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Boussinesqg-Ostrovsky equation

We are concerned here in the regularized Boussinesq-Ostrovsky equation
1
Uyt — Uz = € <§(U2)mz + Uttaa — 'YU) s

where ¢ is a small parameter and ~ is the rotation-modification parameter.
When v = 0, this is just the regularlized Boussinesq equation.



Boussinesqg-Ostrovsky equation

We are concerned here in the regularized Boussinesq-Ostrovsky equation
1
Uyt — Uz = € (§(U2)zz + Uttaa — 'YU) s

where ¢ is a small parameter and ~ is the rotation-modification parameter.
When v = 0, this is just the regularlized Boussinesq equation.

The weakly-nonlinear solution is given by the two counter-propagating waves
satisfying the Korteweg—de Vries (Ostrovsky) equations.
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Figure: Evolution of the weakly nonlinear solution U for e = 0.1.



Justification of the weakly-nonlinear solution for v = 0

@ First results are due to Craig (1985), Schneider (1998), Schneider &
Wayne (2000,2002), Ben Youssef & Colin (2000), and Lannes (2003)

@ On the infinite line, the error was controlled in Sobolev space by Wayne
& Wright (2002). The first-order correction satisfying the linearized KdV
equation was incorporated in the weakly—nonlinear solution.

@ On the infinite line and in the periodic domain, the error was controlled
with energy estimates by Bona, Colin, & Lannes (2005).

@ Closed-form expressions for the first-order corrections were found by
Khusnutdinova & Moore (2011,2012), without the use of the linearized
KdV equation. Numerical results were provided without justification or
convergence analysis.



Goals and novelty of our work

@ We deal with the periodic solutions both for v = 0 and v # 0. We
incorporate the closed-form solutions into convergence analysis and
illustrate the rates of convergence with numerical approximations.

@ Compared to Wayne & Wright (2002), we work in the natural energy
space, instead of Sobolev spaces of higher regularity.

@ Compared to Bona, Colin, & Lannes (2005), we incorporate the nonzero
mean term of the periodic solutions and show that this term does not
reduce the validity of the weakly-nonlinear approximation.

@ Compared to Khusnutdinova & Moore (2012), we show that the
first-order corrections must satisfy the linearized Ostrovsky equations to
preserve the superior accuracy of the weakly-nonlinear approximation.

@ We do not use the concepts of asymptotic integrability or commuting
flows of the KdV hierarchy to analyze validity of the weakly-nonlinear
solution, compared to the earlier works of Kraenkel, Manna, and Pereira
(1995, 1997) and Kodama & Mikhailov (1997).



Cauchy problem

We consider the Cauchy problem for the regularized Boussinesqg-Ostrovsky
equation
Us — Uso = ¢ (%(UQ)N + Ut — vU) ,
subject to the initial values
Uli=o = F(z), Utli=0 =V (%),

in the period domain on [—L, L].

Fix s > 1. Forany (F,V) € Hye,(—L, L) x Hj.(—L, L), there exists an

per

e-independent ¢, > 0 and a unique solution U(t) € C*([0, to], He:(—L, L)) of

the regularized Boussinesq equation with any € > 0 and v > 0.




Fixed-point iterations

The evolution problem can be written in the operator form:
Utt - LeUz:c + 6'YL5U = MGUQ,
where 1
Le:=(1—-€ed2)"", M. := ieaiLe.
Using Duhamel’s principle, the Cauchy problem is written in the integral form:

U(t) = Se(t) * F+ S(t)«V + /Ot S(t —7)*x (MU?(1) — eyLU(7)) dr,

where the star denotes the convolution operator and S(¢) is the fundamental
solution operator with the Fourier image:

5 sin(ké(k)t) 1

S(t) = i ()= e



Fixed-point iterations

Because all operators are bounded from L2..(—L, L) to L2..(— L, L) for any
t € R, the fixed-point iteration method yields a unique local solution in the
class

U(t) € C([0, to], Hyer (—L, L))

forany (F,V) € Hye (=L, L) X Hye,(—L,L) and any s > 1, where to > 0 is
an c-independent local existence time.
From the derivative equation:

Ui(t) = S (t) * F + Se(t) x V + /Ot Se(t — 1) * (M€U2(T) —eyLU(7)) dr,

we also obtain Uy (t) € C([0, to], Hper(—L, L)) for any e > 0.



Fixed-point iterations

Because all operators are bounded from L2..(—L, L) to L2..(— L, L) for any
t € R, the fixed-point iteration method yields a unique local solution in the
class

U(t) € C([0, to], Hyer (—L, L))

forany (F,V) € Hye (=L, L) X Hye,(—L,L) and any s > 1, where to > 0 is
an c-independent local existence time.
From the derivative equation:

Ui(t) = S (t) * F + Se(t) x V + /Ot Se(t — 1) * (M€U2(T) —eyLU(7)) dr,

we also obtain Uy (t) € C([0, to], Hper(—L, L)) for any e > 0.

Note that

1
[1See(t)  Fllrz, < —=IFllrz,., €>0,

per_\/g

hence ||Ut||Lger may diverge as ¢ — 0.




Continuation criterion of local solutions with energy method

LetU(t) € C'([0, to], Hyer(—L, L)) be a local solution. The solution is
extended to the time interval [0, t(] with t( > to if

M= sup Uz, + sup U], < oo.
te[0,t)] te[0,t(]

Let us define the energy function
L
EU) := / (U2 + U2 + eyU? + eUZ, + eUU?) da,

for any local solution U (t) € C* ([0, to], Hyer(— L, L)). Then, we obtain

dE(U) L 2 2
w) _ e/_L UU2da < el|Uillug, I1Us 2, -



Continuation criterion of local solutions with energy method

Under the condition

M= sup [[U@®)|lrg, + sup [[U(t)][Lg, < oo,
te(0,t))] te[0,t()]

there is an eM-dependent constant C' (M) > 0 such that
UsllZz,, < C(eM)E(U).
By Gronwall’'s inequality, we then obtain
BE(U) < E(Uo)e ™Mt ¢ 0, ),

hence the solution is extended to the time ¢, > t, in the class
U(t) € Ol ([07 t6]7 H121>er(_L7 L))



Continuation criterion of local solutions with energy method

Under the condition

M= sup [[U@®)|lrg, + sup [[U(t)][Lg, < oo,
te(0,t))] te[0,t()]

there is an eM-dependent constant C' (M) > 0 such that
|UzllZ2,, < C(eM)E(U).
By Gronwall’'s inequality, we then obtain

E(U) < E(Up)e™™* ¢ e (0,1,

hence the solution is extended to the time ¢, > t, in the class
U(t) € Ol ([07 t6]7 H121>er(_L7 L))

By Sobolev embedding of H,..(—L, L) to Lg%, (—L, L), we have
M = O(e */?) and C(eM) = O(1) as e — 0. Hence, the local solution can
be continued to the time intervals of t, = O(¢~%/2).




Dynamics of the mean value of (2L)-periodic solutions

For smooth solutions, we have the balance equation

d2 L L
E/ U(x,t)dx:—e’y/ Uz, t)dz,

—L —L

hence
{O)®) = i[L U(xvt)dJC:Focos(\/at)—k%Sin(?\/fy_’m.

@ If v =0, then V5 = 0 to eliminate the linear growth of (U) in ¢.

@ If v > 0, then (U) is oscillating with the frequency w = (ey)'/? in t but it
diverges as O(¢~'/?) unless Vy = 0.

Therefore, in both cases, we impose V5 = 0.



Regularized Boussinesq equation

We start with the regularized Boussinesq equation for v = 0:

1
Utt — Uzz =€ <§(U2)zz + Utt:cz) )

Note we have (U) = F,. Substituting U(z, t) = Fo + U(z,t), we obtain

~ ~ ~ 1 ~ ~
Utt - Uz:c =€ (FOU:cz + §(U2)z:c + Utt:cz) .

Formal asymptotic solution:
U(x,t) = Up(x,t) + €Uy (x, t) + €Ua(x, t) + O().

In the formal theory, we collect together terms at each order. Then, we justify
the approximation error by analysis of the residual equation.



Leading-order and first-order correction terms

Order O(€%): The leading order U, satisfies the wave equation and is
represented by the d’Alembert solution

Uo(z,t) = [ (€=, T) + [T (¢4, T), €x=att, T=et,

where 1 1
FE(Ee,0) = S F(62) £ 50 V.

Order O(e): The first-order correction term satisfies the inhomogeneous
linear equation

Uili=0 = 0,

(0F — UL = —207rUo + Fod;Uo + 397(U8) + Ofrarlo,
OtUr|t=0 = —01Up|t=0.



The Korteweg—de Vries equations

Using the Fourier series, Ui (z,t) = 3_,, <z (o) gn(t)e% , We remove
resonant (linearly growing) terms in g, (t) by requiring that f* (¢4, T) satisfy
two uncoupled KdV equations
0 (L0FF Pyt aft L a#)
— [ F2 + + F = ]=0
(o 38 < 0 ol 38 (o 38

oT 0¢3
By the local and global well-posedness theory for the KdV equation, there
exist unique global solutions f* € CRy,Hyer(—L, L)) forany s > —%.

+/f

The first-order correction term can be written in the explicit form:
Ul ($, t) = fC(‘r’ t) + ¢7 (5,, T) + ¢+(£+a T)7
where f. is uniquely given by
1 _ 1 N\ a—
felw,t) = =5 (207 + @ SO ) + 0 FIO ) |

whereas ¢* (&+,0) are uniquely defined from the initial data for U;.



Justification result

Theorem

@ Assume that (F,V) € H}o.(—=L, L) x H}..(—L, L) subject to the
zero-mean constrainton vV, V5 = 0.

@ Fix s > 10 and let f* € C(R, H;..(—L, L)) be global solutions of the
KdV equations.

@ Let Uy and U, be given by the formal theory.
There is o > 0 such that for all e € (0, €0) and all e-independent T > 0, there

is an e-independent constant C' > 0 such that for all ¢, € [0, 7o /€], the local
solution of the regularized Boussinesq equation satisfies

sup |[U—Fo—Uy—eUi||gn < Ce’to.
t€(0,to] e




Justification analysis

Substituting
Uz, t) = Fo + Up(x,t) 4 eUr (x,t) + €U (x, 1),

we obtain the residual equation for the error term

O — (1 + eFo) O — Dz = 0 (UOU Lt %U) LA,
where H = —28,07Uy — 82Uy — 02U + ...
There exists a unique solution U € C* ([0, to], Hier(—L, L)) if

H e ([0, to], H}..(—L, L)). This require global solutions of the KdV
equations f* € C(R, Hy..(—L, L)) to exist for s > 10.



Justification analysis

Using the energy
A L A A A A A A
E= / (Uf (14 eF)U2 + U2, + eUp U2 + 26UOIUUE) dz,
—L
and Poincaré’s inequality for (2L)-periodic mean-zero functions,
1013z, < CllTal3s,, < CE,
we obtain the a priori energy inequality

1dE _ - N R )
5o <Al W00z, + Cc (ITollsgs, + €10z, + €210 g5, ) B,

Setting £ := Q? and using Sobolev embedding’s [|U/|| e, < CembQ, We write

dO N A\ A
B sy, + O (100llegs, + 210z, +¢7°Q) @.

per per per



Justification analysis

By Gronwall’'s inequality, we have
Q) < (Q(O) +to sup [|H]|.2 ) e, te(o,to,
te[0,to] per
for any to > 0, sufficiently small ¢, and some (to, €)-independent positive

constant Cy.

Since Q(0) = ||6TU1||LI2)er, this estimate yields the bound

sup ||U—F()—U()—6U1||H1 SCEQto.
te[0,t0] per

The smooth solution is continued from ¢ty = O(1) to to = O(e~*) thanks to

Q(t) < ooforallt € [0, o), as well as to Sobolev's embeddings

||620||L°° < Cemb62Q7 ||62Ut||ngr S C’emb53/2QA-

per —



Second-order correction terms

Order O(e?): The second-order correction term satisfies the linear
inhomogeneous equation

Uslt=0 = 0,

(0 — 82)Us = 202Uy — 02Uy + 002U + O2(UoUn) + 0fpuUs + 20774, U,
OtUsz|t=0 = —01rU1|t=0.

Using the Fourier series again Uz(z,t) = >,z (0} gn(t)e% , we eliminate
the linearly growth in ¢ and obtain the linearized KdV equations for ¢+ (¢4, T):

o < 2% 83¢i a¢i o fi¢i> B ani 284fi anSi

g \Tor T e "o Toes T o TeeT T e
where

FE(es,T) = if*(gﬂ)/L £F (6, T) e
4L . ’

Then, there exists a bounded solution for Uz in t.



Justification result

@ Assume that (F,V) € H)..(—L, L) x Hy..(—L, L) subject to the
zero-mean constrainton V, Vo = 0.

@ Fix s sufficiently large and let f* € C(R, H..(—L, L)) be global
solutions of the KdV equations.

@ Let Uy and U, be given by the formal theory.
o Let ¢T satisfy the linearized KdV equations.

Then, for all € € (0, ¢o) and all e-independent T, > 0, there is an
e-independent constant C' > 0 such that

sup  ||U —co —Uo — €Ur|lgz_ < Cé.
t€[0,Tp /€] P

The proof is similar and is based on the decomposition

Uz, t) = Fo + Uo(x,t) + eUr(z,t) + €Us(x,t) + U (z, t).



Numerical example

Consider the initial data

Uli=o = 3k” sech® (&),
Utli=o = 3k® sech”® (E£) tanh (&),
where k& > 0 is an arbitrary parameter. The initial data is defined on the
periodic domain —L < z < L and the mean value is given by

1 [E 6k kL
Fo = ﬁ /_L U|t:od1’ = f tanh (7> .

When L — oo, Fy — 0, the initial data corresponds to a solitary wave of the
KdV equation propagating to the right.

Weakly nonlinear approximations:

Ui =f7, Unz=f +e(d-|r=0 +d+|r=0), U2=f" +e(p-+¢+).



Comparison of the numerical solutions: e = 0.1

t=1 t=1/¢
1 1
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Convergence of the approximation errors in e

Theoretical results

sup ||U — Fo — Uo — 6U1|T:0||Hler S C€2t0
te[0,to] P

and
sup ||U — Fo— Uy — 6U1”Héer < Cé.

t€[0,to]

t=1 t=1/¢




Regularized Boussinesg—Ostrovsky equation

We finish with the regularized Boussinesqg-Ostrovsky equation for v > 0:
1.2
Utt_U:czze(i(U )zz+Uttzz_'YU) .

Now we have (U) = Fy cos(wt) with w = /ey. Substituting
Ul(x,t) = Fycos(wt) + Uz, t), we obtain

~ ~ ~ 1 =~ ~ ~
Utt — Uzz =€ (F() COS(UJt)UzI + §(U2)zz + Utt:cz — ’YU) .

Formal asymptotic solution:
U(x,t) = Up(x,t) + €Uy (a, t) + €Ua(x, t) + O(e?).

In the formal theory, we collect together terms at each order. Then, we justify
the approximation error by analysis of the residual equation.



Leading-order and first-order correction terms

Order O(€%): The leading order U, satisfies the wave equation and is
represented by the d’Alembert solution

Uo(z,t) = [ (€=, T) + [T (¢4, T), €x=att, T=et,

where 1 1
FE(Ee,0) = S F(62) £ 50 V.

Order O(e): The first-order correction term satisfies the inhomogeneous
linear equation

Uili=o =0,

(07 — 92)Ur = —2077Uo + Fo cos(wt)02Uo + 302 (U3) + 0ty Uo — U0,
OtUi|t=0 = —0rUp|t=0-



The Ostrovsky equations

Using the Fourier series, Ui (z,t) = 3_,, <z (0} gn(t)e% , We remove
resonant (linearly growing) terms in g, (¢) by requiring that fi(gi, T) satisfy
two uncoupled Ostrovsky equations
0 oft ot L 6fi> :
— (F22— + + =f".
9+ <3F oe) =

oT 0}
Note that the oscillating Fo term does not enter the Ostrovsky equation and
that the mean-zero constraint is satisfied automatically.

The first-order correction term is found from the inhomogeneous equations

d2 n 2 2,2 imn _ _imn
() 0 - E e (4 1)

w2n? + - in(2k—mn)i
- 2 § A Q€ L )

kezZ\{0,n}

As a result, we have

leUillay,, = O(Foe'/?) as e — 0.



Justification result

@ Assume that (F,V) € H}..(—L,L) x H}..(—L, L) subject to the
zero-mean constrainton V, Vo = 0.

@ Fix s > 10 and let f* € C(R, Hi..(—L, L)) be global solutions of the
Ostrovsky equations.

@ Let Uy and U; be given by the formal theory.

There is e > 0 such that for all € € (0, ¢o) and all e-independent T, > 0, there
is an e-independent constant C' > 0 such that for all ¢, € [0, 7o /€], the local
solution of the regularized Boussinesg—Ostrovsky equation satisfies

sup ||U — Fp cos(wt) —Up — €U1||g1 < Ceto(Fo + €).
t€[0,t0] per

If, in addition, qbi in U; satisfy the linearized Ostrovsky equation, then

sup ||[U — Focos(wt) — Uy — €Ur||g1 < Ce(Fo + €).
t€[0,To /€] per




Numerical example

Consider the initial data
Uli=o = 3k” sech®(%2) — a[sech® (@) + sech? (@)],
Utlt=o = 3k® sech®(%2) tanh(%2) — ké sech? k(%zo)) tanh (k(%%))

+sech? (—k(mgm‘))) tanh (—k(mgm(’)) ],

where x > 0 is an arbitrary shift and & is chosen to satisfy Fy = 0.

Weakly nonlinear approximations:

Ui=f", Ua=f +e(d-+0¢4).



Comparison of the numerical solutions: e = 0.025, v = 0.1

t=1 t=1/e
1 1
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Convergence of the approximation errors in e

Theoretical result

sup U —Up — eUr|lg: < CE.
te[0,to] per

t=1 t=1/e

-6.5

-55 -5 -45 -6.5 -55 -5 -45
In(e) In(e)

In(ef)(—) ailn(e) +In(C1)(O O) In(e?)(--)  azln(e) + In(Ce)(@ D)



Conclusion

@ The presence of the dispersion with ~ term introduces oscillations of the
mean term and deteriorates convergence of the approximation errors
with e.

@ Mean-zero terms are naturally incorporated in the reduced amplitude
equations and in the approximation analysis.

@ Natural energy H' spaces are incorporated in local well-posedness,
solution continuation, and a priori energy estimate analysis.

@ Theoretical results are fully confirmed with numerical approximations.
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