions of the
cubic equation Bλ3 − iµ d

dc‖η‖
2
L2 = 0.

. For c 6= c0, the three bands split differently along iR and R.

c
d
dc

P(η)− d
dc
‖η‖2

L2 = 5P(η) ⇒ d
dc
‖η‖2

L2 < 0.
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Bifurcation of the modulational stability band
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Jordan block computations

We have the spectral stability problem:{
(K − iµH±)ŵ = λM±v̂,
(L − iµL±)v̂ = λ(M∗±ŵ− 2cH±v̂),

where ±µ > 0.

Projections near (µ, λ) = (0, 0) are consistent under the assumptions
if

µ = ε3µ1, λ = ελ1, c− c0 = ε2c1,

where µ1, λ1, c1 are nonzero in the limit ε→ 0.
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Jordan block computations

We have the spectral stability problem:{
(K − iµH±)ŵ = λM±v̂,
(L − iµL±)v̂ = λ(M∗±ŵ− 2cH±v̂),

where ±µ > 0.

The asymptotic expansion of solutions (v̂, ŵ) ∈ H1
per(T)×H1

per(T) for
given scaled values of (µ, λ) is(

v̂
ŵ

)
=

(
η′

0

)
+ ε

(
v̂1
ŵ1

)
+ ε2

(
v̂2
ŵ2

)
+ ε3

(
v̂3
ŵ3

)
+ ε4

(
v̂4
ŵ4

)
+O(ε5),
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Jordan block computations

We have the spectral stability problem:{
(K − iµH±)ŵ = λM±v̂,
(L − iµL±)v̂ = λ(M∗±ŵ− 2cH±v̂),

where ±µ > 0.

First generalized kernel with the additional projection terms:(
v̂1
ŵ1

)
= λ1

[(
−∂cη
Hη

)
± i〈1, ∂cη〉

(
η′

−c

)]
.
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Jordan block computations

We have the spectral stability problem:{
(K − iµH±)ŵ = λM±v̂,
(L − iµL±)v̂ = λ(M∗±ŵ− 2cH±v̂),

where ±µ > 0.

Second generalized kernel at λ = 0:(
v̂2
ŵ2

)
= λ2

1

(
v2
w2

)
+ a

(
0
1

)
.

where a ∈ R is to be determined.
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Jordan block computations

We have the spectral stability problem:{
(K − iµH±)ŵ = λM±v̂,
(L − iµL±)v̂ = λ(M∗±ŵ− 2cH±v̂),

where ±µ > 0.

Third generalized kernel at λ = 0:(
v̂3
ŵ3

)
= λ3

1

[(
v3
w3

)
∓ i〈1, v3〉

(
η′

−c

)]
+ iµ1

( c
2∂cη − η

0

)
− aλ1

(
1
0

)
.
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Jordan block computations

We have the spectral stability problem:{
(K − iµH±)ŵ = λM±v̂,
(L − iµL±)v̂ = λ(M∗±ŵ− 2cH±v̂),

where ±µ > 0.

At the order of O(ε4), we get{
Kŵ4 = λ1M±v̂3 + iµ1H±ŵ1,
Lv̂4 = λ1

(
M∗±ŵ3 − 2cH±v̂3

)
+ iµ1L±v̂1.

Fredholm condition for Ker(K) yields a = λ2
1〈(1 + 2Kη), v3〉.

Fredholm condition for Ker(L) = span(η′) yields

Bλ4
1 + c1λ

2
1

d2

dc2 P(η)|c=c0 − iµ1λ1
d
dc
‖η‖2

L2 = 0.
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Other bifurcations of the modulational stability bands

Breakdown of the figure-8 appears if η ∈ C∞per(T) exists with
Ker(L) = span(η′) and d

dc P(η)|c=c0 6= 0, whereas

∆(c) := 4P ′(c)N (c)− 5P(c)N ′(c) = 0,

where P(c) = P(η) and N (c) = ‖η‖2
L2 .
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Other bifurcations of the modulational stability bands

New instability bubble appears if η ∈ C∞per(T) exists with
Ker(L) = span(ψ0) for anti-periodic perturbations with µ = 1

2 .
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Other bifurcations of the modulational stability bands

New figure-8 appears if η ∈ C∞per(T) exists with
Ker(L) = span(η′, v0) for co-periodic perturbations with µ = 0.
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Summary

. The full water wave equations are replaced by two evolution
(Benjamin–Ono-type) equations by conformal transformations.

. Existence of traveling waves with both smooth and peaked
profiles is obtained from smooth and singular solutions of the
scalar pseudo–diferential (Babenko) equation.

. Stability of traveling waves with smooth profiles is obtained
from a purely discrete spectrum of the spectral problem.

. The (infinite) recurrence of co-periodic bifurcations, fold
bifurcations, vertical slope bifurcations, and anti-periodic
bifurcations is a conjecture to be explained (snaking behavior).
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