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Boussinesq-Ostrovsky equation

We are concerned here in the regularized Boussinesq-Ostrovsky equation

Utt − Uxx = ε

(

1

2
(U2)xx + Uttxx − γU

)

,

where ε is a small parameter and γ is the rotation-modification parameter.
When γ = 0, this is just the regularlized Boussinesq equation.



Boussinesq-Ostrovsky equation

We are concerned here in the regularized Boussinesq-Ostrovsky equation

Utt − Uxx = ε

(

1

2
(U2)xx + Uttxx − γU

)

,

where ε is a small parameter and γ is the rotation-modification parameter.
When γ = 0, this is just the regularlized Boussinesq equation.

The weakly-nonlinear solution is given by the two counter-propagating waves
satisfying the Korteweg–de Vries (Ostrovsky) equations.

Figure: Evolution of the weakly nonlinear solution U for ε = 0.1.



Justification of the weakly-nonlinear solution for γ = 0

First results are due to Craig (1985), Schneider (1998), Schneider &
Wayne (2000,2002), Ben Youssef & Colin (2000), and Lannes (2003)

On the infinite line, the error was controlled in Sobolev space by Wayne
& Wright (2002). The first-order correction satisfying the linearized KdV
equation was incorporated in the weakly–nonlinear solution.

On the infinite line and in the periodic domain, the error was controlled
with energy estimates by Bona, Colin, & Lannes (2005).

Closed-form expressions for the first-order corrections were found by
Khusnutdinova & Moore (2011,2012), without the use of the linearized
KdV equation. Numerical results were provided without justification or
convergence analysis.



Goals and novelty of our work

We deal with the periodic solutions both for γ = 0 and γ 6= 0. We
incorporate the closed-form solutions into convergence analysis and
illustrate the rates of convergence with numerical approximations.

Compared to Wayne & Wright (2002), we work in the natural energy
space, instead of Sobolev spaces of higher regularity.

Compared to Bona, Colin, & Lannes (2005), we incorporate the nonzero
mean term of the periodic solutions and show that this term does not
reduce the validity of the weakly-nonlinear approximation.

Compared to Khusnutdinova & Moore (2012), we show that the
first-order corrections must satisfy the linearized Ostrovsky equations to
preserve the superior accuracy of the weakly-nonlinear approximation.

We do not use the concepts of asymptotic integrability or commuting
flows of the KdV hierarchy to analyze validity of the weakly-nonlinear
solution, compared to the earlier works of Kraenkel, Manna, and Pereira
(1995, 1997) and Kodama & Mikhailov (1997).



Cauchy problem

We consider the Cauchy problem for the regularized Boussinesq-Ostrovsky
equation

Utt − Uxx = ε

(

1

2
(U2)xx + Uttxx − γU

)

,

subject to the initial values

U |t=0 = F (x), Ut|t=0 = V (x),

in the period domain on [−L,L].

Lemma

Fix s > 1
2
. For any (F, V ) ∈ Hs

per(−L,L)×Hs
per(−L,L), there exists an

ε-independent t0 > 0 and a unique solution U(t) ∈ C1([0, t0],H
s
per(−L,L)) of

the regularized Boussinesq equation with any ε > 0 and γ ≥ 0.



Fixed-point iterations

The evolution problem can be written in the operator form:

Utt − LεUxx + εγLεU = MεU
2,

where
Lε := (1− ε∂2

x)
−1, Mε :=

1

2
ε∂2

xLε.

Using Duhamel’s principle, the Cauchy problem is written in the integral form:

U(t) = St(t) ? F + S(t) ? V +

∫ t

0

S(t− τ ) ?
(

MεU
2(τ )− εγLεU(τ )

)

dτ,

where the star denotes the convolution operator and S(t) is the fundamental
solution operator with the Fourier image:

Ŝ(t) =
sin(k ˆ̀(k)t)

k ˆ̀(k)
, `(k) :=

1√
1 + εk2

.



Fixed-point iterations

Because all operators are bounded from L2
per(−L,L) to L2

per(−L,L) for any
t ∈ R, the fixed-point iteration method yields a unique local solution in the
class

U(t) ∈ C([0, t0],H
s
per(−L,L))

for any (F, V ) ∈ Hs
per(−L,L)×Hs

per(−L,L) and any s > 1
2
, where t0 > 0 is

an ε-independent local existence time.

From the derivative equation:

Ut(t) = Stt(t) ? F + St(t) ? V +

∫ t

0

St(t− τ ) ?
(

MεU
2(τ )− εγLεU(τ )

)

dτ,

we also obtain Ut(t) ∈ C([0, t0], H
s
per(−L,L)) for any ε > 0.
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t ∈ R, the fixed-point iteration method yields a unique local solution in the
class

U(t) ∈ C([0, t0],H
s
per(−L,L))

for any (F, V ) ∈ Hs
per(−L,L)×Hs

per(−L,L) and any s > 1
2
, where t0 > 0 is

an ε-independent local existence time.

From the derivative equation:

Ut(t) = Stt(t) ? F + St(t) ? V +

∫ t

0

St(t− τ ) ?
(

MεU
2(τ )− εγLεU(τ )

)

dτ,

we also obtain Ut(t) ∈ C([0, t0], H
s
per(−L,L)) for any ε > 0.

Remark

Note that
‖Stt(t) ? F‖L2

per
≤ 1√

ε
‖F‖L2

per
, ε > 0,

hence ‖Ut‖L2
per

may diverge as ε → 0.



Continuation criterion of local solutions with energy method

Lemma

Let U(t) ∈ C1([0, t0], H
1
per(−L,L)) be a local solution. The solution is

extended to the time interval [0, t′0] with t′0 > t0 if

M := sup
t∈[0,t′0]

‖U(t)‖L∞
per

+ sup
t∈[0,t′0]

‖Ut(t)‖L∞
per

< ∞.

Let us define the energy function

E(U) :=

∫ L

−L

(

U2
t + U2

x + εγU2 + εU2
tx + εUU2

x

)

dx,

for any local solution U(t) ∈ C1([0, t0], H
1
per(−L,L)). Then, we obtain

dE(U)

dt
= ε

∫ L

−L

UtU
2
xdx ≤ ε‖Ut‖L∞

per
‖Ux‖2L2

per
.



Continuation criterion of local solutions with energy method

Under the condition

M := sup
t∈[0,t′0]

‖U(t)‖L∞
per

+ sup
t∈[0,t′0]

‖Ut(t)‖L∞
per

< ∞,

there is an εM -dependent constant C(M) > 0 such that

‖Ux‖2L2
per

≤ C(εM)E(U).

By Gronwall’s inequality, we then obtain

E(U) ≤ E(U0)e
εMC(εM)t, t ∈ [0, t′0],

hence the solution is extended to the time t′0 > t0 in the class
U(t) ∈ C1([0, t′0],H

1
per(−L,L)).
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t∈[0,t′0]
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< ∞,

there is an εM -dependent constant C(M) > 0 such that

‖Ux‖2L2
per

≤ C(εM)E(U).

By Gronwall’s inequality, we then obtain

E(U) ≤ E(U0)e
εMC(εM)t, t ∈ [0, t′0],

hence the solution is extended to the time t′0 > t0 in the class
U(t) ∈ C1([0, t′0],H

1
per(−L,L)).

Remark

By Sobolev embedding of H1
per(−L,L) to L∞

per(−L,L), we have
M = O(ε−1/2) and C(εM) = O(1) as ε → 0. Hence, the local solution can
be continued to the time intervals of t0 = O(ε−1/2).



Dynamics of the mean value of (2L)-periodic solutions

For smooth solutions, we have the balance equation

d2

dt2

∫ L

−L

U(x, t)dx = −εγ

∫ L

−L

U(x, t)dx,

hence

〈U〉(t) := 1

2L

∫ L

−L

U(x, t)dx = F0 cos(
√
εγt) + V0

sin(
√
εγt)

√
εγ

.

If γ = 0, then V0 = 0 to eliminate the linear growth of 〈U〉 in t.

If γ > 0, then 〈U〉 is oscillating with the frequency ω = (εγ)1/2 in t but it
diverges as O(ε−1/2) unless V0 = 0.

Therefore, in both cases, we impose V0 = 0.



Regularized Boussinesq equation

We start with the regularized Boussinesq equation for γ = 0:

Utt − Uxx = ε

(

1

2
(U2)xx + Uttxx

)

,

Note we have 〈U〉 = F0. Substituting U(x, t) = F0 + Ũ(x, t), we obtain

Ũtt − Ũxx = ε

(

F0Ũxx +
1

2
(Ũ2)xx + Ũttxx

)

.

Formal asymptotic solution:

Ũ(x, t) = U0(x, t) + εU1(x, t) + ε2U2(x, t) +O(ε3).

In the formal theory, we collect together terms at each order. Then, we justify
the approximation error by analysis of the residual equation.



Leading-order and first-order correction terms

Order O(ε0): The leading order U0 satisfies the wave equation and is
represented by the d’Alembert solution

U0(x, t) = f−(ξ−, T ) + f+(ξ+, T ), ξ± = x± t, T = εt,

where
f±(ξ±, 0) =

1

2
F (ξ±)± 1

2
∂−1
ξ±

V.

Order O(ε): The first-order correction term satisfies the inhomogeneous
linear equation







(∂2
t − ∂2

x)U1 = −2∂2
tTU0 + F0∂

2
xU0 +

1
2
∂2
x(U

2
0 ) + ∂4

ttxxU0,
U1|t=0 = 0,
∂tU1|t=0 = −∂TU0|t=0.



The Korteweg–de Vries equations

Using the Fourier series, U1(x, t) =
∑

n∈Z\{0} gn(t)e
iπnx

L , we remove
resonant (linearly growing) terms in gn(t) by requiring that f±(ξ±, T ) satisfy
two uncoupled KdV equations

∂

∂ξ±

(

∓2
∂f±

∂T
+

∂3f±

∂ξ3±
+ F0

∂f±

∂ξ±
+ f± ∂f±

∂ξ±

)

= 0.

By the local and global well-posedness theory for the KdV equation, there
exist unique global solutions f± ∈ C(R+,H

s
per(−L,L)) for any s ≥ − 1

2
.

The first-order correction term can be written in the explicit form:

U1(x, t) = fc(x, t) + φ−(ξ−, T ) + φ+(ξ+, T ),

where fc is uniquely given by

fc(x, t) = −1

4

(

2f+f− + (∂ξ+f+)(∂−1
ξ−

f−) + (∂ξ−f−)(∂−1
ξ+

f+)
)

,

whereas φ±(ξ±, 0) are uniquely defined from the initial data for U1.



Justification result

Theorem

Assume that (F, V ) ∈ H1
per(−L,L)×H1

per(−L,L) subject to the
zero-mean constraint on V , V0 = 0.

Fix s ≥ 10 and let f± ∈ C(R,Hs
per(−L,L)) be global solutions of the

KdV equations.

Let U0 and U1 be given by the formal theory.

There is ε0 > 0 such that for all ε ∈ (0, ε0) and all ε-independent T0 > 0, there
is an ε-independent constant C > 0 such that for all t0 ∈ [0, T0/ε], the local
solution of the regularized Boussinesq equation satisfies

sup
t∈[0,t0]

‖U − F0 − U0 − εU1‖H1
per

≤ Cε2t0.



Justification analysis

Substituting

U(x, t) = F0 + U0(x, t) + εU1(x, t) + ε2Û(x, t),

we obtain the residual equation for the error term

Ûtt − (1 + εF0)Ûxx − εÛttxx = ε∂2
x

(

U0Û + εU1Û +
1

2
ε2Û2

)

+ Ĥ,

where Ĥ = −2∂t∂TU1 − ∂2
TU0 − ε∂2

TU1 + ....

There exists a unique solution Û ∈ C1([0, t0], H
1
per(−L,L)) if

Ĥ ∈ C([0, t0],H
1
per(−L,L)). This require global solutions of the KdV

equations f± ∈ C(R,Hs
per(−L,L)) to exist for s ≥ 10.



Justification analysis

Using the energy

Ê =

∫ L

−L

(

Û2
t + (1 + εF0)Û

2
x + εÛ2

tx + εU0Û
2
x + 2εU0xÛÛx

)

dx,

and Poincaré’s inequality for (2L)-periodic mean-zero functions,

‖Û‖2L2
per

≤ C‖Ûx‖2L2
per

≤ CÊ,

we obtain the a priori energy inequality

1

2

dÊ

dt
≤ ‖Ĥ‖L2

per
‖Ût‖L2

per
+ Cε

(

‖U0‖L∞
per

+ ε1/2‖U1‖L∞
per

+ ε3/2‖Û‖L∞
per

)

Ê,

Setting Ê := Q̂2 and using Sobolev embedding’s ‖Û‖L∞
per

≤ CembQ̂, we write

dQ̂

dt
≤ ‖Ĥ‖L2

per
+ Cε

(

‖U0‖L∞
per

+ ε1/2‖U1‖L∞
per

+ ε3/2Q̂
)

Q̂.



Justification analysis

By Gronwall’s inequality, we have

Q̂(t) ≤
(

Q̂(0) + t0 sup
t∈[0,t0]

‖Ĥ‖L2
per

)

eCεt, t ∈ [0, t0],

for any t0 > 0, sufficiently small ε, and some (t0, ε)-independent positive
constant C0.

Since Q̂(0) = ‖∂TU1‖L2
per

, this estimate yields the bound

sup
t∈[0,t0]

‖U − F0 − U0 − εU1‖H1
per

≤ Cε2t0.

The smooth solution is continued from t0 = O(1) to t0 = O(ε−1) thanks to
Q̂(t) < ∞ for all t ∈ [0, t0], as well as to Sobolev’s embeddings

‖ε2Û‖L∞
per

≤ Cembε
2Q̂, ‖ε2Ût‖L∞

per
≤ Cembε

3/2Q̂.



Second-order correction terms

Order O(ε2): The second-order correction term satisfies the linear
inhomogeneous equation






(∂2
t − ∂2

x)U2 = −2∂2
tTU1 − ∂2

TU0 + c0∂
2
xU1 + ∂2

x(U0U1) + ∂4
ttxxU1 + 2∂4

tTxxU0,
U2|t=0 = 0,
∂tU2|t=0 = −∂TU1|t=0.

Using the Fourier series again U2(x, t) =
∑

n∈Z\{0} gn(t)e
iπnx

L , we eliminate
the linearly growth in t and obtain the linearized KdV equations for φ±(ξ±, T ):

∂

∂ξ±

(

∓2
∂φ±

∂T
+

∂3φ±

∂ξ3±
+ c0

∂φ±

∂ξ±
+

∂

∂ξ±
f±φ±

)

=
∂2f±

∂T 2
∓ 2

∂4f±

∂ξ3±T
+

∂2f±
s

∂ξ2±
,

where

f±
s (ξ±, T ) =

1

4L
f±(ξ±, T )

∫ L

−L

|f∓(ξ, T )|2dξ.

Then, there exists a bounded solution for U2 in t.



Justification result

Theorem

Assume that (F, V ) ∈ H1
per(−L,L)×H1

per(−L,L) subject to the
zero-mean constraint on V , V0 = 0.

Fix s sufficiently large and let f± ∈ C(R,Hs
per(−L,L)) be global

solutions of the KdV equations.

Let U0 and U1 be given by the formal theory.

Let φ± satisfy the linearized KdV equations.

Then, for all ε ∈ (0, ε0) and all ε-independent T0 > 0, there is an
ε-independent constant C > 0 such that

sup
t∈[0,T0/ε]

‖U − c0 − U0 − εU1‖H1
per

≤ Cε2.

The proof is similar and is based on the decomposition

U(x, t) = F0 + U0(x, t) + εU1(x, t) + ε2U2(x, t) + ε3Û(x, t).



Numerical example

Consider the initial data
{

U |t=0 = 3k2 sech2
(

kx
2

)

,
Ut|t=0 = 3k3 sech2

(

kx
2

)

tanh
(

kx
2

)

,

where k > 0 is an arbitrary parameter. The initial data is defined on the
periodic domain −L ≤ x ≤ L and the mean value is given by

F0 =
1

2L

∫ L

−L

U |t=0dx =
6k

L
tanh

(

kL

2

)

.

When L → ∞, F0 → 0, the initial data corresponds to a solitary wave of the
KdV equation propagating to the right.

Weakly nonlinear approximations:

U1 = f−, U12 = f− + ε (φ−|T=0 + φ+|T=0) , U2 = f− + ε (φ− + φ+) .



Comparison of the numerical solutions: ε = 0.1

t = 1 t = 1/ε
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Convergence of the approximation errors in ε

Theoretical results

sup
t∈[0,t0]

‖U − F0 − U0 − εU1|T=0‖H1
per

≤ Cε2t0

and
sup

t∈[0,t0]

‖U − F0 − U0 − εU1‖H1
per

≤ Cε2.

t = 1 t = 1/ε
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ln(ε)
−6 −5 −4 −3

−16

−14

−12

−10

−8

−6

ln(ε)



Regularized Boussinesq–Ostrovsky equation

We finish with the regularized Boussinesq-Ostrovsky equation for γ > 0:

Utt − Uxx = ε

(

1

2
(U2)xx + Uttxx − γU

)

.

Now we have 〈U〉 = F0 cos(ωt) with ω =
√
εγ. Substituting

U(x, t) = F0 cos(ωt) + Ũ(x, t), we obtain

Ũtt − Ũxx = ε

(

F0 cos(ωt)Ũxx +
1

2
(Ũ2)xx + Ũttxx − γŨ

)

.

Formal asymptotic solution:

Ũ(x, t) = U0(x, t) + εU1(x, t) + ε2U2(x, t) +O(ε3).

In the formal theory, we collect together terms at each order. Then, we justify
the approximation error by analysis of the residual equation.



Leading-order and first-order correction terms

Order O(ε0): The leading order U0 satisfies the wave equation and is
represented by the d’Alembert solution

U0(x, t) = f−(ξ−, T ) + f+(ξ+, T ), ξ± = x± t, T = εt,

where
f±(ξ±, 0) =

1

2
F (ξ±)± 1

2
∂−1
ξ±

V.

Order O(ε): The first-order correction term satisfies the inhomogeneous
linear equation






(∂2
t − ∂2

x)U1 = −2∂2
tTU0 + F0 cos(ωt)∂

2
xU0 +

1
2
∂2
x(U

2
0 ) + ∂4

ttxxU0 − γU0,
U1|t=0 = 0,
∂tU1|t=0 = −∂TU0|t=0.



The Ostrovsky equations

Using the Fourier series, U1(x, t) =
∑

n∈Z\{0} gn(t)e
iπnx

L , we remove
resonant (linearly growing) terms in gn(t) by requiring that f±(ξ±, T ) satisfy
two uncoupled Ostrovsky equations

∂

∂ξ±

(

∓2
∂f±

∂T
+

∂3f±

∂ξ3±
+ f± ∂f±

∂ξ±

)

= γf±.

Note that the oscillating F0 term does not enter the Ostrovsky equation and
that the mean-zero constraint is satisfied automatically.

The first-order correction term is found from the inhomogeneous equations

d2gn
dt2

+
(πn

L

)2

gn = −π2n2

L2
F0 cos(ωt)

(

a+
n e

iπnt

L + a−
n e

− iπnt

L

)

− π2n2

L2

∑

k∈Z\{0,n}

a+
k a

−
n−ke

iπ(2k−n)t
L ,

As a result, we have

‖εU1‖H1
per

= O(F0ε
1/2) as ε → 0.



Justification result

Theorem

Assume that (F, V ) ∈ H1
per(−L,L)×H1

per(−L,L) subject to the
zero-mean constraint on V , V0 = 0.

Fix s ≥ 10 and let f± ∈ C(R,Hs
per(−L,L)) be global solutions of the

Ostrovsky equations.

Let U0 and U1 be given by the formal theory.

There is ε0 > 0 such that for all ε ∈ (0, ε0) and all ε-independent T0 > 0, there
is an ε-independent constant C > 0 such that for all t0 ∈ [0, T0/ε], the local
solution of the regularized Boussinesq–Ostrovsky equation satisfies

sup
t∈[0,t0]

‖U − F0 cos(ωt)− U0 − εU1‖H1
per

≤ Cεt0(F0 + ε).

If, in addition, φ± in U1 satisfy the linearized Ostrovsky equation, then

sup
t∈[0,T0/ε]

‖U − F0 cos(ωt)− U0 − εU1‖H1
per

≤ Cε(F0 + ε).



Numerical example

Consider the initial data


















U |t=0 = 3k2 sech2( kx
2
)− α̂[sech2

(

k(x+x0)
2

)

+ sech2
(

k(x−x0)
2

)

],

Ut|t=0 = 3k3 sech2( kx
2
) tanh( kx

2
)− kα̂

[

sech2
(

k(x+x0)
2

)

tanh
(

k(x+x0)
2

)

+sech2
(

k(x−x0)
2

)

tanh
(

k(x−x0)
2

)]

,

where x0 > 0 is an arbitrary shift and α̂ is chosen to satisfy F0 = 0.

Weakly nonlinear approximations:

U1 = f−, U2 = f− + ε (φ− + φ+) .



Comparison of the numerical solutions: ε = 0.025, γ = 0.1
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Convergence of the approximation errors in ε

Theoretical result

sup
t∈[0,t0]

‖U − U0 − εU1‖H1
per

≤ Cε2.

t = 1 t = 1/ε
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Conclusion

The presence of the dispersion with γ term introduces oscillations of the
mean term and deteriorates convergence of the approximation errors
with ε.

Mean-zero terms are naturally incorporated in the reduced amplitude
equations and in the approximation analysis.

Natural energy H1 spaces are incorporated in local well-posedness,
solution continuation, and a priori energy estimate analysis.

Theoretical results are fully confirmed with numerical approximations.


	Motivations
	Local solutions
	Main result for = 0
	Extension of the weakly-nonlinear solution
	Numerical example
	Main result for =0
	Conclusion

