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Section 1

Motivations and the state-of-art
for the KdV equation:

- stability of the traveling wave background
- breathers on traveling wave background
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Motivations

Dispersive hydrodynamics for the canonical model of the
Korteweg–de Vries (KdV) equation has been well studied.

ut + 6uux + uxxx = 0,

with the step-like data

lim
x→−∞

u(t, x) = u−, lim
x→+∞

u(t, x) = u+.

The step-like initial data results in
the appearance of a rarefaction
wave (RW) if u+ > u− and a
dispersive shock wave (DSW) if
u+ < u−.
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Motivations
Solitons interactions with RWs and DSWs:

Soliton-RW:
a) Tunneling.
b) Trapping.

Soliton-DSW:
a) Tunneling.
b) Trapping.

M. J. Ablowitz, J. T. Cole, G. A. El, M. A. Hoefer, X. Luo, Stud. Appl. Math. (2023)

Dmitry E. Pelinovsky, McMaster University Dispersive hydrodynamics in the modified KdV equation 3 / 21



Motivations
Bright breathers on the modulationally stable TW of the KdV
equation ut + 6uux + uxxx = 0

Move faster that the periodic wave and induce the phase shift.
M. Hoefer, A. Mucalica, D.P., JPA (2023)
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Motivations
Dark breathers on the modulationally stable TW of the KdV equation

ut + 6uux + uxxx = 0.

Move slower that the periodic wave and induce the phase shift.
M. Hoefer, A. Mucalica, D.P , JPA (2023)
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Motivations

Further applications:
Y. Mao, S. Chandramouli, W. Xu, M. Hoefer, Phys. Rev. Lett. (2023)
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Motivations
Rogue waves on the modulationally unstable elliptic background for
another canonical model of the nonlinear Schrödinger equation

iψt + ψxx + |ψ|2ψ = 0.

J. Chen, D. P., Proceedings A (2018), J. Chen, D. P., R. White, Physica D (2020)
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Motivations
These rogue waves are observed in optics and hydrodynamics:

G. Xu, A. Chabchoub, D.P., B. Kibler, Physical Review Research (2020)
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State-of-art for construction of breathers

Traveling waves u(x, t) = φ(x− ct) of the KdV equation satisfy

ut + 6uux + uxxx = 0 ⇒ φ′′′ + 6φφ′ − cφ′ = 0.

After integration(s), it yields

φ′′ + 3φ2 − cφ = b ⇒ (φ′)2 + 2φ3 − cφ2 = 2bφ+ d

with three parameters (b, c, d). Due to scaling transformation

u(x, t) 7→ αu(αx, α3t)

and Galilean transformation

u(x, t) 7→ β + u(x− 6βt, t),

only one parameter is independent.
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State-of-art for construction of breathers

The normalized form of TW solutions is

φ(x) = 2k2cn2(x; k), b0 = 4k2(1− k2), c0 = 4(2k2 − 1), d0 = 0.

A general TW solution is obtained by the scaling and Galilean
transformations.

sn, cn, and dn are real-valued Jacobi elliptic functions on R with

sn2(x; k) + cn2(x; k) = 1, dn2(x; k) + k2sn2(x; k) = 1,

with elliptic modulus k ∈ (0, 1) between k→ 0 (trigonometric
functions) and k→ 1 (hyperbolic functions).

Elliptic functions sn2, cn2, and dn2 are double-periodic in C with
periods 2K(k) and 2iK′(k), where K′(k) = K(

√
1− k2).
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State-of-art for construction of breathers

Breathers of the KdV equation have been studied before:

E. Kuznetsov, A. Mikhailov, JETP 40 (1974) 855
F. Gesztesy, R. Svirsky, Memoirs AMS 118 (1995) 1–88
X.R. Hu, S.Y. Lou, Y. Chen, Phys. Rev. E 85 (2012) 056607

A. Nakayashiki, Lett. Math. Phys. 111 (2021) 85

with some recent additions:

M. Hoefer, A. Mucalica and D.E. Pelinovsky, KdV breathers on cnoidal wave
background, J. Physics A: Mathem. Theor. 56 (2023) 185701

] M. Bertola, R. Jenkins, A. Tovbis, Partial degeneration of finite gap solutions to the

KdV equation: soliton gas and scattering on elliptic background, Nonlinearity 36

(2023) 3622?3660
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State-of-art for construction of breathers

Our method of construction is the Darboux–Backlund transformation

û := u + 2
∂2

∂x2 log(v0),

where u(x, t) = φ(x− ct) is the TW solution of the KdV equation and
v0(x, t) = v(x− ct)eωt is a solution of the Lamé equation

v′′(x) + 2k2cn2(x; k)v(x) + λv(x) = 0

with some uniquely determined ω = ω(λ) from the linear equation

ωv(x)− cv′(x) = −3φ′(x)v(x)− 6φv′(x)− 4v′′′(x).

The linear equations represent the Lax pair

L(u)v = λv,
∂v
∂t

=M(u)v.
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State-of-art for construction of breathers

Bright breathers correspond to λ in semi-infinite gap.

Dark breathers correspond to λ in the finite gap.
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Construction of breathers

The Lamé equation for a given λ ∈ R

v′′(x) + 2k2cn2(x; k)v(x) + λv(x) = 0

is solved with the explicit functions

v±(x) =
H(x± α)

Θ(x)
e∓xZ(α), λ = 1− 2k2 + k2cn(α; k)

where α ∈ C is a new parameter and Jacobi’ theta functions are

H(x) = θ1(
πx
2K

) = 2
∞∑

n=1

(−1)n−1q(n−1/2)2
sin(2n− 1)(

πx
2K

),

Θ(x) = θ4(
πx
2K

) = 1 + 2
∞∑

n=1

(−1)nqn2
cos(2n)(

πx
2K

),

such that H(0) = 0 and Θ(x) > 0 for all x ∈ R.
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Construction of breathers

The path in α-complex plane from λ-real line:

λ = 1− 2k2 + k2cn(α; k)
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Construction of breathers

The time evolution of the eigenfunctions follows from the separation
of variables in the Lax system:

v±(t, x) =
H(x− ct ± α)

Θ(x− ct)
e∓(x−ct)Z(α)∓tω(α),

where ω(α) is found at x = 0:

ω(α) = 4(λ+ k2 − 1)

[
Θ′(α)

Θ(α)
− H′(α)

H(α)

]
.
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Construction of breathers

Darboux transformation for λ in the semi-infinite gap is applied with

v0(x, t) = c+v+(x, t) + c−v−(x, t)

where v±(x, t) > 0 and c± > 0. We can use that

k2cn2(x, k) = k2 − 1 +
E(k)

K(k)
+ ∂2

x log Θ(x)

and obtain the new solution

û = u + 2
∂2

∂x2 log(v0) = 2
[

k2 − 1 +
E(k)

K(k)

]
+ 2∂2

x log τ,

τ = Θ(x− c0t + αb)eκb(x−cbt+x0) + Θ(x− c0t − αb)e−κb(x−cbt+x0)

with uniquely defined parameters cb > c0, κb > 0, and αb ∈ [0,K].
This yields the bright breather.
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Construction of breathers

Darboux transformation for λ in the finite gap is applied with

v0(x, t) = c+v+(x, t) + c−v−(x, t)

but v±(x, t) are sign-indefinite. However, translation of the new
solution û = û(x + iK′, t) yields a bounded solution

û = u + 2
∂2

∂x2 log(v0) = 2
[

k2 − 1 +
E(k)

K(k)

]
+ 2∂2

x log τ,

τ = Θ(x− c0t + αd)e−κd(x−cdt+x0) + Θ(x− c0t − αd)eκd(x−cdt+x0)

with uniquely defined parameters cd < c0, κd > 0, and αd ∈ [0,K].
This yields the dark breather.
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Bright breathers

Here ∆b = 2παb/K(k) is normalized phase shift.
We can prove ∆′b(λ) > 0, κ′b(λ) < 0, and cb > c0.
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Bright breathers
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Dark breathers

Here ∆d = 2παd/K(k) is normalized phase shift.
We can prove ∆′d(λ) < 0, maxκd(λ), and cd < c0.
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Dark breathers
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Breathers in the Benjamin–Ono equation

The Benjamin–Ono (BO) equation is very similar to the KdV
equation as it is derived for stable fluids:

ut + 2uux + H(uxx) = 0, H(f ) :=
1
π

p.v.
∫ ∞
−∞

f (y)dy
y− x

.

The traveling periodic waves are expressed in elementary functions:

u(x, t) =
k sinhφ

cos(kξ) + coshφ
, ξ = x− ct − ξ0, c = k cothφ.

The Lax spectrum is [λ0, λ0 + k] ∪ [0,∞) with λ0 := − c+k
2 .

Dobrokhotov & Krichever (1991); Gérard & Kappeler (2021)
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Breathers in the Benjamin–Ono equation

Breathers of the BO equation create no phase shifts.

Chen & P., Wave Motion (2024)
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Breathers in the Benjamin–Ono equation

u =
2(cb + kβ) coshφ+ [k(1 + β2 + c2

bη
2) + 2βcb] sinhφ+ 2cb cos(kξ)

(1 + β2 + c2
bη

2) coshφ+ 2β sinhφ+ (1− β2 + c2
bη

2) cos(kξ) + 2βcbη sin(kξ)
,

where η = x− cbt − η0, β = 2cbk
(cb−c)2−k2 , and

. either cb > c + k (for bright breathers)

. or cb < c− k (for dark breathers).

Breather solutions are obtained by degeneration of multi-periodic
solutions in the long-wave limit, e.g. for two eigenvalues below.

0

0

1 0 21 0 2

0

0

1 20 0
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Breathers in the Benjamin–Ono equation

Bright-bright, bright-dark, and dark-dark breathers.
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State-of-art of stability analysis of traveling waves

Recall that the TW solution of the KdV equation u(x, t) = φ(x− ct)
is related to the Lax pair

L(u)v = λv,
∂v
∂t

=M(u)v,

for which we can separate the variables as v(x, t) = w(x− ct)eωt.
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State-of-art of stability analysis of traveling waves

Recall that the TW solution of the KdV equation u(x, t) = φ(x− ct)
is related to the Lax pair

L(u)v = λv,
∂v
∂t

=M(u)v,

for which we can separate the variables as v(x, t) = w(x− ct)eωt.

The “dispersion" relation ω = ω(λ) can be found from the
characteristic polynomial

ω2 + 16P(λ) = 0, P(λ) = λ3 +
c
2
λ2 +

c2 − 4b
16

λ− d + bc
16

,

which follows from the commutability of

w′′(x) + φ(x)w(x) + λw(x) = 0,

−3φ′(x)w(x)− 6φw′(x)− 4w′′′(x) + cw′(x) = ωw(x).
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State-of-art of stability analysis of traveling waves

Recall that the TW solution of the KdV equation u(x, t) = φ(x− ct)
is related to the Lax pair

L(u)v = λv,
∂v
∂t

=M(u)v,

for which we can separate the variables as v(x, t) = w(x− ct)eωt.

Linearized KdV equation at the TW with profile φ(x− ct) and
perturbation u(x− ct)eΛt can be solved by the squared eigenfunctions

u(x) = w(x)w′(x), Λ = 2ω = ±8i
√

P(λ),

where w(x) is the eigenfunction of the Lax system and

P(λ) = (λ− λ1)(λ− λ2)(λ− λ3).
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State-of-art of stability analysis of traveling waves

If φ(x + L) = φ(x) is spatially periodic, then w(x + L) = w(x)eiκx is
required to be bounded which is only possible inside the spectral
bands of the Lax spectrum:

λ ∈ σL := [λ1, λ2] ∪ [λ3,∞).

Since P(λ) = (λ− λ1)(λ− λ2)(λ− λ3) > 0 for λ ∈ σL, then we
have Λ = ±8i

√
P(λ) ∈ iR, hence the TW is spectrally stable.
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Section 2

Traveling waves and their spectral stability in the
modified KdV equation
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Traveling periodic waves in the modified KdV equation

The modified KDV equation is physically relevant in the same context
of fluids. There are two meaningful cases

ut ± 6u2ux + uxxx = 0,

which are called focusing and defocusing, by the analogy to the NLS

iψt + ψxx ± 2|ψ|2ψ = 0.

However, the NLS and mKdV equations are very different in the
traveling wave solutions u(x, t) = φ(x− ct):

φ′′′ ± 6φ2φ′ − cφ′ = 0.

After integration(s), it yields

φ′′ ± 2φ3 − cφ = b ⇒ (φ′)2 ± φ4 − cφ2 = 2bφ+ d
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Traveling periodic waves in the modified KdV equation

Since only one scaling transformation is available

φ(x) = aφ̃(ax), c = a2c̃, b = a3b̃, d = a4d̃,

two parameters are independent.

If b = 0, the solutions are expressed in terms of Jacobi dn, cn, and sn
functions like in NLS, e.g. in the defocusing case,

φ(x) = ksn(x, k), c = 1 + k2, b = 0, d =
1
2

k2.

If b 6= 0, the solutions are expressed in elliptic functions,

φ(x) = u4+
(u2 − u4)(u3 − u4)

(u2 − u4)− (u2 − u3)sn2(x, k)
, k2 =

(u1 − u4)(u2 − u3)

(u1 − u3)(u2 − u4)
,

with a nontrivial dependence between (u1, u2, u3, u4) and (b, c, d).
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Traveling periodic waves in the modified KdV equation
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Focusing case (left): two families exist to generalize cn and dn.
Defocusing case (right): one family exists to generalize sn.
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Algebraic characterization of traveling waves

The mKdV equation is a compatibility condition of the Lax system

∂xϕ =

(
iζ u
u −iζ

)
ϕ

and

∂tϕ =

(
4iζ3 + 2iζu2 4ζ2u− 2iζux + 2u3 − uxx

4ζ2u + 2iζux + 2u3 − uxx −4iζ3 − 2iζu2

)
ϕ.

If u(x, t) = φ(x− ct), then ϕ(x, t) = ψ(x− ct)eωt with ω found from
the algebraic system

ωψ − c
(

iζ φ
φ −iζ

)
ψ

=

(
4iζ3 + 2iζφ2 4ζ2φ− 2iζφ′ − cφ− b
4ζ2φ+ 2iζφ′ − cφ− b −4iζ3 − 2iζφ2

)
ψ.
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Algebraic characterization of traveling waves

The characteristic equation is

ω2 + 16P(ζ) = 0, P(ζ) := ζ6 − c
2
ζ2 +

1
16

(c2 − 8d)ζ2 − b2

16
,

which can be factorized as P(ζ) = (ζ2 − ζ2
1 )(ζ2 − ζ2

2 )(ζ2 − ζ2
3 ).

Lax spectrum σL for traveling periodic waves is the Floquet spectrum

ψ′(x) =

(
iζ φ(x)
φ(x) −iζ

)
ψ(x),

where φ(x + L) = φ(x) and ψ(x + L) = eiθxψ(x) with θ ∈
[
−π

L ,
π
L

]
.

The polynomial P(ζ) is related to two important applications.
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Algebraic characterization of traveling waves

The characteristic equation is

ω2 + 16P(ζ) = 0, P(ζ) := ζ6 − c
2
ζ2 +

1
16

(c2 − 8d)ζ2 − b2

16
,

which can be factorized as P(ζ) = (ζ2 − ζ2
1 )(ζ2 − ζ2

2 )(ζ2 − ζ2
3 ).

Roots of P(ζ) correspond to either θ = 0 or θ = π
L for which

φ = p2
1 + q2

1 + p2
2 + q2

2,

where ψ = (p1, q1)T and ψ = (p2, q2)T are eigenvectors for ζ1, ζ2.
Cao & Geng, (1990) Chen & P., J. Nonlinear Science (2019)
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Algebraic characterization of traveling waves

The characteristic equation is

ω2 + 16P(ζ) = 0, P(ζ) := ζ6 − c
2
ζ2 +

1
16

(c2 − 8d)ζ2 − b2

16
,

which can be factorized as P(ζ) = (ζ2 − ζ2
1 )(ζ2 − ζ2

2 )(ζ2 − ζ2
3 ).

Linearized modified KdV equation at the traveling wave with profile
φ(x− ct) and perturbation v(x− ct)eΛt can be solved in terms of
squared eigenfunctions:

v = p2 − q2, Λ = 2ω = ±8i
√

P(ζ),

where ψ = (p, q)T is an eigenvector for ζ ∈ σL.
Deconinck & Nivala, (2011) Deconinck & Upsal (2021)
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Spectral stability of traveling waves: defocusing case
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ψ′(x) =

(
iζ φ(x)
φ(x) −iζ

)
ψ(x),

with φ(x + L) = φ(x).
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Spectral stability of traveling waves: defocusing case
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ψ′(x) =

(
iζ φ(x)
φ(x) −iζ

)
ψ(x),

with φ(x + L) = φ(x).

Since the spectral problem is self-adjoint, the Lax spectrum σL ⊂ R.

P(ζ) = (ζ2 − ζ2
1 )(ζ2 − ζ2

2 )(ζ2 − ζ2
3 ) has real 0 ≤ ζ3 ≤ ζ2 ≤ ζ1.
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Spectral stability of traveling waves: defocusing case

-2 -1 0 1 2 3 4 5 6
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2
v

ψ′(x) =

(
iζ φ(x)
φ(x) −iζ

)
ψ(x),

with φ(x + L) = φ(x).

Lax spectrum σL is We have

P(ζ) > 0 ζ ∈ σL

hence
Λ = ±8i

√
P(ζ) ∈ iR and

the periodic wave is
modulationally stable.
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Spectral stability of traveling waves: focusing case
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The spectral problem is

ψ′(x) =

(
iζ φ(x)
φ(x) −iζ

)
ψ(x),

with φ(x + L) = φ(x).
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Spectral stability of traveling waves: focusing case
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The spectral problem is

ψ′(x) =

(
iζ φ(x)
φ(x) −iζ

)
ψ(x),

with φ(x + L) = φ(x).

The spectral problem is no longer self-adjoint and σL ⊂ C.

P(ζ) = (ζ2 − ζ2
1 )(ζ2 − ζ2

2 )(ζ2 − ζ2
3 ) has complex ζ1,2,3 ∈ C.
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Spectral stability of traveling waves: focusing case
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The spectral problem is

ψ′(x) =

(
iζ φ(x)
φ(x) −iζ

)
ψ(x),

with φ(x + L) = φ(x).

Lax spectrum σL for λ = iζ is
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Stability spectrum Λ = ±8i
√

P(ζ):
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Spectral stability of traveling waves: focusing case
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The spectral problem is

ψ′(x) =
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Rogue waves in the focusing case
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For each root of P(ζ) = (ζ2 − ζ2
1 )(ζ2 − ζ2

2 )(ζ2 − ζ2
3 ), one can

construct two solutions ψ = (p, q)T of the Lax system: one is
bounded and the other one is linearly growing. With the Darboux
transformation

û = u +
4λ1pq

p2 + q2 ,

the unbounded solution is used to construct rogue waves or algebraic
solitons on the periodic background. Chen & P., J. Nonlinear Science (2019)
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Rogue waves in the focusing case

Three algebraic solitons exist because the background TW is stable.
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A two-fold Darboux transformation is needed for the
complex-conjugate roots.

ũ = u+
4(λ2

1 − λ2
2)
[
λ1p1q1(p2

2 + q2
2)− λ2p2q2(p2

1 + q2
1)
]

(λ2
1 + λ2

2)(p2
1 + q2

1)(p2
2 + q2

2)− 2λ1λ2[4p1q1p2q2 + (p2
1 − q2

1)(p2
2 − q2

2)]
,
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Rogue waves in the focusing case

Algebraic soliton exists for λ1 ∈ R and the rogue wave exists for
λ2 = λ̄3 ∈ C in P(λ) = (λ2 − λ2

1)(λ2 − λ2
2)(λ2 − λ2

3) because the
background TW is unstable.
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Section 3

Breathers in the defocusing modified KdV
equation
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Recap of what was said before

Here we consider the defocusing MKDV equation

ut − 6u2ux + uxxx = 0,

with one family of traveling waves u(x, t) = φ(x + ct), c > 0 such that

(φ′)2 − φ4 + cφ2 = 2bφ+ d
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The spectral problem is:

ψ′(x) =

(
iζ φ(x)
φ(x) −iζ

)
ψ(x),

with φ(x + L) = φ(x).
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Here we consider the defocusing MKDV equation

ut − 6u2ux + uxxx = 0,

with one family of traveling waves u(x, t) = φ(x + ct), c > 0 such that

(φ′)2 − φ4 + cφ2 = 2bφ+ d

The general periodic solution is expressed in elliptic functions,

φ(x) = u4+
(u2 − u4)(u3 − u4)

(u2 − u4)− (u2 − u3)sn2(x, k)
, k2 =

(u1 − u4)(u2 − u3)

(u1 − u3)(u2 − u4)
,

with a nontrivial dependence between (u1, u2, u3, u4) and (b, c, d).
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Recap of what was said before

Here we consider the defocusing MKDV equation

ut − 6u2ux + uxxx = 0,

with one family of traveling waves u(x, t) = φ(x + ct), c > 0 such that

(φ′)2 − φ4 + cφ2 = 2bφ+ d

Lax spectrum σL is We have

P(ζ) > 0 ζ ∈ σL

hence
Λ = ±8i

√
P(ζ) ∈ iR and

the periodic wave is
modulationally stable.
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Recap of what was said before

Here we consider the defocusing MKDV equation

ut − 6u2ux + uxxx = 0,

with one family of traveling waves u(x, t) = φ(x + ct), c > 0 such that

(φ′)2 − φ4 + cφ2 = 2bφ+ d

If b = 0, the solution is the same as in the NLS equation:

u(x, t) = φ(x + ct), φ(x) = ksn(x; k), c = 1 + k2, k ∈ (0, 1),

and the breathers have been constructed in the explicit form.
A. Mucalica & D. P., Lett. Math. Phys. (2024)

If b 6= 0, breathers have not been constructed.
L.K. Arruda & D. P., in progress (2024)
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Construction of dark breathers for b = 0

There exists an exact solution of the Lax system for ψ = (p, q)T :

p = esx+ωte−
iπx
4K

H(x− z)
Θ(x)Θ(z)

, q = esx+ωte−
iπx
4K

Θ(x− z)
Θ(x)H(z)

,

where z ∈ C is a smart choice of parameterization for which

ζ =
1
2

dn(z) dn(iK′ − z),

s =
1
2

Z(z)− 1
2

Z(iK′ − z),

ω = −4i
√

(ζ2 − ζ2
1 )(ζ2 − ζ2

2 )(ζ2),

with ζ3 = 0 if b = 0. [D. A. Takahashi (2016)]
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Construction of dark breathers for b = 0

Lax spectrum σL = (−∞,−ζ1] ∪ [−ζ2, ζ2] ∪ [ζ1,∞).
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Construction of dark breathers for b = 0

Dark breathers correspond to ζ ∈ (ζ2, ζ1) for which we can
parameterize

z =
iK′

2
− α, α ∈ (0,K)

and compute

ζ =
1 + k

2
1− k sn2(α)

1 + k sn2(α)
∈ [ζ2, ζ1],

s = −Z(α)− k sn(α) cn(α) dn(α)

1 + k sn2(α)
< 0,

ω = −2k(1 + k)2 1− k sn2(α)

[1 + k sn2(α)]3
sn(α) cn(α) dn(α) < 0.
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Construction of dark breathers for b = 0

New solution is obtained with the Darboux transformation:

û = u− 4iζpq
p2 − q2 ,

where

p = q̄ = e−ηe−
iπξ
4K

H
(
ξ + α− iK′

2

)
Θ(ξ)Θ

(
−α+ iK′

2

) + eηe−
iπξ
4K

H
(
ξ − α− iK′

2

)
Θ(ξ)Θ

(
α+ iK′

2

) ,
with ξ := x + ct (periodic wave coordinate) and η := −s(ξ + ξ0)− ωt
(dark soliton coordinate). With (lots) of elliptic function relations
(e.g. quarter-period translations of Jacobi theta’s functions), one can
obtain an exact solution for û(x, t).

However, the new solution û(x, t) is singular! A bounded solution is
obtained after the transformation: ũ(x, t) := û(x + iK′, t).
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Construction of dark breathers for b = 0

If the traveling wave solution is

u(x, t) = k sn(ξ; k) =
√

k
H(ξ)

Θ(ξ)
,

then the dark breather solution is

ũ(x, t) =
√

k
H(ξ + 2α)e−2η + H(ξ − 2α)e2η + 2βH(ξ)

Θ(ξ + 2α)e−2η + Θ(ξ − 2α)e2η + 2γΘ(ξ)
,

with some explicit β, γ ∈ R and ξ = x + c0t, η = κ(x + ct + x0).

For k = 1, this yields the two-soliton solution:

ũ(x, t) =
sinh(ξ + 2α)e−2η + sinh(ξ − 2α)e2η + 2 sinh(ξ)(1− sinh2(2α))sech(2α)

cosh(ξ + 2α)e−2η + cosh(ξ − 2α)e2η + 2 cosh(ξ) cosh(2α)
.
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Construction of dark breathers for b = 0
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Construction of dark breathers for b = 0

Characteristics of the dark breather:
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Construction of dark breathers for b = 0
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Towards construction of dark breathers for b 6= 0

The general periodic solution is expressed in elliptic functions,

φ(x) = u4+
(u2 − u4)(u3 − u4)

(u2 − u4)− (u2 − u3)sn2(x, k)
, k2 =

(u1 − u4)(u2 − u3)

(u1 − u3)(u2 − u4)
,

with a nontrivial dependence between (u1, u2, u3, u4) and (b, c, d).

Parameters (b, c) are defined inside the existence domain
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Towards construction of dark breathers for b 6= 0

Lax spectrum σL is

P(ζ) = (ζ2−ζ2
1 )(ζ2−ζ2

2 )(ζ2−ζ2
2 )

with 0 ≤ ζ3 < ζ2 < ζ1.

It was shown by A. Kamchatnov (1990,1999) that both the periodic
solution and the domain can better be expressed by ζ1, ζ2, ζ3:

φ(x) =
2(ζ1 + ζ3)(ζ2 + ζ3)

(ζ1 + ζ3)− (ζ1 − ζ2)sn2(x, k)
−ζ1−ζ2−ζ3, k2 =

ζ2
1 − ζ2

2

ζ2
1 − ζ2

3
.

Transformation (ζ1, ζ2, ζ3) 7→ (b, c, d) is an invertible
diffeomorphism for 0 ≤ ζ3 < ζ2 < ζ1.
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Towards construction of dark breathers for b 6= 0

Weierstrass’ elliptic function ℘(x) is related to sn2(x, k), hence φ(x) is
a linear fractional transformation of ℘(x). Moreover, it was known for
at least 100 years [N.I. Akhiezer, E.T. Whittaker–G.N. Watson] that

φ2(x) = ℘ (x + v) + ℘ (x− v) + ℘(2v).

and
φ′(x) = ℘ (x− v)− ℘ (x + v) ,

where ±v are double poles of the elliptic functions φ2(x) and φ′(x)
inside the fundamental rectangle

R :=
{

z ∈ C : −K ≤ Re(z) ≤ K, −K′ ≤ Im(z) ≤ K′
}
,
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Towards construction of dark breathers for b 6= 0

This brings up theory of elliptic functions:

. The number of zeros of φ(x) inR is equal to the number of poles
of φ(x) inR.

. The number of zeros and poles of ℘(x) is equal to 2 inR.

. Every elliptic function can be factorized as a quotient of the
product of Jacobi’s theta function H(x).

We proved that poles of φ(x) are ±v = ±(iK′ + α) with α ∈ (0,K).
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Towards construction of dark breathers for b 6= 0

This brings up theory of elliptic functions:

. The number of zeros of φ(x) inR is equal to the number of poles
of φ(x) inR.

. The number of zeros and poles of ℘(x) is equal to 2 inR.

. Every elliptic function can be factorized as a quotient of the
product of Jacobi’s theta function H(x).

This yields the “optimal" representation of periodic solutions:

φ(x) = C
H(x− β)H(x + β)

Θ(x− α)Θ(x + α)
, C := (ζ1 − ζ2 − ζ3)

Θ2(α)

H2(β)
,

where α ∈ R and either β ∈ R or β ∈ iR.
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Towards construction of dark breathers for b 6= 0

This brings up theory of elliptic functions:

. The number of zeros of φ(x) inR is equal to the number of poles
of φ(x) inR.

. The number of zeros and poles of ℘(x) is equal to 2 inR.

. Every elliptic function can be factorized as a quotient of the
product of Jacobi’s theta function H(x).

The symmetric case b = 0 (for which ζ3 = 0) is degenerate since it is
not a particular limit of the general solution.

φ(x) = k sn(x, k) =
√

k
H(x)

Θ(x)
.
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Eigenfunctions of the Lax system for b 6= 0

We take the elliptic traveling wave solution

φ(x) = C
H(x− β)H(x + β)

Θ(x− α)Θ(x + α)
, C := (ζ1 − ζ2 − ζ3)

Θ2(α)

H2(β)

and attempt to construct elliptic solutions of the Lax system:

ψ′(x) =

(
iζ φ(x)
φ(x) −iζ

)
ψ(x).
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Eigenfunctions of the Lax system for b 6= 0

For ζ 6= 0, we can use ideas from
[Belokolos–Bobenko-Enolskii–Its–Matveev, 1994] and write for ψ = (p, q)T :

q
p

= −i
ζ3 + 1

2ζ(φ2 − ζ2
1 − ζ2

2 − ζ2
3 )−

√
P(ζ)

ζ2φ− i
2ζφ

′ − ζ1ζ2ζ3

= −i
ζ2φ+ i

2ζφ
′ − ζ1ζ2ζ3

ζ3 + 1
2ζ(φ2 − ζ2

1 − ζ2
2 − ζ2

3 ) +
√

P(ζ)

= C
H(x + z∗1)H(x + z∗2)

H(x− z1)H(x− z2)
,

where {±z1,±z2} is the set of zeros of the second denominator and
{±z∗1,±z∗2} is the set of zeros of the first numerator such that

z1 + z2 + z∗1 + z∗2 = 0 mod(2K, 2K′).
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Eigenfunctions of the Lax system for b 6= 0

With further integration of

p′(x) = iζp(x) + φ(x)q(x),

we can obtain

p = esx+ωt H(x− z1)H(x− z2)

Θ(x− α)Θ(x + α)Θ(α− z1)Θ(α− z2)
e−

iπ
2K (z1+z2),

q = −esx+ωt H(x + z∗1)H(x + z∗2)

Θ(x− α)Θ(x + α)Θ(α+ z∗1)Θ(α+ z∗2)
e

iπ
2K (z∗1 +z∗2 ),

with unique expression for s and ω = 4i
√

P(ζ).

The main remaining question is
how to parameterize {z1, z2, z∗1, z

∗
2} in terms of ζ ∈ R.
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Eigenfunctions of the Lax system for b 6= 0

If b = 0 (ζ3 = 0), the elliptic theory gives for ψ = (p, q)T :

q
p

= −i
ζ2 + 1

2(φ2 − ζ2
1 − ζ2

2 )−
√

(ζ2 − ζ2
1 )(ζ2 − ζ2

2 )

ζφ− i
2φ
′

= −i
ζφ+ i

2φ
′

ζ2 + 1
2(φ2 − ζ2

1 − ζ2
2 ) +

√
(ζ2 − ζ2

1 )(ζ2 − ζ2
2 )

= C
Θ(x− z)
H(x− z)

,

where {±z} is the set of zeros of the second denominator and
{±(iK′ − z)} is the set of zeros of the first numerator and z ∈ C is
related uniquely to ζ ∈ R by

φ′(z)
φ(z)

=
cn(z) dn(z)

sn(z)
= −2iζ.
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Eigenfunctions of the Lax system for b 6= 0

If b 6= 0, numerical results in the hyperbolic case ζ2 = ζ3 suggest that

z1 = −z̄∗1, z2 = −z̄∗2,

which still give three real parameters defined uniquely from ζ ∈ R.

Roots {±z1,±z2} (blue,green) and {±z∗1,±z∗2} (red,black)
parameterized by ζ in (ζ2, ζ1) (left) and (0, ζ3) (right).
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Conclusion

The following questions were discussed in the context of elliptic
traveling wave solutions of the basic integrable equations (KdV,
mKdV, BO, NLS):

. How to connect the spectral stability problem with the Lax
spectrum.

. How to use the elliptic theory in order to characterize the Lax
spectrum and associated eigenfunctions.

. How to use the eigenfunctions to construct breathers (in the case
of stability) and rogue waves (in the case of instability) on the
traveling wave background.

Dmitry E. Pelinovsky, McMaster University Dispersive hydrodynamics in the modified KdV equation 21 / 21


	Motivations and the state-of-art   for the KdV equation:      - stability of the traveling wave background   - breathers on traveling wave background 
	Traveling waves and their spectral stability in the modified KdV equation
	Breathers in the defocusing modified KdV equation

