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Scalar vortices

Focusing two-dimensional NLS equation
Uy + U + Uyy + f([u]?)u =0,

wheref(s)isC'(R,)andf/'(s) > 0ons € R,.
\ortices are stationary solutions of the form

1 — R(T)eimeeiwt

where(r, 6) are polar coordinates dR?, m € N is the vortex
charge and?(r) is a solution of the second-order ODE:

such thatR(r) — r™l asr — 0 andR(r) — e V" /\/r asr — oo.



Examples

Saturable medium withf(s) = s/(1 + s)

'7- 10
Polar radius, »

Cubic-quintic approximatiorf(s) = s — s°

Desyatnikov, Kivshar, and Torner, Optical Vortices andtg®r
Solitons, In: Progress in Optics 47, Ed. E. Wolf (2005)



Typical instabllities

Vortices with charges: = 1 andm = 2 are unstable in the cubic
NLS model:

growth rate
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Skryabin and Firth, Phys. Rev. E 58, 3916 (1998)



Coupled NLS equations

We consider the system afcoupled NLS equations
Z¢k+A¢k :W/(E)wka k = 1,2,...,7'L,

wherey, : R* x R — C andW : R, — R, is C*-function of
E =>""_, |vx|*. The system is Hamiltonian with

= D (109 + |0ynl?) + W (Z ¢k2> dxdy
k=1 -

2
R k=1

Vector momentum, angular momentum, and the charges

Qk: — ]wk\zdazdy, ]C = 1, 50

R2

arebasic conserved quantities of the system.



Symplectic symmetries

The Hamiltonian function is invariant with respectitparameter
group of rotations in the spa@® or C* x C", where

N = < a0 ) = (2n) =n(2n —1).

2 21(2n — 2)!

Let G be a linear transformation in € R** and.J be the symplectic
matrix such that: = Jgrad(H (z)). Then, the Hamiltonian system
IS Invariant under the linear transformation if and only if

J=GJG"

Such transformation§ are calledsymplectic transformations. If
G =1+ g,thengJ + Jg! = 0.



Symmetries of the coupled NLS

The group of symplectic rotations iR*" is generated by
then?-parameter matrix

[ A B
g_ _BT A )

whereA! = —A andB! = B. Equivalently, the group of
symplectic rotations " Iis generated by = A — ¢ B.

Additional conserved quantities related to the symmetries
Qk.m = Vithmdxdy, k=1,..n, m=%k,..n,
R2

wheren quantities are real-valued charges = Qi . and
n(n — 1)/2 quantitiest)y ,, with m # k are complex-valued.



Examplen = 2

Symplectic rotations iC>

et 1 0
G = = .
Gy — co§ 0;  sinfs | G — .C(?S 0, ¢sinf, |
—sinf; cosby 1sinf, cosfy
wheref, , 3 4 are defined ono, 27|. If (¢1,1,) is a solution of the
coupled NLS equations, then a new solut{gh, ) is

P = 041€i91¢1 + 042€i92¢27
Py = —@zewlwl + @1€i92¢27

where(aq, ap) are complex-valued parameters dfg 6, ) are
real-valued parameters.



Stationary solutions : classification

Consider the stationary solution in the form:

U = or(T)e™*, k=1,..,n,
wherew;, is real-valued parameter ang(x) solves

Apyp — WP = W/(E)Spk

For anyk # m, either (l)wy = w,,, or (I) (¢k, ©m) = 0.

Class | contains a variety of super-symmetric vortex camgtions.
Class Il contains a variety of coupled states between ssligmd

vortices of different frequencies.



Vortex solutions of class |

Separating the polar coordinatesf) in R*:

= ¢ (0)Ry(r), k=1,..n,

we obtain two ODES:

/" —— /
L T ngbk = 0, r + =R — Rk (W (Eo) + W)Rk,

r r2

whereEy(r) = > 7, Ri(r)|or(0)|?. By the periodicity ofp,(0),
parametern, IS integer yortex charge).

For anyk = m, either ()m; = m?,, R, = R,, or (ii)
J5* Rir) Ron(r)dr/r =0 m() o,



Vortex solutions of sub-class I (i)

Letm: = m? andR;, = R(r) Vk, where

1 2

R'+-R ——_R=(W(R®) +w)R.
T T
Then,
O = akeime + bke_ime, k=1,...n,

subject to the solvability constraidt,_, |¢x|* = 1, which is
equivalent to the normalization 1@3":

la]* +[bl*=1,  (a/b)=0,

wherea = (aq, ...,a,)" andb = (by,...,b,)" are inC".



Examples forn = 2

* |If b = 0, then the solution isortex pair of double charge:
01 = a1 R(r)e™, 0y = asR(r)e™?,

which is equivalent to the scalar vortax= (1,0)" by
symplectic rotations

° If a= —=(1,0)" andb = —=(0,1)", then the solution isortex

pair of hidden charge:

1 : 1 .
01 = —=R(r)e"™, 0y = —=R(r)e”"™

V2 V2

which generates a family with, b =£ 0 by symplectic rotations



Examples forn = 2

Cubic—guntic model

EF - aE)

Cubic model
(Manakov model)




Vortex solutions of sub-class | (i)

Let ¢ (0) = e="+% with m? being distinct for allc. There exists an
invariant manifoldR,.(r) = 0 for any k.

A hierarchy of vortex states:
* Scalar vortex

o1 = R(r)e™, 0, =0,k=2,..n.

* Two-charge vortex

1m0

1 = a1 Ry (r)e™") g = OZQRQ(T)@imze, o =0, k=3,..n,

whereR, 5(r) solveL,,, Ry = 0 andL,,,, B2 = 0 with

2 1d m
I L W(RE+ RY).

@ rdar 12

L,



Examples forn = 2

Cubic (Manakov) system

(@) (my, m2) = (0,1), (b) (M1, m2) = (0,2), (C) (M1, m2) = (1,2).
from the numerical observations:

M|+ ny = [ma| + no,

wheren,, is the number of nodes d@t.(r) onr > 0.



Symmetries and linearization

Stability problem for perturbation vecton, w) € C*" is
u I O u
H — )\ )
where

H = (—A+ W(E)) ( (]) (]) ) + W' (E) ( ? ) (@" ")

andE(z) = Sh_, lpw(o)[2
The last term i is the outer product, which is a rank-one

matrix for anyz € R?. This can be used for block-diagonalization
and simplification of the stability problem.



Example: vortices of sub-class I(ii)

For Instance, consider a scalar vortex:

n

or(z) = apR(r)e™?, a, € C: Z lap]® =1

k=1

An ortho-normal basis i€": S; = {a,cy,cs,...,c,_1}, Where
{c]}” spans the orthogonal compllmenta)fThe decomposition

n—1
e a+z% i V() —a @+ Y0y (@5,
7=1

block-diagonalizeﬁi Into 2-by-2 coupled non-self-adjoint problem
for (™, o) and pairs of uncoupled self-adjoint problems for

n— 1

{; ,% i



Example: vortices of sub-class I(1)

For instance, consider a vortex pair with hidden charge
or(T) = (akeime + bke_ime) R(r), ax, by, € C,

such that

L+ pw 1 — i
(av b) — 07 HaH2 — T? ”bH2 — T

A similar decomposition over an ortho-normal basis

So ={a,b,cq,...,c, o} C C" block-diagonalizes{ into 4-by-4
coupled non-self-adjoint problem and pairs of uncoupled
self-adjoint problems.



Example: instabilities of vortex pairs

(a) © = %1 - vortex of double charge
(b) 1 = 0 - vortex of hidden charge




Conclusion

Analysis of symplectic rotations and conserved quantities

Classification and simplification of exact vortex soluti@msl
their linearizations in the system of coupled NLS equations

An algorithm for analysis of a particular family of solutien

1. Construct the seed vortex for a given vortex solution

2. Study analytically and numerically the associated
linearization problem for the seed vortex

3. Rotate the seed vortex and the eigenvectors of the |mesri
problem with the same group of symplectic rotations to
obtain relevant results for the given vortex.

Nonlinear dynamics of solutions along the family of sympiec
rotations is not yet well understood.
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